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Introduction Our attention has once more been drawn (see [2] and its references)

to the problem of determining the number Tn of triangles with integer sides and

perimeter n. The solution of this problem can be written neatly as

Tn =




〈
(n + 3)2

48

〉
for n odd;〈

n2

48

〉
for n even,

where 〈x〉 is the integer closest to x. Our proof comes in two stages. First we show

by a direct combinatorial argument that

Tn =




p3

(
n − 3

2

)
for n odd;

p3

(
n − 6

2

)
for n even,

where p3(n) is the number of partitions of n into at most three parts. Then we show

using a novel partial fractions technique that

p3(n) =
〈

(n + 3)2

12

〉
.

The proofs For a triangle with integer sides a ≤ b ≤ c and odd perimeter n,

a + b − c, b + c − a, c + a − b

are odd and positive,

a + b − c − 1, b + c − a − 1, c + a − b − 1

are even and nonnegative, and if

p =
1
2
(b + c − a − 1), q =

1
2
(c + a − b − 1), and r =

1
2
(a + b − c − 1),
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then p ≥ q ≥ r are nonnegative integers, and p + q + r =
n − 3

2
.

Conversely, if n ≥ 3 is odd and p ≥ q ≥ r are nonnegative integers with p + q + r =
n − 3

2
and if

a = q + r + 1, b = p + r + 1, and c = p + q + 1,

then a ≤ b ≤ c are the sides of a triangle with perimeter n.

Similarly, given a triangle with integer sides a ≤ b ≤ c and even perimeter n,

a + b − c, b + c − a, and c + a − b

are even and positive,

a + b − c − 2, b + c − a − 2, and c + a − b − 2

are even and nonnegative, and if

p =
1
2
(b + c − a − 2), q =

1
2
(c + a − b − 2), and r =

1
2
(a + b − c − 2),

then p ≥ q ≥ r are nonnegative integers, and p + q + r =
n − 6

2
.

Conversely, if n ≥ 6 is even and p ≥ q ≥ r are nonnegative integers with p + q + r =
n − 6

2
and if

a = q + r + 2, b = p + r + 2, and c = p + q + 2

then a ≤ b ≤ c are the sides of a triangle with perimeter n. �

To show that

p3(n) =
〈

(n + 3)2

12

〉
,

we start with the generating function
∑
n≥0

p3(n)qn =
1

(1 − q)(1 − q2)(1 − q3)
.

To see that this is indeed the generating function for partitions into at most

three parts, we note that partitions into at most three parts are equinumerous with

partitions into parts no greater than three ([1, Theorem 1.4]) and the generating

function for partitions into parts no greater than three is easily seen to be

(1 + q3 + q3+3 + · · · )(1 + q2 + q2+2 + · · · )(1 + q1 + q1+1 + · · · )
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=
1

(1 − q)(1 − q2)(1 − q3)
.

In order to extract an explicit formula for p3(n) from the generating function,

it is usual to use partial fractions. I have found a method (other than by using a

computer package, such as MAPLE) by which we can avoid the horrors of finding the

complete partial fractions expansion of the generating function. I will demonstrate

the method below, and follow it with an explanation of the various steps. Before I

do so, let me first make the following observations.

The denominator of the generating function can be factored as follows.

(1 − q)3(1 + q)(1 − ωq)(1 − ωq)

where ω is a cube root of unity.

Thus the partial fractions expansion of the generating function takes the form

∑
n≥0

p3(n)qn =
A

(1 − q)3
+

B

(1 − q)2
+

C

1 − q
+

D

1 + q
+

E

1 − ωq
+

F

1 − ωq
.

It follows that

p3(n) = A

(
n + 2

2

)
+ B

(
n + 1

1

)
+ C + D(−1)n + Eωn + Fωn.

Observe that the expression C + D(−1)n + Eωn + Fωn is periodic with period 6, so

takes values ci, i = 0, · · · , 5 according to the residue of n modulo 6. It follows that

the generating function can be written

∑
n≥0

p3(n)qn =
A

(1 − q)3
+

B

(1 − q)2
+

c0 + c1q + c2q
2 + c3q

3 + c4q
4 + c5q

5

1 − q6
.

With this in mind, we have

∑
n≥0

p3(n)qn =
1

(1 − q)(1 − q2)(1 − q3)

=
1

(1 − q)3
· 1
(1 + q)(1 + q + q2)

=
1

(1 − q)3
·
(

1
6

+
(1 − q)(5 + 3q + q2)
6(1 + q)(1 + q + q2)

)

=
1
6

1
(1 − q)3

+
1

(1 − q)2
· 5 + 3q + q2

6(1 + q)(1 + q + q2)
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=
1
6

1
(1 − q)3

+
1

(1 − q)2
·
(

1
4

+
(1 − q)(7 + 7q + 3q2)
12(1 + q)(1 + q + q2)

)

=
1
6

1
(1 − q)3

+
1
4

1
(1 − q)2

+
7 + 7q + 3q2

12(1 − q)(1 + q)(1 + q + q2)

=
1
6

1
(1 − q)3

+
1
4

1
(1 − q)2

+
(7 + 7q + 3q2)(1 − q + q2)

12(1 − q6)

=
1
6

1
(1 − q)3

+
1
4

1
(1 − q)2

+
7 + 3q2 + 4q3 + 3q4

12(1 − q6)

=
1
6

∑
n≥0

(
n + 2

2

)
qn +

1
4

∑
n≥0

(n + 1)qn +
1
12

(7 + 3q2 + 4q3 + 3q4)
∑
n≥0

q6n

=
∑
n≥0

1
12

(n2 + 6n + 5)qn +
1
12
(
7 + 3q2 + 4q3 + 3q4

)∑
n≥0

q6n

=
∑
n≥0

(n + 3)2

12
qn +

1
12

(3 − 4q − q2 − q4 − 4q5)
∑
n≥0

q6n.

The result follows.

The explanation of the various steps above is the following. Since we know the

major contribution to p3(n) comes from the term (1 − q)3 in the denominator, we

attempt to separate this term from the generating function. We write∑
n≥0

p3(n)qn =
1

(1 − q)3
f(q) where f(q) =

1
(1 + q)(1 + q + q2)

.

Then we replace f(q) by its Taylor series about 1, at least to the extent of writing

f(q) = f(1) + g(q) =
1
6

+ g(q).

An easy calculation gives

g(q) = f(q)−f(1) =
1

(1 + q)(1 + q + q2)
−1

6
=

6 − (1 + q)(1 + q + q2)
6(1 + q)(1 + q + q2)

=
(1 − q)(5 + 3q + q2)
6(1 + q)(1 + q + q2)

.

Thus we obtain the fourth line above.

We then apply the same procedure to the function
5 + 3q + q2

6(1 + q)(1 + q + q2)
and arrive

at the sixth line, where the denominator is

12(1 − q)(1 + q)(1 + q + q2).

Now we note that (1 − q)(1 + q)(1 + q + q2) divides 1 − q6, since

1 − q6 = (1 − q3)(1 + q3) = (1 − q)(1 + q)(1 + q + q2)(1 − q + q2).
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So we multiply top and bottom by 1 − q + q2 to obtain the eighth line above. The

rest is straightforward.
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