TRIANGLES WITH INTEGER SIDES

Michael D. Hirschhorn

It is well-known $[1-6]$ that the number T_{n} of triangles with integer sides and perimeter n is given by

$$
T_{n}= \begin{cases}\left\langle(n+3)^{2} / 48\right\rangle & \text { if } n \text { is odd } \\ \left\langle n^{2} / 48\right\rangle & \text { if } n \text { is even }\end{cases}
$$

where $\langle x\rangle$ is the integer closest to x.
The object of this note is to give as quick a proof of this as I can.
We prove
Lemma 1.
The number S_{n} of scalene triangles with integer sides and perimeter n is given for $n \geq 6$ by

$$
S_{n}=T_{n-6} .
$$

Proof: If $n=6,7,8$ or 10 , both are 0 . Otherwise, given a scalene triangle with integer sides $a<b<c$ and perimeter n, let $a^{\prime}=a-1, b^{\prime}=b-2$, $c^{\prime}=c-3$. Then $a^{\prime}, b^{\prime}, c^{\prime}$ are the sides of a triangle of perimeter $n-6$. Moreover, the process is reversible. The result follows.

Corollary.

$$
T_{n}-T_{n-6}=I_{n}
$$

where I_{n} denotes the number of isosceles (including equilateral) triangles with integer sides and perimeter n.

Lemma 2. If $n \geq 1$

$$
I_{n}= \begin{cases}(n-4) / 4 & \text { if } n \equiv 0(\bmod 4) \\ (n-1) / 4 & \text { if } n \equiv 1(\bmod 4) \\ (n-2) / 4 & \text { if } n \equiv 2(\bmod 4) \\ (n+1) / 4 & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Proof: If $n=1,2$ or $4, I_{n}=0$. Otherwise, if $n \equiv 0(\bmod 4)$, write $n=4 m$. The isosceles triangles with integer sides and perimeter n have sides
$\{2,2 m-1,2 m-1\},\{4,2 m-2,2 m-2\}, \cdots,\{2 m-2, m+1, m+1\}$.
Thus there are $m-1$ such triangles, and $I_{n}=m-1=(n-4) / 4$. The other three cases are similar.

Lemma 3. For $n \geq 7$

$$
I_{n}+I_{n-6}= \begin{cases}(n-6) / 2 & \text { if } n \text { is even } \\ (n-3) / 2 & \text { if } n \text { is odd }\end{cases}
$$

Proof: Suppose $n \equiv 0(\bmod 4)$. Then $n-6 \equiv 2(\bmod 4), I_{n}=(n-4) / 4$, $I_{n-6}=(n-8) / 4$ and $I_{n}+I_{n-6}=(n-6) / 2$.
If $n \equiv 2(\bmod 4), n-6 \equiv 0(\bmod 4), I_{n}+I_{n-6}=(n-2) / 4+(n-10) / 4=$ $(n-6) / 2$.
So if n is even, $I_{n}+I_{n-6}=(n-6) / 2$.
The case n odd is similar.
Lemma 4. For $n \geq 12$

$$
T_{n}-T_{n-12}= \begin{cases}(n-6) / 2 & n \text { even } \\ (n-3) / 2 & n \text { odd }\end{cases}
$$

Proof:

$$
T_{n}-T_{n-6}=I_{n}, \quad T_{n-6}-T_{n-12}=I_{n-6}, \quad T_{n}-T_{n-12}=I_{n}+I_{n-6}
$$

Lemma 5 . Let $f(n)$ be defined by

$$
f(n)= \begin{cases}n^{2} / 48 & n \text { even } \\ (n+3)^{2} / 48 & n \text { odd }\end{cases}
$$

Then

$$
f(n)-f(n-12)= \begin{cases}(n-6) / 2 & n \text { even } \\ (n-3) / 2 & n \text { odd }\end{cases}
$$

Lemma 6. Let $\delta_{n}=T_{n}-f(n)$. Then for $n \geq 12$

$$
\delta_{n}=\delta_{n-12}
$$

Theorem.

$$
T_{n}=\langle f(n)\rangle
$$

Proof: It is easy to check that $\left|\delta_{n}\right| \leq 1 / 3$ for $0 \leq n \leq 11$, so by Lemma 6 , $\left|\delta_{n}\right| \leq 1 / 3$ for all n. The result follows.

Reference

[1] George E. Andrews, A note on partitions and triangles with integer sides, Amer. Math. Monthly 86(1979), 477.
[2] Michael D. Hirschhorn, Triangles with integer sides, revisited, this MAGAZINE 73(2000), 59-64.
[3] R. Honsberger, Mathematical Gems III, vol. 9, Dolciana Mathematical Expositions, Mathematical Association of America, Washington, DC, 1985.
[4] Tom Jenkyns and Eric Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly 107(2000), 634-639.
[5] J. H. Jordan, R. Welch and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly 86(1979), 686-689.
[6] Nicholas Krier and Bennet Manvel, Counting integer triangles, this MAGAZINE 71(1998), 291-295.

For the referee

$$
\begin{array}{ccccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
T_{n} & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 2 & 1 & 3 & 2 & 4 \\
T_{n-6} & & & & & & & 0 & 0 & 0 & 1 & 0 & 1 \\
I_{n} & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 \\
f(n) & 0 & \frac{1}{3} & \frac{1}{12} & \frac{3}{4} & \frac{1}{3} & \frac{4}{3} & \frac{3}{4} & \frac{25}{12} & \frac{4}{3} & 3 & \frac{25}{12} & \frac{49}{12} \\
\delta_{n} & 0 & -\frac{1}{3} & -\frac{1}{12} & \frac{1}{4} & -\frac{1}{3} & -\frac{1}{3} & \frac{1}{4} & -\frac{1}{12} & -\frac{1}{3} & 0 & -\frac{1}{12} & -\frac{1}{12}
\end{array}
$$

