TRIANGLES WITH INTEGER SIDES

MICHAEL D. HIRSCHHORN

It is well-known [1-6] that the number T_n of triangles with integer sides and perimeter n is given by

$$T_n = \begin{cases} \langle (n+3)^2/48 \rangle & \text{if } n \text{ is odd} \\ \langle n^2/48 \rangle & \text{if } n \text{ is even} \end{cases}$$

where $\langle x \rangle$ is the integer closest to x.

The object of this note is to give as quick a proof of this as I can.

We prove

Lemma 1.

The number S_n of scalene triangles with integer sides and perimeter n is given for $n \ge 6$ by

$$S_n = T_{n-6}$$
.

Proof: If n = 6, 7, 8 or 10, both are 0. Otherwise, given a scalene triangle with integer sides a < b < c and perimeter n, let a' = a - 1, b' = b - 2, c' = c - 3. Then a', b', c' are the sides of a triangle of perimeter n - 6. Moreover, the process is reversible. The result follows.

Corollary.

$$T_n - T_{n-6} = I_n,$$

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}\mathrm{T}_{E}\mathrm{X}$

where I_n denotes the number of isosceles (including equilateral) triangles with integer sides and perimeter n.

Lemma 2. If $n \ge 1$

$$I_n = \begin{cases} (n-4)/4 & \text{if } n \equiv 0 \pmod{4} \\ (n-1)/4 & \text{if } n \equiv 1 \pmod{4} \\ (n-2)/4 & \text{if } n \equiv 2 \pmod{4} \\ (n+1)/4 & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Proof: If n = 1, 2 or 4, $I_n = 0$. Otherwise, if $n \equiv 0 \pmod{4}$, write n = 4m. The isosceles triangles with integer sides and perimeter n have sides

$$\{2, 2m-1, 2m-1\}, \{4, 2m-2, 2m-2\}, \cdots, \{2m-2, m+1, m+1\}.$$

Thus there are m-1 such triangles, and $I_n = m-1 = (n-4)/4$. The other three cases are similar.

Lemma 3. For $n \geq 7$

$$I_n + I_{n-6} = \begin{cases} (n-6)/2 & \text{if } n \text{ is even} \\ (n-3)/2 & \text{if } n \text{ is odd.} \end{cases}$$

Proof: Suppose $n \equiv 0 \pmod{4}$. Then $n - 6 \equiv 2 \pmod{4}$, $I_n = (n - 4)/4$, $I_{n-6} = (n - 8)/4$ and $I_n + I_{n-6} = (n - 6)/2$.

If
$$n \equiv 2 \pmod{4}$$
, $n-6 \equiv 0 \pmod{4}$, $I_n + I_{n-6} = (n-2)/4 + (n-10)/4 = (n-6)/2$.

So if *n* is even, $I_n + I_{n-6} = (n-6)/2$.

The case n odd is similar.

Lemma 4. For $n \ge 12$

$$T_n - T_{n-12} = \begin{cases} (n-6)/2 & n \text{ even} \\ (n-3)/2 & n \text{ odd.} \end{cases}$$

Proof:

$$T_n - T_{n-6} = I_n$$
, $T_{n-6} - T_{n-12} = I_{n-6}$, $T_n - T_{n-12} = I_n + I_{n-6}$.

Lemma 5. Let f(n) be defined by

$$f(n) = \begin{cases} n^2/48 & n \text{ even} \\ (n+3)^2/48 & n \text{ odd.} \end{cases}$$

Then

$$f(n) - f(n-12) = \begin{cases} (n-6)/2 & n \text{ even} \\ (n-3)/2 & n \text{ odd.} \end{cases}$$

Lemma 6. Let $\delta_n = T_n - f(n)$. Then for $n \ge 12$

$$\delta_n = \delta_{n-12}$$
.

Theorem.

$$T_n = \langle f(n) \rangle.$$

Proof: It is easy to check that $|\delta_n| \le 1/3$ for $0 \le n \le 11$, so by Lemma 6, $|\delta_n| \le 1/3$ for all n. The result follows.

Reference

- [1] George E. Andrews, A note on partitions and triangles with integer sides, *Amer. Math. Monthly* **86**(1979), 477.
- [2] Michael D. Hirschhorn, Triangles with integer sides, revisited, this MAG-AZINE **73**(2000), 59–64.
- [3] R. Honsberger, *Mathematical Gems* III, vol. 9, Dolciana Mathematical Expositions, Mathematical Association of America, Washington, DC, 1985.
- [4] Tom Jenkyns and Eric Muller, Triangular triples from ceilings to floors, *Amer. Math. Monthly* **107**(2000), 634–639.

- [5] J. H. Jordan, R. Welch and R. J. Wisner, Triangles with integer sides, *Amer. Math. Monthly* 86(1979), 686–689.
- [6] Nicholas Krier and Bennet Manvel, Counting integer triangles, this MAGAZINE **71**(1998), 291–295.

For the referee

n	0	1	2	3	4	5	6	7	8	9	10	11
T_n	0	0	0	1	0	1	1	2	1	3	2	4
T_{n-6}							0	0	0	1	0	1
I_n	0	0	0	1	0	1	1	2	1	2	2	3
$f(n) = \delta_n$	0	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{3}{4}$	$\frac{1}{3}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{25}{12}$	$\frac{4}{3}$	3	$\frac{25}{12}$	$\frac{49}{12}$
δ_n	0	$-\frac{1}{3}$	$-\frac{1}{12}$	$\frac{1}{4}$	$-\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{4}$	$-\frac{1}{12}$	$-\frac{1}{3}$	0	$-\frac{1}{12}$	$-\frac{1}{12}$