PLAYING WITH PARTITIONS ON THE COMPUTER

(Has appeared on Mathematics and Computer Education)
Abdulkadir Hassen
Thomas J. Osler
Mathematics Department
Rowan University
Glassboro, NJ 08028
hassen@rowan.edu
osler@rowan.edu

1. INTRODUCTION

One of the joys of mathematical study is the discovery of unexpected relations. In this paper we explore the strange interplay between partitions and pentagonal numbers.

An important function in number theory is p(n), the number of unrestricted partitions of the positive integer n, that is, the number of ways of writing n as a sum of positive integers. For example, 4+2+2+1 is a partition of the number 9. The order of the summands is irrelevant here, so 4+2+2+1 is the same partition as 2+2+4+1. In Table 1 we show all the partitions of the numbers from 1 to 5 along with the values of p(n).

Table 1: Partitions of a natural number *n*

n	Partitions of <i>n</i>	p(n)
1	1	1
2	2, 1+1	2
3	3, 2+1, 1+1+1	3
4	4, 3+1, 2+2, 2+1+1, 1+1+1+1	5
5	5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1	7

While it is simple to determine p(n) for very small numbers n by actually counting all the partitions, this becomes difficult as the numbers grow. For example, p(10) = 42, and p(20) = 627, while p(100) = 190,569,292. It is the purpose of this

paper to show how to write a simple program in BASIC to calculate p(n). Along the way we will encounter several nifty mathematical relations.

The values of the partition function for large values of n can be obtained from the following remarkable recursive algorithm:

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7)$$

$$+ p(n-12) + p(n-15) - p(n-22) - p(n-26) + \dots,$$

where we define p(-1) = p(-2) = p(-3) = ... = 0. We also define p(0) = 1.

This recursive formula was discovered by Euler. In Section 3, we will outline how (1.1) can be proved, but will leave the details to the references. The most mysterious feature in (1.1) is the appearance of the numbers 1, 2, 5, 7, 12, 15,.... These are related to the *pentagonal numbers* and will be discussed in the next section.

In Section 4, we will write a QUICK BASIC program that uses (1.1) to generate a table of the partition function. We have given one such table at the end of this paper.

Students can use the table and the program to make and test conjectures concerning partitions.

The notions of pentagonal numbers and partitions are extremely simple and can be understood by students at the precalculus level. The ideas presented here should work well in a first course in programming for high school or college students. They could also be used in courses in discrete mathematics and in number theory. We hope that the opportunity to conjecture properties of partitions from the computer program as well as the intrinsic fascination of the relations like (1.1) will spark student interest.

2. THE PENTAGONAL NUMBERS

Since pentagonal numbers play a central role in this study, we take a brief moment to examine their origin.

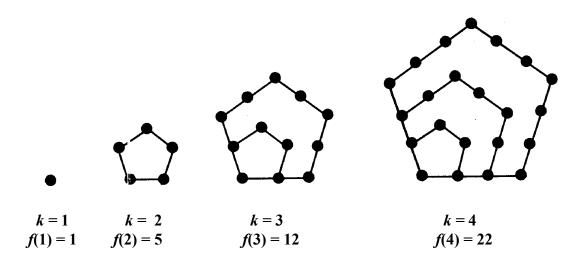


Figure 1: The First Four Pentagonal Numbers

We can easily verify that the sequence of pentagons defined by dots in Figure 1 have the property that when a pentagon has k dots on a side, it contains

$$(2.1) f(k) = k(3k-1)/2$$

dots within the pentagon. Thus the sequence of *pentagonal numbers* 1, 5, 12, 22, 35, 51, ... emerges from (2.1) by taking k = 1, 2, 3, 4, 5, 6, ...

We will also need to use f(k) when k is a negative integer. It is easy to see that (2.2) f(-k) = k(3k+1)/2.

Thus the sequence of numbers $2, 7, 15, 26, 40, 57, \dots$ emerges by placing consecutive negative integers in (2.1). This same sequence is generated by (2.2) by using the sequence of positive integers for k. We do not know any geometric figure associated with

the numbers generated by (2.2), but they could be referred to as *pentagonal numbers of* negative index.

The following is a short table of pentagonal numbers used in the calculation of partitions with the recursion relation (1.1):

1 1 1 1 1 1 1 1 1 1 1							
K	f(k)	f(-k)		k	f(k)	<i>f</i> (- <i>k</i>)	
1	1	2		11	176	187	
2	5	7		12	210	222	
3	12	15		13	247	260	
4	22	26		14	287	301	
5	35	40		15	330	345	
6	51	57		16	376	392	
7	70	77		17	425	442	
8	92	100		18	477	495	
9	117	126		19	532	551	
10	145	155		20	590	610	

Table 2: Pentagonal Numbers f(k) = k(3k-1)/2

3. SOME IMPORTANT RELATIONS INVOLVING PARTITIONS

We now examine three important relations involving the partition function p(n). In some cases, we will give a heuristic explanation of the properties. In all cases we give references where systematic and rigorous treatments can be found.

3.1 The generating function

Euler [4], began the mathematical theory of partitions in 1748 by discovering the so called "generating function"

(3.1)
$$\prod_{n=1}^{\infty} \frac{1}{1-x^n} = \sum_{n=0}^{\infty} p(n)x^n.$$

The infinite product on the left side of (3.1) "generates" the p(n) as coefficients of the power series on the right side.

What follows is a brief glimpse at why (3.1) works. A full proof is found in Andrews' book [1] on pages 160 to 162. If we expand each of the factors $1/(1-x^n)$ using the geometric series we get the following:

$$\frac{1}{1-x^{1}} = 1 + x^{1 \cdot 1} + x^{1 \cdot 2} + x^{1 \cdot 3} + x^{1 \cdot 4} + x^{1 \cdot 5} + \dots$$

$$\frac{1}{1-x^{2}} = 1 + x^{2 \cdot 1} + x^{2 \cdot 2} + x^{2 \cdot 3} + x^{2 \cdot 4} + x^{2 \cdot 5} + \dots$$

$$\frac{1}{1-x^{3}} = 1 + x^{3 \cdot 1} + x^{3 \cdot 2} + x^{3 \cdot 3} + x^{3 \cdot 4} + x^{3 \cdot 5} + \dots$$

$$\frac{1}{1-x^{4}} = 1 + x^{4 \cdot 1} + x^{4 \cdot 2} + x^{4 \cdot 3} + x^{4 \cdot 4} + x^{4 \cdot 5} + \dots$$

$$\frac{1}{1-x^{5}} = 1 + x^{5 \cdot 1} + x^{5 \cdot 2} + x^{5 \cdot 3} + x^{5 \cdot 4} + x^{5 \cdot 5} + \dots$$

$$\dots$$

When we multiply the series on the right side of (3.2) and carefully observe what is taking place, we see that the partition function is being generated. To see a particular case, look at the terms that generate x^5 . They are

$$x^{1 ilde{0}} + x^{1 ilde{0}} x^{2 ilde{0}} + x^{1 ilde{0}} x^{3 ilde{0}} + x^{1 ilde{0}} x^{3 ilde{0}} + x^{1 ilde{0}} x^{4 ilde{0}} + x^{1 ilde{0}} x^{2 ilde{0}} + x^{2 ilde{0}} x^{3 ilde{0}} + x^{5 ilde{0}} = 7x^5$$

(Here we interpret the power of $x^{a \cdot b}$ to mean a + a + ... + a with b terms). Notice that each of the exponents is a particular partition of the number 5. These are, respectively, 1+1+1+1+1, 1+1+1+2, 1+1+3, 1+4, 1+2+2, 2+3 and 5. Thus there are 7 partitions of the number 5. This illustrates how the generating function (3.1) works.

A computer algebra system, like *Mathematica*, can use this idea to calculate p(n). However it would not be a good way to find the partitions of a large number. One of the important implications of (3.1) is that the function defined by the infinite product can be studied analytically to get asymptotic expressions for p(n), which we will describe next.

3.2 The asymptotic formula

A glance at a table of the partition function shows that p(n) grows "very fast". How fast is "very fast"? Hardy and Ramanujan have given us an asymptotic formula for p(n). Before we present this formula, we mention one of the most common asymptotic expression known as Stirling's formula:

$$(3.3) n! \approx \sqrt{2\pi n} \, n^n / e^n,$$

which can be used to estimate large values of the factorial. In a similar spirit we have the asymptotic formula for the partition function

$$(3.4) p(n) \approx \frac{\exp(\pi\sqrt{2n/3})}{4\sqrt{3} n}.$$

Hardy and Ramanujan [11] published (3.4) in 1917 and again in 1918 using advanced methods from the theory of functions of a complex variable. (See Kanigel's book [6] for a readable description of the collaboration of Hardy and Ramanujan on (3.4).) These asymptotic formulas contain a marvelous mystery. The left hand sides of both (3.3) and (3.4) are integers. But the right hand sides contain π , e, and square roots. What does π have to do with factorials or partitions? When we leave this world, this is the first question we would like to ask God!

3.3 The recursion relation

As we mentioned in Section 1, the values of the partition function can be obtained from the following remarkable recursive algorithm (1.1). We reproduce this formula here for an easy reference.

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7)$$

$$+ p(n-12) + p(n-15) - p(n-22) - p(n-26) + \dots$$

where we define p(-1) = p(-2) = p(-3) = ... = 0. We also define p(0) = 1. We can also write (3.5) in the following form

(3.6)
$$p(n) = \sum_{k=1}^{\infty} (-1)^{k+1} \left\{ p(n-f(k)) + p(n-f(-k)) \right\},$$

where f(k) = k(3k-1)/2 generates the sequence of pentagonal numbers For example (3.5) tells us that

$$p(11) = p(10) + p(9) - p(6) - p(4) + p(-1) + p(-4) - \dots$$

= $p(10) + p(9) - p(6) - p(4) + 0 + 0 + \dots$

The remaining terms all have negative arguments and are thus zero. In this way we can calculate the number of partitions of 11 if we know the partitions of 10, 9, 6 and 4. Using Table 3 we have

$$p(11) = 42 + 30 - 11 - 5 = 56$$

The full proof of the recursion relation (3.6) is beyond the scope of this paper.

This proof can be found in Hardy and Wright [5] and in Andrews [1]. However, since the proof is itself very interesting, we give here a brief outline of the main steps.

The proof of (3.6) begins with Euler's remarkable discovery known as "Euler's pentagonal number theorem":

(3.7)
$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=-\infty}^{\infty} (-1)^n x^{n(3n-1)/2}$$

$$= 1 + \sum_{n=1}^{\infty} (-1)^n \left\{ x^{n(3n-1)/2} + x^{n(3n+1)/2} \right\}.$$

Writing out the terms in (3.7) explicitly we get

(3.8)
$$(1-x)(1-x^2)(1-x^3)(1-x^4)... = 1-x-x^2+x^5+x^7-x^{12}-x^{15}+...$$

The reader can multiply out a few of the factors on the left side of (3.8) to see that the terms involving pentagonal numbers as exponents appear on the right side.

Notice that the left side of (3.1) is the reciprocal of the left side of (3.8). From this it follows that

$$\sum_{n=0}^{\infty} p(n)x^{n} = \left(1 - x - x^{2} + x^{5} + x^{7} - x^{12} - x^{15} + \ldots\right)^{-1},$$

and therefore

$$\left(\sum_{n=0}^{\infty} p(n)x^{n}\right)\left(1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+\ldots\right)=1.$$

Multiplying out the product of series above we get

(3.9)
$$1 = 1 + (p(1) - p(0))x + (p(2) - p(1) - p(0))x^{2} + (p(3) - p(2) - p(1))x^{3} + (p(4) - p(3) - p(2))x^{4} + ...$$
$$(p(5) - p(4) - p(3) + p(0))x^{5} + ...$$

Since the left side of (3.9) is 1, all the coefficients of the powers of x on the right side are zero. Thus we get

$$p(1) = p(0),$$

$$p(2) = p(1) + p(0),$$

$$p(3) = p(2) + p(1),$$

$$p(4) = p(3) + p(2),$$

$$p(5) = p(4) + p(3) - p(0),$$

This last list of relations is the first five values of our recursion relation (3.6). This completes our brief look at how this important recursion relation emerges.

4. A BASIC PROGRAM TO GENERATE PARTITIONS

In this section we examine a simple program written in QUICK BASIC(also QBASIC) to calculate a list of the values of the partition function p(n) for n = 1,2,3,.... The program can be easily modified to work in any version of BASIC or any computer language.

The lines that begin with an "apostrophe" are merely remarks and can be omitted.

Line 100 sets all variables to double precision mode. This allows 16 digits for integers (but only 15 digits of certain accuracy) in the computations. The BASIC interpreter used by the author gave accurate exact values of p(n) for n from 1 to 293.

Line 100 dimensions the array P, and line 120 defines the value of p(0).

Each time the FOR - NEXT loop from lines 200 to 500 is executed, we calculate another value of the partition function p(n). Each time the FOR - NEXT loop in lines 220 to 300 is performed we find another value of the term

$$(4.1) \qquad (-1)^{k+1} \left\{ p(n-f(k)) + p(n-f(-k)) \right\}$$

from the recursion relation (3.4). The variable SIGN in lines 210, 250, 280 and 290 contains the value of $(-1)^{k+1}$ from (4.1). We exit this loop in line 240 or 270 where we check to see if n - f(k) or n - f(-k) is negative. (Recall from the previous section that p(m) = 0 when m is a negative integer.)

In line 230 we calculate the pentagonal number f(k) = k(3k-1)/2. In line 250 we add the term $(-1)^{k+1}p(n-f(k))$ to the present value of the sum for p(n). Again in line 260 we calculate the value of f(-k) = k(3k+1)/2 needed in (4.1), and in line 280 we add the term $(-1)^{k+1}p(n-f(-k))$ to the sum for p(n).

In line 400 we print the value just calculated for n and for p(n) on the screen. Line 450 causes the screen calculations to pause after 20 lines are printed so that they can be examined before they scroll out of view.

This completes our explanation of the program that calculates the partition function.

```
Program 1: Calculate Partitions
```

```
'Calculate partitions of N, P(N)
     'exactly up to P(301).
     'Set double precision, dimension array P, initialize P
90
      CLS
100
      DEFDBL A-Z
      DIM P(400)
110
120
      P(0) = 1
     'Main loop, for each N find P(N)
      FOR N = 1 \text{ TO } 293
200
        SIGN = 1
210
        P(N) = 0
215
220
        FOR K = 1 \text{ TO } 100
        'Calculate two terms in recursion relation for P(N)
          F = K * (3 * K - 1) / 2
230
```

```
'Exit loop if argument negative
240
        IF N - F < 0 THEN GOTO 400
250
         P(N) = P(N) + SIGN * P(N - F)
         F = K * (3 * K + 1) / 2
260
       'Exit loop if argument negative
        IF N - F < 0 THEN GOTO 400
270
         P(N) = P(N) + SIGN * P(N - F)
280
290
         SIGN = -SIGN
300
       NEXT K
     'Print results
400
       PRINT N, P(N)
     'Pause after printing 20 lines on the screen
450
       IF 20 * INT(N / 20) = N THEN INPUT A$: CLS
500 NEXT N
```

5. USING THE PROGRAM TO CHECK CONJECTURES

Now that we can easily generate many values of the partition function, we examine the results to see if any observable patterns are emerging.

Ramanujan examined a table of the first 200 values of p(n) calculated by Major Mac Mahon and conjectured and proved the following in 1921, (see [11] on pages 233 to 238).

(5.1)
$$p(5m+4) \equiv 0 \pmod{5}$$
,

(5.2)
$$p(7m+5) \equiv 0 \pmod{7}$$
,

(5.3)
$$p(11m+6) \equiv 0 \pmod{11}$$
.

Evidence of the validity of (5.1) is easily seen in Table 3. We look at the values of n that end in the digit 4 or 9. These are the numbers of the form n = 5m + 4 with m = 0,1,2,.... Notice that the values of p(5m+4) all end in the digit 0 or 5, thereby supporting (5.1). (See Kanigel's book [6], page 250, for a brief description of Major Mac Mahon and his work with Ramanujan.)

We can also check these relations with the computer. If we add the following lines to our program:

```
1000 M = 5 : R = 4

1010 FOR N = R TO 293 STEP M

1020 IF P(N) = M * INT( P(N)/M) THEN PRINT N; "TRUE",

ELSE PRINT N; "FALSE",

1030 NEXT N
```

This FOR - NEXT loop runs through the values N = M, M+R, M+2R, M+3R, ..., where M (modulus) and R (residue) are defined in line 1000. Line 1020 checks to see if P(N) is divisible by the modulus M. It then prints N and the word TRUE if the division was successful, otherwise it prints FALSE. By changing line 1000 to M = 7: R = 5, we can check (5.2). We can check (5.3) by changing line 1000 to M = 11: R = 6.

These "arithmetic properties" of the partition function have been the subject of recent research. Ken Ono [7], [8] and [9] proved new results regarding these congruences. In particular he showed that if $m \ge 5$ is prime, then there are positive integers a and b for which $p(an+b) \equiv 0 \pmod{m}$, for every non-negative integer n. When is p(n) even or odd? This question remains unanswered. You can use the above program to check for even p(n) by changing line 1000 to M = 2 : R = 0. Few results are known for modulus M = 3. Perhaps the reader can find the answer.

A proof of (5.1) is given in Hardy and Wright [5] on pages 287 to 290, along with a few more arithmetical results.

We can also use the program to verify the asymptotic relation (3.4) for some values of n. Replace line 400 with the lines

430 PRINT USING U\$; N,P(N), A, PCT

In line 400 we use (3.10) to find A which is the asymptotic estimate of P(N). In line 410 we find the error E and the percentage error PCT. Lines 420 and 430 print out the results in four columns. We see that there is almost a 10 percent error for small N. Gradually this error diminishes to about 2 percent when N = 300.

6. FINAL REMARKS

In addition to pentagonal numbers discussed in Section 2, there are triangular numbers, square numbers, hexagonal numbers, etc. The initial study of these numbers is attributed to the Pythagoreans, as early as 500 BC. They are called *figurative numbers* and many interesting relations exist among them. The Pythagoreans believed that "everything is number", and therefore took great interest in this study. For a lively discussion of figurative numbers and the Pythagoreans see Burton [3].

Two major branches of the theory of numbers are the *multiplicative theory* and the *additive theory*. In the multiplicative theory we decompose a natural number n into prime factors $n = p_1p_2p_3...p_k$ and consider the consequences. In the additive theory we decompose our natural number into a sum of elements from some set. For example we could try to express n as a sum of squares. Our study of partitions is part of this additive theory. Most textbooks on number theory ignore partitions. Exceptions are the excellent text by Andrews [1] and the bible of number theory Hardy and Wright [5].

In the multiplicative theory we examine many functions, one of which is the *sum* of the divisors of n, $\sigma(n)$. For example the divisors of 6 are 1, 2, 3, and 6. Thus the sum of the divisors of 6 is $\sigma(6) = 1 + 2 + 3 + 6 = 12$. Now divisors of numbers are related to primes, and primes seem unrelated to partitions. We are not surprised that partitions

satisfy a recursion relation, although the appearance of pentagonal numbers in the relation is a wonder. We do not expect $\sigma(n)$ to satisfy a recursion relation. What do the divisors of n have to do with the divisors of n-1, n-2,...? Yet Euler showed that $\sigma(n)$ satisfies the same recursion relation (3.4) as does p(n). Only $\sigma(0)$ is different from p(0). Euler was astonished at this result, and you can read a translation of his own words in Polya [10] and in Young [14]. (Every lover of mathematical analysis should own Young's book [14]). There are even relations "marrying" the two functions such as (Schroeder [12])

$$n p(n) = \sum_{k=1}^{n} \sigma(k) p(n-k).$$

We plan to explore these items in a sequel to this paper called *The unlikely marriage of partitions and divisors*.

For additional programs in number theory in the spirit of this paper see the fun book by Spencer [13].

7. REFERENCES

- [1] Andrews, George E, *Number Theory*, Dover Publications, New York, 1971, pp. 149-200.
- [2] Andrews, George E., *Euler's pentagonal number theorem*, Math. Mag., 56(1983), pp. 279-284.
- [3] Burton, The History of Mathematics, (Fifth Ed.), McGraw-Hill, New York, 1996.
- [4] Euler. L., *Introduction to Analysis of the Infinite, (Vol. 1),* (Translation by J. D. Blanton.), Springer-Verlag, New York, 1988, pp. 256-282.

- [5] Hardy, G. H., and Wright, E. M., *An Introduction to the Theory of Numbers,* (Fifth Ed.), Clarendon Press, Oxford, 1979, pp. 273-296.
- [6] Kanigel, Robert, *The Man Who Knew Infinity*, Charles Scribner's Sons, New York, 1991, pp. 246-252.
- [7] Ono, Ken, *Distribution of the partition function modulo m*, Annals of Math., to appear.
- [8] Ono, Ken, *The partition function in arithmetic progressions*, Math. Annalen, 312 (1998), pp. 251-260.
- [9] Ono, Ken, *Parity of the partition function in arithmetic progressions*, J. reine angew. math., 472 (1996), pp. 1-15.
- [10] Polya, G., *Mathematics and Plausible Reasoning, Vol. 1, Induction and Analogy in Mathematics*, Princeton University Press, Princeton, NJ, 1954, pp. 90-107.
- [11] Ramanujan, Srinivasta, *Collected Papers of Srinivasta Ramanujan*, Chelsea Publishing, New York, 1927, pp. 230-241 and 277-309.
- [12] Schroeder, M. H., *Number Theory in Science and Communication, (Second Ed.)*, Springer-Verlag, New York, 1986, p.230.
- [13] Spencer, Donald D., *Exploring Number Theory with Microcomputers*, Camelot Publishing, Orlando Beach, Florida, 1989.
- [14] Young, Robert M., *Excursions in Calculus, An Interplay of the Continuous and the Discrete*, Mathematical Association of America, 1992, pp. 357-368.

Table 3: Values of the partition function

n p(n)	n p(n)	n $p(n)$	n p(n)
1 1	41 44583	81 18004327	121 2056148051
2 2	42 53174	82 20506255	121 2030148031
3 3	43 63261	83 23338469	123 2552338241
4 5	44 75175	84 26543660	124 2841940500
5 7	45 89134		125 3163127352
		85 30167357	
6 11	46 105558	86 34262962	126 3519222692
7 15	47 124754	87 38887673	127 3913864295
8 22	48 147273	88 44108109	128 4351078600
9 30	49 173525	89 49995925	129 4835271870
10 42	50 204226	90 56634173	130 5371315400
11 56	51 239943	91 64112359	131 5964539504
12 77	52 281589	92 72533807	132 6620830889
13 101	53 329931	93 82010177	133 7346629512
14 135	54 386155	94 92669720	134 8149040695
15 176	55 451276	95 104651419	135 9035836076
16 231	56 526823	96 118114304	136 10015581680
17 297	57 614154	97 133230930	137 11097645016
18 385	58 715220	98 150198136	138 12292341831
19 490	59 831820	99 169229875	139 13610949895
20 627	60 966467	100 190569292	140 15065878135
21 792	61 1121505	101 214481126	141 16670689208
22 1002	62 1300156	102 241265379	142 18440293320
23 1255	63 1505499	103 271248950	143 20390982757
24 1575	64 1741630	104 304801365	144 22540654445
25 1958	65 2012558	105 342325709	145 24908858009
26 2436	66 2323520	106 384276336	146 27517052599
27 3010	67 2679689	107 431149389	147 30388671978
28 3718	68 3087735	108 483502844	148 33549419497
29 4565	69 3554345	109 541946240	149 37027355200
30 5604	70 4087968	110 607163746	150 40853235313
31 6842	71 4697205	111 679903203	151 45060624582
32 8349	72 5392783	112 761002156	152 49686288421
33 10143	73 6185689	113 851376628	153 54770336324
34 12310	74 7089500	114 952050665	154 60356673280
35 14883	75 8118264	115 1064144451	155 66493182097
36 17977	76 9289091	116 1188908248	156 73232243759
37 21637	77 10619863	117 1327710076	157 80630964769
38 26015	78 12132164	118 1482074143	158 88751778802
39 31185	79 13848650	119 1653668665	159 97662728555
40 37338	80 15796476	120 1844349560	160 107438159466
TO 31330	00 13770470	120 107737300	100 10/43013/400

Table 3: Values of the partition function (continued)

n p	O(n) n	p(n)	n	p(n)
161 11815	9068427 201	4328363658647	241	114540884553038
162 12991		4714566886083		123888443077259
163 14279		5134205287973	243	133978259344888
164 15691	9475295 204	5590088317495	244	144867692496445
165 17238	9800255 205	6085253859260	245	156618412527946
166 18933	4822579 206	6622987708040	246	169296722391554
167 20789	0420102 207	7206841706490	247	182973889854026
168 22820	4732751 208	7840656226137	248	197726516681672
169 25043	8925115 209	8528581302375	249	213636919820625
170 27476	8617130 210	9275102575355	250	230793554364681
171 30138	4802048 211	10085065885767	251	249291451168559
172 33049	5499613 212	10963707205259	252	269232701252579
173 36232	6859895 213	11916681236278	253	290726957916112
174 39712	5074750 214	12950095925895	254	313891991306665
175 43515	7697830 215	14070545699287	255	338854264248680
176 47671	5857290 216	15285151248481	256	365749566870782
177 52211	5831195 217	16601598107914	257	394723676655357
178 57170	1605655 218	18028182516671	258	425933084409356
179 62584	6753120 219	19573856161145	259	459545750448675
180 68495	7390936 220	21248279009367	260	495741934760846
181 74947	4411781 221	23061871173849	261	534715062908609
182 81987	6908323 222	25025873760111	262	576672674947168
183 89668	4817527 223	27152408925615	263	
184 98046	2880430 224	29454549941750	264	670448123060170
		31946390696157		722760953690372
		34643126322519		779050629562167
		37561133582570		839611730366814
		40718063627362		904760108316360
189 15272	73599625 229	44132934884255	269	974834369944625
190 16677		47826239745920	270	1050197489931117
191 18207		51820051838712		1131238503938606
192 19872		56138148670947		1218374349844333
193 21686		60806135438329		1312051800816215
194 23660		65851585970275		1412749565173450
195 25808		71304185514919		1520980492851175
196 28145		77195892663512		1637293969337171
197 30688		83561103925871		1762278433057269
198 33453		90436839668817		1896564103591584
199 36460		97862933703585		2040825852575075
200 39729	99029388 240	105882246722733	280	2195786311682516

PLAYING WITH PARTITIONS ON THE COMPUTER

Abdulkadir Hassen Thomas J. Osler Mathematics Department Rowan University Glassboro, NJ 08028

> hassen@rowan.edu osler@rowan.edu