
A NEW IDENTITY FOR (q; q)10
∞ WITH AN APPLICATION TO

RAMANUJAN’S PARTITION CONGRUENCE MODULO 11

BRUCE C. BERNDT1, SONG HENG CHAN, ZHI–GUO LIU, AND HAMZA YESILYURT

1. Introduction

The first primary purpose of this paper is to prove a new representation for (q; q)10
∞,

given in Theorem 2.2 below, where

(a; q)∞ = (1− a)(1− aq)(1− aq2) · · · , |q| < 1.

Our principal second goal is to show that this identity leads to a short proof of Ra-
manujan’s famous congruence p(11n+6) ≡ 0 (mod 11), where p(n) denotes the number
of unrestricted partitions of the positive integer n. Our proof of Theorem 2.2 is short
but depends upon some results of Ramanujan from his notebooks [18]. In Section 4,
we give a more elementary proof, based upon Ramanujan’s 1ψ1 summation formula, of
Ramanujan’s principal result, Lemma 2.1, which is employed in our proof of Theorem
2.2. In Section 5, we give an entirely different and direct proof of Theorem 2.2 based on
several elementary identities for theta functions due to Ramanujan. In fact, during our
first proof of Theorem 2.2, we establish a special case of a general result on Eisenstein
series found in Ramanujan’s lost notebook [19, p. 369]. More precisely, Ramanujan as-
serts that every member of a certain class of infinite series can be expressed in terms of
Ramanujan’s Eisenstein series P , Q, and R (to be defined in Section 6). A less precise
version of this claim appears in Ramanujan’s notebooks [18], [2, p. 65, Entry 35(i)], but
we prove the better version in Section 6. D. Stanton empirically discovered an analogue
of Theorem 2.2, and in Section 7 we give a proof of Stanton’s identity. In Section 8,
we prove that (q; q)10

∞ is lacunary; in this connection, see a result of J.–P. Serre [20].

2. A New Representation for (q; q)10
∞

To establish this new representation, we need a lemma that is easily derivable from
two results in Ramanujan’s notebooks [18], [2, p. 345, Entry 1(iv); p. 475, Entry 7(i)].
See also [7, p. 109] for a similar proof.

Lemma 2.1. We have

1 + 3
∞∑

n=1

nqn

1− qn
− 27

∞∑
n=1

nq9n

1− q9n
=

(q3; q3)10
∞

(q; q)3∞(q9; q9)3∞
. (2.1)
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Proof. From [2, p. 475, Entry 7(i)],

1 + 3
∞∑

n=1

nqn

1− qn
− 27

∞∑
n=1

nq9n

1− q9n

=
(q3; q3)6

∞
(q; q)2∞(q9; q9)2∞

{
(q; q)6

∞ + 9q(q; q)3
∞(q9; q9)3

∞ + 27q2(q9; q9)6
∞

}1/3
.

(2.2)

In comparing (2.2) with (2.1), we see that it remains to show that

{
(q; q)6

∞ + 9q(q; q)3
∞(q9; q9)3

∞ + 27q2(q9; q9)6
∞

}1/3
=

(q3; q3)4
∞

(q; q)∞(q9; q9)∞
. (2.3)

However, by [2, p. 345, Entry 1(iv)],

(
3 +

(q; q)3
∞

q(q9; q9)3∞

)3

= 27 +
(q3; q3)12

∞
q3(q9; q9)12∞

. (2.4)

By cubing both sides of (2.3) and rearranging terms, we easily see that (2.3) is equiv-
alent to (2.4), and so this completes the proof of Lemma 2.1. ¤

Theorem 2.2. For |q| < 1,

32(q; q)10
∞ =9

( ∞∑
n=−∞

(−1)n(2n + 1)3q3n(n+1)/2

)( ∞∑
n=−∞

(−1)n(2n + 1)qn(n+1)/6

)

−
( ∞∑

n=−∞
(−1)n(2n + 1)q3n(n+1)/2

)( ∞∑
n=−∞

(−1)n(2n + 1)3qn(n+1)/6

)
.

(2.5)

Proof. Recall Jacobi’s identity [2, p. 39, Entry 24(ii)]

(q; q)3
∞ = 1

2

∞∑
n=−∞

(−1)n(2n + 1)qn(n+1)/2. (2.6)

Differentiating both sides of (2.6) with respect to q, we find that

−3(q; q)3
∞

∞∑
n=1

nqn−1

1− qn
=1

4

∞∑
n=−∞

(−1)n(2n + 1)(n2 + n)qn(n+1)/2−1

= 1
16

∞∑
n=−∞

(−1)n
(
(2n + 1)3 − (2n + 1)

)
qn(n+1)/2−1. (2.7)

Upon the rearrangement of (2.7) with the help of (2.6), we find that

2(q; q)3
∞

(
1− 24

∞∑
n=1

nqn

1− qn

)
=

∞∑
n=−∞

(−1)n(2n + 1)3qn(n+1)/2. (2.8)
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Hence, by (2.6) and (2.8),

9

( ∞∑
n=−∞

(−1)n(2n + 1)3q3n(n+1)/2

)( ∞∑
n=−∞

(−1)n(2n + 1)qn(n+1)/6

)

−
( ∞∑

n=−∞
(−1)n(2n + 1)q3n(n+1)/2

)( ∞∑
n=−∞

(−1)n(2n + 1)3qn(n+1)/6

)

=4(q3; q3)3
∞(q1/3; q1/3)3

∞

(
9− 9 · 24

∞∑
n=1

nq3n

1− q3n
− 1 + 24

∞∑
n=1

nqn/3

1− qn/3

)

=32(q3; q3)3
∞(q1/3; q1/3)3

∞

(
1 + 3

∞∑
n=1

nqn/3

1− qn/3
− 27

∞∑
n=1

nq3n

1− q3n

)

=32(q3; q3)3
∞(q1/3; q1/3)3

∞
(q; q)10

∞
(q3; q3)3∞(q1/3; q1/3)3∞

=32(q; q)10
∞,

by Lemma 2.1. This completes the proof. ¤
A completely different proof of Theorem 2.2 has been given by Liu [13].
The equality (2.8) is a special case of a general theorem of Ramanujan [18], [2, p. 61,

Entry 35(i)] giving an identity for
∞∑

n=−∞
(−1)n(2n + 1)mqn(n+1)/2,

where m is any nonnegative integer. We prove the better formulation in Ramanujan’s
lost notebook [19] in Section 6.

3. A New Proof of Ramanujan’s Congruence for p(n) Modulo 11

Perhaps the simplest, most elementary proof of Ramanujan’s congruence modulo 11
depends upon Winquist’s identity [22]. Our proof is much different but in the same
elementary spirit.

Theorem 3.1. For each nonnegative integer n,

p(11n + 6) ≡ 0 (mod 11). (3.1)

Proof. We begin by rewriting (2.5) in the form

32(q; q)10
∞ =

∞∑
m,n=−∞

(−1)m+n
{
9(2m + 1)3(2n + 1)− (2m + 1)(2n + 1)3

}
q(9m2+9m+n2+n)/6.

(3.2)
Let u = 2m + 1 and v = 2n + 1. Then (3.2) becomes

32(q; q)10
∞ =

∞∑
u,v=−∞

u,v≡1 (mod 2)

(−1)(u+v−2)/2uv(9u2 − v2)q(9u2+v2−10)/24. (3.3)
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If we write

(q; q)10
∞ =

∞∑
n=0

α(n)qn, (3.4)

then equating coefficients of qn, n ≥ 1, on both sides of (3.3), we find that

α(n) = 1
32

∞∑
u,v=−∞

u,v≡1 (mod 2)
9u2+v2−10=24n

(−1)(u+v−2)/2uv(9u2 − v2). (3.5)

If n ≡ 6 (mod 11), then 9u2 + v2 − 10 ≡ 1 (mod 11), or 9u2 + v2 ≡ 0 (mod 11). By
examining all cases modulo 11, we see that both u, v ≡ 0 (mod 11). It follows from
(3.5) that

α(11n + 6) ≡ 0 (mod 114). (3.6)

Now, from (3.4),
∞∑

n=0

p(n)qn =
1

(q; q)∞
=

(q; q)10
∞

(q; q)11∞
≡ (q; q)10

∞
(q11; q11)∞

=

∑∞
n=0 α(n)qn

(q11; q11)∞
(mod 11).

Extracting those terms with indices of the form 11n + 6 and employing (3.4), we
conclude that

∞∑
n=0

p(11n + 6)q11n+6 ≡
∑∞

n=0 α(11n + 6)q11n+6

(q11; q11)∞
≡ 0 (mod 11). (3.7)

The congruence (3.1) is now immediate from (3.7) and (3.6). ¤
The congruence (3.6) also follows from a result of M. Newman [14, p. 489], [15, p. 70].

See also Winquist’s paper [22, p. 58].

4. A New Proof of Lemma 2.1

In this section, we give a new proof of Lemma 2.1, which uses less sophisticated
machinery than our first proof. Our proof is in the spirit of that of L.–C. Shen [21].
Other proofs of Lemma 4.1 can be found in the papers [11, eq. (3.5)], [12, eq. (7.19)]
by Liu. We frequently use without comment the elementary transformation

∞∑
n=0

xn

1− yqn
=

∞∑
n=0

yn

1− xqn
. (4.1)

Lemma 4.1. If

a(q) := 1 + 6
∞∑

n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

)
, (4.2)

then

a2(q) = 1 + 12
∞∑

n=1

nqn

1− qn
− 36

∞∑
n=1

nq3n

1− q3n
. (4.3)

This is part of Entry 3(i) in Chapter 21 of Ramanujan’s second notebook [18], [2,
p. 460], but we provide a much different, simpler proof here.
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Proof. Define

φ(x) :=x(q/x6; q3)∞(x6q2; q3)∞(q3; q3)∞ (4.4)

=
∞∑

n=−∞
(−1)nx6n+1qn(3n+1)/2. (4.5)

Then

φ′′(x) = 6
∞∑

n=−∞
(−1)n(6n2 + n)x6n−1qn(3n+1)/2. (4.6)

By logarithmic differentiation and the use of (4.1),

φ′

φ
(x) =

1

x
+ 6

∞∑
n=0

(
x−7q3n+1

1− x−6q3n+1
− x5q3n+2

1− x6q3n+2

)
(4.7)

=
1

x
+ 6

∞∑
n=0

(
x−6n−7qn+1

1− q3n+3
− x6n+5q2n+2

1− q3n+3

)
. (4.8)

Next, from (4.8),

(
φ′

φ

)′
(x) =− 1

x2
− 6

∞∑
n=0

(
(6n + 7)x−6n−8qn+1

1− q3n+3
+

(6n + 5)x6n+4q2n+2

1− q3n+3

)
. (4.9)

Therefore from (4.7) and (4.2),

φ′

φ
(1) = a(q), (4.10)

From (4.6) and (4.9),

φ′′

φ
(1) =

6

(q; q)∞

∞∑
n=−∞

(−1)n(6n2 + n)qn(3n+1)/2

=
6

(q; q)∞

{
2

∞∑
n=−∞

(−1)n(3n2 + n)qn(3n+1)/2 −
∞∑

n=−∞
(−1)nnqn(3n+1)/2

}

=
6

(q; q)∞

{
4q

d

dq

( ∞∑
n=−∞

(−1)nqn(3n+1)/2

)
− d

dx

( ∞∑
n=−∞

(−1)nxnqn(3n+1)/2

)

x=1

}

=
6

(q; q)∞

{
4q

d

dq
((q; q)∞)− d

dx

(
(q/x; q3)∞(xq2; q3)∞(q3; q3)∞

)
x=1

}

=
6

(q; q)∞

{
4(q; q)∞

∞∑
n=0

−nqn

1− qn
− (q; q)∞

∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

)}

=− 24
∞∑

n=1

nqn

1− qn
− 6

∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

)
. (4.11)
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Lastly, by (4.9),
(

φ′

φ

)′
(1) = −1− 6

∞∑
n=0

(
(6n + 7)qn+1

1− q3n+3
− (6n + 5)q2n+2

1− q3n+3

)
. (4.12)

Relating (4.10)–(4.12) by the elementary differential equation
(

φ′

φ

)2

=
φ′′

φ
−

(
φ′

φ

)′
,

we find that

a2(q) =1 + 6
∞∑

n=0

(
(6n + 7)qn+1

1− q3n+3
+

(6n + 5)q2n+2

1− q3n+3

)

− 24
∞∑

n=1

nqn

1− qn
− 6

∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

)

=1 + 36
∞∑

n=0

(
(n + 1)qn+1

1− q3n+3
+

(n + 1)q2n+2

1− q3n+3

)
− 24

∞∑
n=1

nqn

1− qn

=1 + 36
∞∑

n=0

(n + 1)(qn+1 + q2n+2)

1− q3n+3
− 24

∞∑
n=1

nqn

1− qn

=1 + 36
∞∑

n=1

n(qn + q2n)

1− q3n
− 24

∞∑
n=1

nqn

1− qn

=1 + 36
∞∑

n=1

nqn(1 + qn + q2n)

1− q3n
− 36

∞∑
n=1

nq3n

1− q3n
− 24

∞∑
n=1

nqn

1− qn

=1 + 12
∞∑

n=1

nqn

1− qn
− 36

∞∑
n=1

nq3n

1− q3n
,

and this completes the proof of Lemma 4.1. ¤
We state without proof Entry 1(v) in [2, p. 346] in a slightly different form.

Lemma 4.2.

a(q3) =
(q; q)3

∞
(q3; q3)∞

+ 3q
(q9; q9)3

∞
(q3; q3)∞

. (4.13)

Lemma 4.3.

(i) a(q)− a(q3) = 6q
(q9; q9)3

∞
(q3; q3)∞

, (4.14)

(ii) 3a(q3)− a(q) = 2
(q; q)3

∞
(q3; q3)∞

. (4.15)

These equalities follow from [5, pp. 93–94, eqs. (2.8), (2.9); p. 109, eq. Lemma 5.1],
but we provide a much different proof using a corollary of Ramanujan’s famous 1ψ1-
summation formula (4.16).
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Proof. Referring to Ramanujan’s 1ψ1 summation formula as given in [2, p. 34, eq. (17.6)],
we set z = x, a = y, and b = qy to deduce that

∞∑
n=−∞

xn

1− yqn
=

(xy; q)∞( q
xy

; q)∞(q; q)2
∞

(x; q)∞( q
x
; q)∞(y; q)∞( q

y
; q)∞

, |q| < |x| < 1. (4.16)

By (4.2),

a(q)− a(q3) =6
∞∑

n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2
− q9n+3

1− q9n+3
+

q9n+6

1− q9n+6

)

=6
∞∑

n=0

(
q3n+1 + q6n+2

1− q9n+3
− q3n+2 + q6n+4

1− q9n+6

)

=6
∞∑

n=0

(
q3n+1

1− q9n+3
− q6n+4

1− q9n+6

)

=6
∞∑

n=0

(
q3n+1

1− q9n+3
+

q−3n−2

1− q−9n−6

)

=6q
(q9; q9)2

∞
(q3; q9)∞(q6; q9)∞

,

where we applied (4.16) with q replaced by q9 and x = y = q3. This completes the
proof of (4.14).

By (4.14) and (4.13),

3a(q3)− a(q) =2a(q3)− {
a(q)− a(q3)

}

=2
(q; q)3

∞
(q3; q3)∞

+ 6q
(q9; q9)3

∞
(q3; q3)∞

− 6q
(q9; q9)3

∞
(q3; q3)∞

= 2
(q; q)3

∞
(q3; q3)∞

,

and this completes the proof of (4.15).
¤

We are now set to complete our new proof of Lemma 2.1.

Proof. By Lemmas 4.1–4.2,

1 + 3
∞∑

n=1

nqn

1− qn
− 27

∞∑
n=1

nq9n

1− q9n
=

1

4
a2(q) +

3

4
a2(q3)

=
1

4

{
a(q)− a(q3)

}2
+

1

2
a(q3)

{
a(q)− 3a(q3)

}
+ 2a2(q3)

=9q2 (q9; q9)6
∞

(q3; q3)2∞
− (q; q)3

∞
(q3; q3)∞

{
(q; q)3

∞
(q3; q3)∞

+ 3q
(q9; q9)3

∞
(q3; q3)∞

}

+ 2

{
(q; q)3

∞
(q3; q3)∞

+ 3q
(q9; q9)3

∞
(q3; q3)∞

}2

=
1

(q3; q3)2

{
(q; q)6

∞ + 9q(q; q)3
∞(q9; q9)3

∞ + 27q2(q9; q9)6
∞

}
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=
(q3; q3)10

∞
(q; q)3∞(q9; q9)3∞

,

where in the last equality we applied [2, p. 345, Entry 1(iv)]
(

3 +
(q; q)3

∞
q(q9; q9)3∞

)3

= 27 +
(q3; q3)12

∞
q3(q9; q9)12∞

. (4.17)

¤

5. Another Proof of Theorem 2.2

Returning to (2.6), set

J(q) := (q; q)3
∞ = 1

2

∞∑
n=−∞

(−1)n(2n + 1)qn(n+1)/2 (5.1)

and

F (q) := 1
2

∞∑
n=−∞

(−1)n(2n + 1)3qn(n+1)/2. (5.2)

Proceeding as in (2.7), we easily find that

q
d

dq
J(q3) =

3

8
F (q3)− 3

8
J(q3) (5.3)

and

q
d

dq
J(q1/3) =

1

24
F (q1/3)− 1

24
J(q1/3). (5.4)

Thus, (2.5) can be written in the form

32(q; q)10
∞ =36

{
8

3
q

d

dq
J(q3) + J(q3)

}
J(q1/3)

− 4

{
24q

d

dq
J(q1/3) + J(q1/3)

}
J(q3),

or, upon simplification,

(q; q)10
∞ = 3q

d

dq
{J(q3)}J(q1/3)− 3q

d

dq
{J(q1/3)}J(q3) + J(q3)J(q1/3). (5.5)

If we divide both sides of (5.5) by J2(q3), we find that

(q; q)10
∞

J2(q3)
= −3q

d

dq

{J(q1/3)

J(q3)

}
+

J(q1/3)

J(q3)
. (5.6)

We will prove (5.6) by using several elementary facts about theta functions from Ra-
manujan’s notebooks [2].

First, let us introduce two of Ramanujan’s theta functions. Define, for |q| < 1,

ϕ(q) :=
∞∑

n=−∞
qn2

= (−q; q2)2
∞(q2; q2)∞ (5.7)
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and

ψ(q) :=
∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (5.8)

where the product representations in (5.7) and (5.8) follow from the Jacobi triple
product identity [2, pp. 36–38]. Also, after Ramanujan, define

χ(q) := (−q; q2)∞ and f(−q) := (q; q)∞. (5.9)

Some basic properties of the functions ϕ, ψ, f , and χ are [2, p. 39, Entry 24]

ψ2(q)

ψ2(−q)
=

ϕ(q)

ϕ(−q)
, (5.10)

χ(q) =
f(q)

f(−q2)
= 3

√
ϕ(q)

ψ(−q)
=

ϕ(q)

f(q)
=

f(−q2)

ψ(−q)
, (5.11)

f 3(−q2) = ϕ(−q)ψ2(q). (5.12)

By (5.11) and (5.12), we find that

f 3(−q) = ψ(q)ϕ2(−q). (5.13)

We now use two identities [2, p. 345, Entry 1]

1− 8ν3 =
ϕ4(−q)

ϕ4(−q3)
, (5.14)

3 +
f 3(−q1/3)

q1/3f 3(−q3)
=

1

ν
+ 4ν2, (5.15)

where

ν(q) = q1/3 χ(−q)

χ3(−q3)
. (5.16)

Differentiating both sides of (5.15) with respect to q and then multiplying both sides
by −3q4/3, we deduce that

f 3(−q1/3)

f 3(−q3)
− 3q

d

dq

{f 3(−q1/3)

f 3(−q3)

}
= 3q4/3 1− 8ν3

ν2
ν ′. (5.17)

Note that J(q) = f 3(−q) in the notation of (5.9). Comparing (5.17) to (5.6), we see
that it remains to show that

3q4/3 1− 8ν3

ν2
ν ′ =

f 10(−q)

f 6(−q3)
. (5.18)

Next, we evaluate ν ′. To do this, we use (5.21) below which relates ν with the
multiplier m defined by (5.20). We then derive a formula for m′. By [2, p. 223, Entry
3(ii)] and [2, pp. 226–227, Entry 4(iii), (iv)], we can verify that

4
ψ3(q)

ψ(q3)
− ϕ3(q)

ϕ(q3)
= 3ϕ(q)ϕ(q3). (5.19)
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(See also [3, p. 16, Thm. 5.8; p. 18, Thm. 5.15] for better proofs than those in [2].) For
convenience, let us define

m := m(q) :=
ϕ2(q)

ϕ2(q3)
. (5.20)

By (5.14),

1− 8ν3 = m2(−q). (5.21)

Dividing both sides of (5.19) by ϕ3(q)/ϕ(q3), we find that

4
ψ3(q)ϕ(q3)

ψ(q3)ϕ3(q)
= 1 + 3

ϕ2(q3)

ϕ2(q)
=

m + 3

m
, (5.22)

or
ϕ3(q)ψ(q3)

ψ3(q)ϕ(q3)
=

4m

m + 3
. (5.23)

Taking logarithmic derivatives of both sides of (5.23) with respect to q, we arrive at

3
(ϕ′(q)

ϕ(q)
− ψ′(q)

ψ(q)

)
− 3q2

(ϕ′(q3)

ϕ(q3)
− ψ′(q3)

ψ(q3)

)
=

3m′

m(m + 3)
. (5.24)

However, by [2, p. 51, Entry 32(i)],

ϕ′(q)
ϕ(q)

− ψ′(q)
ψ(q)

=
1− ϕ4(−q)

8q
. (5.25)

Employing (5.25) in (5.24) with q replaced by q and q3, respectively, we obtain

1− ϕ4(−q)

8q
− q2 1− ϕ4(−q3)

8q3
=

m′

m(m + 3)
. (5.26)

In (5.26), we solve for m′ and use (5.14) and (5.16) to obtain

m′ =
1

8q
m(m + 3)(ϕ4(−q3)− ϕ4(−q))

=
1

8q
m(m + 3)ϕ4(−q3)

(
1− ϕ4(−q)

ϕ4(−q3)

)

=
1

8q
m(m + 3)ϕ4(−q3)8ν3

= m(m + 3)ϕ4(−q3)
χ3(−q)

χ9(−q3)
. (5.27)

Using (5.22), (5.20), and the equality of the first and third expressions in (5.11), we
conclude from (5.27) that

m′ = 4
ϕ(q)

ϕ3(q3)
ϕ(−q)ϕ(−q3)ψ2(q)ψ2(q3). (5.28)

Equality (5.28), upon the use of (5.10) with q replaced by q and q3, respectively,
simplifies to

m′ = 4
ϕ2(q)

ϕ2(q3)
ψ2(−q)ψ2(−q3). (5.29)
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Differentiating both sides of (5.21) with respect to q, we find that

−24ν2ν ′ = −2m(−q)m′(−q). (5.30)

Now, we use (5.20) and (5.29), with q replaced by −q, in (5.30) to conclude that

ν ′ =
1

3ν2

ϕ4(−q)

ϕ4(−q3)
ψ2(q)ψ2(q3). (5.31)

We return to (5.18) and use (5.31). It thus suffices to show that

3q4/3 1− 8ν3

ν2

1

3ν2

ϕ4(−q)

ϕ4(−q3)
ψ2(q)ψ2(q3) =

f 10(−q)

f 6(−q3)
. (5.32)

After simplification with the help of (5.13) and (5.14), (5.32) can be reduced to

q−4/3ν4 =
ϕ2(−q)ψ4(q3)

f(−q)ψ(q)ϕ4(−q3)
, (5.33)

which we now easily prove. From (5.11), we deduce that

f(−q)ψ(q) = f 2(−q2) (5.34)

and that

χ(q) =

√
ϕ(q)

f(−q2)
= 3

√
ϕ(q)

ψ(−q)
. (5.35)

Using first (5.34) and then (5.35) in (5.33), we find that it suffices to prove that

q−4/3ν4 =
χ4(−q)

χ12(−q3)
, (5.36)

which follows from the definition (5.16) of ν. Hence, the proof of (5.6) is complete.

6. A Class of Infinite Series Representable in Terms of Eisenstein
Series

Recall the definitions of Ramanujan’s Eisenstein series, P , Q, and R,

P (q) := 1− 24
∞∑

k=1

kqk

1− qk
, (6.1)

Q(q) := 1 + 240
∞∑

k=1

k3qk

1− qk
, (6.2)

and

R(q) := 1− 504
∞∑

k=1

k5qk

1− qk
, (6.3)

where |q| < 1. On page 369 of his lost notebook [19], Ramanujan briefly considers two
classes of infinite series. Each member of each class can be represented as a polynomial
in P , Q, and R. One of the classes is considered in more detail on page 188 of his
lost notebook, and this page was extensively examined by Berndt and A. J. Yee [6].
Ramanujan briefly considered the second class in Entry 35(i) of Chapter 16 in his second
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notebook [18], [2, pp. 61–62], where a recurrence relation is given in terms of members
of yet a third class of infinite series. The approach indicated by Ramanujan on page
369 of his lost notebook, however, is neater and more direct, with the aforementioned
third class of series not arising. Our purpose in this section is to prove the claims about
that class of series in the lost notebook not examined by Berndt and Yee in their paper
[6], namely, the series Un(q) below.

Define, for each nonnegative integer n,

Un(q) :=
1

(q; q)3∞

∞∑
j=1

(−1)j(2j − 1)n+1qj(j−1)/2 :=
Fn(q)

(q; q)3∞
. (6.4)

It is easy to show that

P (q) = 1 + 24q

d
dq

(q; q)∞
(q; q)∞

. (6.5)

Recall also Ramanujan’s famous differential equations [16], [17, p. 142],

q
dP

dq
=

P 2 −Q

12
, q

dQ

dq
=

PQ−R

3
, and q

dR

dq
=

PR−Q2

2
. (6.6)

The key to Ramanujan’s work on Un(q) is the following differential-recurrence rela-
tion [19, p. 369].

Lemma 6.1. For each nonnegative integer n,

Un+2(q) = P (q)Un(q) + 8qU ′
n(q). (6.7)

Proof. By the definition of Un(q), (6.4),

U ′
n(q) =

F ′
n(q)(q; q)∞ − 3Fn(q) d

dq
(q; q)∞

(q; q)4∞
,

so that, by (6.5),

P (q)Un(q) + 8qU ′
n(q) =

(
1 + 24q

d
dq

(q; q)∞
(q; q)∞

)
Fn(q)

(q; q)3∞
+

8qF ′
n(q)(q; q)∞ − 24Fn(q)q d

dq
(q; q)∞

(q; q)4∞

=
Fn(q) + 8qF ′

n(q)

(q; q)3∞
. (6.8)

On the other hand, by a simple calculation

8qF ′
n(q) =

∞∑
j=1

(−1)j(2j − 1)n+1
(
(4j2 − 4j + 1)− 1

)
qj(j−1)/2

=Fn+2(q)− Fn(q). (6.9)

Substituting (6.9) into (6.8) and simplifying, we complete the proof. ¤
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Theorem 6.2. If Un(q) is defined by (6.4), then

U0(q) =1, (6.10)

U2(q) =P, (6.11)

U4(q) =
1

3

(
5P 2 − 2Q

)
, (6.12)

U6(q) =
1

9

(
35P 3 − 42PQ + 16R

)
, (6.13)

U8(q) =
1

3

(
35P 4 − 84P 2Q− 12Q2 + 64PR

)
, (6.14)

U10(q) =
1

9

(
385P 5 − 1540P 3Q− 660PQ2 + 1760P 2R + 64QR

)
. (6.15)

Proof. The trivial equality (6.10) follows immediately from (6.4) and Jacobi’s identity
(2.6).

Setting n = 0 in (6.7) and using (6.10), we deduce (6.11), which is the same as (2.8).
Next, setting n = 2 in (6.7), employing (6.11), and then using the first equation in

(6.6), we easily complete the proof of (6.12).
Fourthly, apply the differential operator q d

dq
to (6.12), use (6.7), and then employ

the first two equations of (6.6) to find that

U6 − PU4 =
40

3
· 2P

(
P 2 −Q

12

)
− 16

3

PQ−R

3
.

The desired result (6.13) now follows from (6.12) and simplification.
Fifthly, apply the differential operator q d

dq
to (6.13), use (6.7), and then employ all

the equations of (6.6) to find that

U8 − PU6 =
8

9

(
105P 2P 2 −Q

12
− 42Q

P 2 −Q

12
− 42P

PQ−R

3
+ 16

PR−Q2

2

)
.

If we use (6.13) on the left side above, collect terms with like powers, and simplify, we
obtain (6.14).

Lastly, apply the differential operator q d
dq

to (6.14), use (6.7), and then employ all

the equations of (6.6) to find that

U10 − PU8 =
8

3

(
140P 3P 2 −Q

12
− 168PQ

P 2 −Q

12
− 84P 2PQ−R

3

−24Q
PQ−R

3
+ 64R

P 2 −Q

12
+ 64P

PR−Q2

2

)
.

Using (6.14) on the left side above and then simplifying, we arrive at (6.15) to complete
the proof. ¤

It is easy to see from our calculations above that we can deduce the following general
theorem stated by Ramanujan [19, p. 369].

Theorem 6.3. For any positive integer s,

U2s =
∑

K`,m,nP
`QmRn, (6.16)
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where the sum is over all nonnegative triples of integers `,m, n such that `+2m+3n = s.

Although one can find formulas for some of the coefficients K`,m,n in (6.16), it seems
extremely difficult to find a general formula for all K`,m,n. Along these lines, see the
paper by Berndt and Yee [6] concerning Ramanujan’s attempt to find a general formula
for the other series on page 369 of [19].

7. A related identity

When we showed Theorem 2.2 to Dennis Stanton, he experimented on his laptop
computer and discovered a similar identity wherein, roughly speaking, “9” is replaced
by “4.” Our purpose in this section is to establish Stanton’s analogue of (2.5).

Theorem 7.1. For |q| < 1,

12ϕ5(−q)ψ5(
√

q) = 12
(q; q)20

∞
(
√

q;
√

q)5(q2; q2)5∞
(7.1)

=4

( ∞∑
n=−∞

(−1)n(2n + 1)3qn(n+1)

)( ∞∑
n=−∞

(−1)n(2n + 1)qn(n+1)/4

)

−
( ∞∑

n=−∞
(−1)n(2n + 1)qn(n+1)

)( ∞∑
n=−∞

(−1)n(2n + 1)3qn(n+1)/4

)
.

We require the following lemma in our proof of Theorem 7.1. This lemma is, in fact,
due to Ramanujan [18], [5, p. 377, Entry 38], but our proof here is completely different
from that in [5].

Lemma 7.2. We have

1 + 8
∞∑

n=1

nqn

1− qn
− 32

∞∑
n=1

nq4n

1− q4n
=

(q2; q2)20
∞

(q; q)8∞(q4; q4)8∞
= ϕ4(q). (7.2)

Proof. First, note that the second equality of (7.2) follows from (5.7).
Next, recall a representation for ϕ4(q), useful in deriving a famous identity of Jacobi

for the number of ways a positive integer can be represented as a sum of four squares,
namely [2, p. 54, eq. (33.5), with −q2 replaced by q],

ϕ4(q) = 1 + 8
∞∑

n=1

qn

(1 + (−q)n)
2 . (7.3)

Applying the elementary transformation

∞∑
n=0

xynqn

(1− xqn)2
= x

d

dx

∞∑
n=0

yn

1− xqn
= x

d

dx

∞∑
n=0

xn

1− yqn
=

∞∑
n=1

nxn

1− yqn
,
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with q replaced by −q, y = −1, and x = q, on the right side of (7.3), we find that

ϕ4(q) =1 + 8
∞∑

n=1

nqn

1 + (−q)n

=1 + 8

{ ∞∑
n=1

2nq2n(1− q2n)

1− q4n
+

∞∑
n=0

(2n + 1)q2n+1

1− q2n+1

}

=1 + 8

{ ∞∑
n=1

2nq2n

1− q2n
−

∞∑
n=1

4nq4n

1− q4n
+

∞∑
n=0

(2n + 1)q2n+1

1− q2n+1

}

=1 + 8

{ ∞∑
n=1

nqn

1− qn
−

∞∑
n=1

4nq4n

1− q4n

}
,

and this completes the proof of Lemma 7.2. ¤
Proof of Theorem 7.1. First note that the first equality of (7.1) follows readily from
(5.7) and (5.8).

By (2.6) and (2.8),

4

( ∞∑
n=−∞

(−1)n(2n + 1)3qn(n+1)

)( ∞∑
n=−∞

(−1)n(2n + 1)qn(n+1)/4

)

−
( ∞∑

n=−∞
(−1)n(2n + 1)qn(n+1)

)( ∞∑
n=−∞

(−1)n(2n + 1)3qn(n+1)/4

)

=4(q2; q2)3
∞(
√

q;
√

q)3
∞

(
4− 4 · 24

∞∑
n=1

nq2n

1− q2n
− 1 + 24

∞∑
n=1

nqn/2

1− qn/2

)

=12(q2; q2)3
∞(
√

q;
√

q)3
∞

(
1 + 8

∞∑
n=1

nqn/2

1− qn/2
− 32

∞∑
n=1

nq2n

1− q2n

)

=12
(q; q)20

∞
(
√

q;
√

q)5∞(q2; q2)5∞
,

by Lemma 7.2 and (5.7). This completes the proof of Theorem 7.1. ¤

8. Further Remarks

J.–P. Serre [20] found a different representation for (q; q)10
∞ in the course of proving

that (q; q)r
∞ is lacunary for even r if and only if r = 2, 4, 6, 8, 10, 14, 26. We now show

that Theorem 2.2 can be utilized to prove that (q; q)10
∞ is lacunary, i.e., the density of

non-zero coefficients is 0.

Theorem 8.1. The function (q; q)10
∞ is lacunary.

Proof. Recall that the coefficients of (q; q)10
∞ are given by (3.5). Thus, the number of

non-zero coefficients up to x, say, does not exceed the number of integers that can be
represented as a sum of two squares (3u)2+v2. However, by a theorem of E. Landau [9],
[10, pp. 59–66], [1] that was rediscovered by Ramanujan [8, pp. 62–63], [4, pp. 61–66],
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the number of such integers is asymptotic to bx/
√

log x, for some positive constant b.
The desired result now follows. ¤

Originally, we had hoped to find an elementary proof of (5.5), a proof possibly in
the spirit of proofs of Jacobi’s identity (2.6). This would then yield a more elementary
proof of (2.5), but we have been unable to find such a proof. Perhaps this goal was
unrealistic.

We are grateful to P. T. Bateman for pointing out Theorem 8.1 to us.
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[9] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindeszahl
der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys. (3) 13
(1908), 305–312.

[10] E. Landau, Collected Works, Vol. 4, Thales Verlag, Essen, 1985.
[11] Z.–G. Liu, Some Eisenstein series identities, J. Number Theory 85 (2000), 231–252.
[12] Z.–G. Liu, Residue theorem and theta function identities, Ramanujan J. 5 (2001), 129–151.
[13] Z.–G. Liu, Manuscript in preparation.
[14] M. Newman, An identity for the coefficients of certain modular forms, J. London Math. Soc. 30

(1955), 488–493.
[15] M. Newman, Some theorems about pr(n), Canad. J. Math. 9 (1957), 68–70.
[16] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159–

184.
[17] S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927; reprinted by

Chelsea, New York, 1962; reprinted by the American Mathematical Society, Providence, RI,
2000.

[18] S. Ramanujan, Notebooks, 2 volumes, Tata Institute of Fundamental Research, Bombay, 1957.
[19] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
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