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Abstract
A Pell Equation with variables x and y in parameter D is given by the following
expression:

x2 = 1 + Dy2

The search for a solution to such an equation involves finding a method
that generates all non-trivial solutions (x, y) 6= (1, 0). Through the years it
has been noted that such an equation has no solutions if D is a perfect square
and an infinitude of solutions otherwise. The first known mention of these
equations appears in Ancient Greece. This paper traces the search for an
exhaustive solution beginning with Brahmagupta’s method of composition,
picking up again with Fermat’s independent work. Fermat’s subsequent chal-
lenge was finally put to rest by Lagrange in his Additions to Euler’s Elements
of Algebra. Lagrange proved that Euler’s method produces all solutions given
a least positive initial solution. This paper aims to provide an introduction to
Pell equations by placing selected results in a historical context.

1. Introduction

A Pell Equation with variables x and y in parameter D is given by the following
expression:

x2 = 1 + Dy2 (1)

By fundamental solution to this equation, we mean the two smallest, positive in-
tegers (x, y) 6= (1, 0) satisfying the Pell equation. We talk only of positive solutions to
dispose of the trivial solutions (−x,−y), (−x, y), (x,−y) given positive solution (x, y).
There are also restrictions on the parameter D. It must be a positive integer but not
a perfect square. Without these restrictions this equation has only the trivial solution
(1, 0). We begin with a quick proof of the second of these facts.

Proposition 1. If D = k2 for some integer k, then the equation x2−Dy2 = 1 has only
the trivial solution (1, 0).

Proof. Assume, to the contrary, that x2 − Dy2 = 1 has some other least positive
solution, (a, b) 6= (1, 0). Upon substitution, x2 − Dy2 = (a + kb)(a − kb) = 1, where
a, b, k are all integers. But the product of two integers cannot equal one unless they
both are one. We already know we are not in the case (a, b) = (1, 0), so the assumption
that the equation has some other solution must be incorrect. ♦
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A similar proof could be constructed for the case D = −k. It is helpful to see that
a solution (a, b) to (1) provides a good rational approximation to

√
D. Dividing both

sides of (1) by y2 and taking the square root gives a/b =
√

1/y2 + D. For large values of
y, the approximation becomes better. This concept leads to a technique for producing
a the fundamental solution. For example

x2 = 1 + 2y2

has solutions:

(a1, b1) = (17, 12) ⇒ a/b = 1.416667
(a2, b2) = (577, 408) ⇒ a/b = 1.414216

The Pell Equation has a long and broken history. It was first inadvertantly studied
by Diophantus and Archimedes. Diophantus solved equations of this form in specific
cases. The solution to Archimedes’ Cattle Problem hinges on a Pell equation, although
it is not known whether he intended for this. In addition to his many other significant
contributions, the Indian mathematician Brahmagutpa provided the first known general
solution method, though not exhaustive. Fermat brought these equations into modern
Western mathematics with a single example as one of his famous challenge problems.
Euler mistakenly named the equations after Pell. Lagrange set the solution to this class
of equations in stone by further proving the continued fraction method given by Euler.

2. Early Contributions

As stated earlier, part of Archimedes Cattle Problem can be formulated as a Pell
equation. This problem is purported “to be one proposed by Archimedes, in a letter to
Eratosthenes, to the mathematicians of Alexandria.” [Dickson 342] This information
was put forth in a manuscript published in 1773 by Gotthold Lessing. The first part of
the problem consists of a large system of linear equations resulting from conditions on
the relative number of cattle of various colors. ”G. H. F. Nesselmann argued that the
final part of the epigram leading to conditions [of square and triangular numbers] was
a later addition.” [Dickson 344] Of course this is the part of the problem that is most
troublesome. It leads to the following Pell equation:

x2 = 1 + 4, 729, 494y2

It is not known whether Archimedes possessed the capabilities to solve such an
equation. Brahmagutpa was the first mathematician to put forth a method for solving
exactly these types of equations. Not only did he develop methods for generating a
single solution, but he realized that a single solution could be modified to produce a
large number of solutions.

This method is called composition. It produces a new solution from two known
solutions. He obviously realized that this leads to an infinite number of solutions. His
method is a generalization of the following idea.
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Proposition 2. If (a, b) and (c, d) are solutions to the Pell equation x2 − Dy2 = 1,
then (ac+Dbd, ad+ bc) and (ac−Dbd, ad− bc) are also solutions to the same equation.

Proof. Brahmagupta’s method of composition relies on the following identities:

(a2 −Db2)(c2 −Dd2) = a2c2 −Da2d2 −Db2c2 + D2b2d2

= a2c2 + D2b2d2 −D(a2d2 + b2c2)
= a2c2 + 2Dabcd + D2b2d2 −D(a2d2 + 2abcd + b2c2)
= (ac + Dbd)2 −D(ad + bc)2

(a2 −Db2)(c2 −Dd2) = a2c2 −Da2d2 −Db2c2 + D2b2d2

= a2c2 + D2b2d2 −D(a2d2 + b2c2)
= a2c2 − 2Dabcd + D2b2d2 −D(a2d2 − 2abcd + b2c2)
= (ac−Dbd)2 −D(ad− bc)2

If (a,b) and (c,d) are solutions to x2 −Dy2 = 1, then

a2 −Db2 = 1

c2 −Dd2 = 1

By substitution into the left hand sides of the previous two identities, we arrive at

(ac + Dbd)2 −D(ad + bc)2 = 1

(ac−Dbd)2 −D(ad− bc)2 = 1

Therefore (ac + Dbd, ad + bc) and (ac−Dbd, ad− bc) both sovle the Pell equation
in parameter D. ♦

This proof was paraphrased from Robertson and Edmund.

3. European Contributions

“The European interest began in 1657 when Fermat issued a challenge to the math-
ematicians of Europe and England.” [Edmund & Robertson] This challenge included
a Pell equation. After spending many years reproducing the years of earlier Indian
mathematicians, Euler finally developed a method to generate a single solution to the
Pell Equation. This method is described in Section 6 without proof.

A method was also given in Eulers Elements of Algebra to generate what was
believed to be all solutions to the Pell equation, given the fundamental solution.

Proposition 3. P(n): The n-th solution (xn, yn) can be expressed in terms of the first
one, (x1, y1), by xn + yn

√
D = (x1 + y1

√
D)n. [Lenstra 1]
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Proof. This proof will be by induction. Show that P(n) holds for all n ∈ N .

P(1) is trivial. Show that P(k) ⇒ P(k + 1).

It is known that (x1, y1) is a solution by assumption and (xk, yk) is a solution by
the induction hypothesis. It remains to show that (xk+1, yk+1) is a solution, where

xk+1 + yk+1

√
D = (x1 + y1

√
D)k+1

= (x1 + y1

√
D)k(x1 + y1

√
D)

= (xk + yk

√
D)(x1 + y1

√
D)

= x1xk + y1ykD + (y1xk + x1yk)
√

D

Which leads to

xk+1 = x1xk + y1ykD

yk+1 = y1xk + x1yk

Show x2
k+1 − y2

k+1D = 1.

x2
k+1 − y2

k+1D = (x1xk + y1ykD)2 − (y1xk + x1yk)2D
= x2

1x
2
k + 2y1ykx1xkD + y2

1y2
kD2 − (y2

1x2
k + 2y1ykx1xk + y2

kx2
1)D

= x2
1x

2
k + y2

1y2
kD2 − (y2

1x2
k + y2

kx2
1)D

= x2
1x

2
k − (y2

1x2
k)D − (y2

kx2
1)D + y2

1y2
kD2

= (x1
1 − y2

1D)(x2
k − y2

kD)
= (1)(1) = 1

Py the principle of mathematical induction, P(n) holds for all n ∈ N . ♦

4. Lagrange’s Complete Solution

It now seemed that this very long search was over, and in fact it was. With the
method of Proposition 3, it seemed that every solution to the Pell Equation could
be produced given some non-trivial initial solution. This fact was not verified until
Lagrange in his Additions to Euler’s Elements of Algebra.

Next we present Lagrange’s work as taken from Elementary Number Theory. The
following Lemma is from page 347. The proof has been edited for flow.

Lemma. If ξ is a real number, and τ > 1 is any integer, then two integers r and s can
be found satisying the inequalities

|sξ − r| < 1
τ

, 0 < s ≤ r
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Proof. For each x = 0, 1, 2, . . . , τ determine y so that 0 ≤ xiξ − yi < 1. We therefore
get τ + 1 distinct differences contained in the interval between 0 and 1. If we divide
this interval into τ intervals of size 1

τ we can find two differences xiξ − yi and xjξ − yj

contained in the same interval by the pigeonhole principle. Choosing xj > xi and letting

xj − xi = s, yj − yi = r,

Since both xj and xi are two distinct integers less than τ , their difference satisfies
0 < s ≤ τ . Upon further computation, we find

(xjξ − yj)− (xiξ − yi) = (xj − xi)ξ − (yj − yi)
= sξ − r

Therefore |sξ − r| < 1
τ , since it is the difference of two numbers contained in an

interval of length 1
τ . ♦

We will now use this lemma to show that the Pell equation has a non-trivial solution
for non-square parameter, D. The following proof is fairly technical and as such remains
only edited slightly.

Proposition 4. The Pell Equation has a non-trivial integer solution for every D > 1
not a square. [Upensky & Heaslet 348].

Proof. Let D be a positive integer that is not a square. By the previous lemma, two
integers r, s can be found for some integer τ > 1 so that

|r − s
√

D| < 1
τ

, 0 < s ≤ τ

Then also
|r + s

√
D| < 1

τ
+ 2τ

√
D

and by the product of the previous two

|r2 −Ds2| < 1
τ2

+ 2
√

D < 1 + 2
√

D

That is, integers r, s making r − s
√

D as small as we please numerically, can be
found in an infinite number satisfying this inequality string. Let [1 + 2

√
D] = g, the

greatest integer; then the number of integers excluding zero in the interval between
−1 − 2

√
D and 1 + 2

√
D will be 2g. Take n = 2g4 pairs (ri, si) satisfying the given

inequalities so that

|r2
1 −Ds2

1| > |r2
2 −Ds2

2| > . . . > |r2
n −Ds2

n|

The n differences
r2
1 −Ds2

1, r
2
2 −Ds2

2, . . . , r
2
n −Ds2

n
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are all integers contained between −1 − 2
√

D and 1 + 2
√

D since r, s, D are all
integers. Let these integers be L1, L2, . . . , Ln and let Mi denote the number of times Li

occurs in this series of integers. Then

M1 + M2 + · · ·+ Mn = n = 2g4

and the greatest of the numbers M1,M2, · · · ,Mn is necessarily ≥ g3 by the pigeonhole
principle with 2g4 pigeons and 2g holes. That is to say, for some k = ±1,±2, . . . ,±g,
the equation

r2 −Ds2 = k

is satisfied by at least g3 > g2 ≥ k2 pairs of integers r, s.
We call two pairs x1, y1 and x2, y2 congruent mod k if and only if

x2 ≡ x1, y2 ≡ y1 (mod k)

Then the number of incongruent pairs is k2, and among the k2 + 1 pairs at least
two pairs are congruent. Since the equation r2 −Ds2 = k is satisfied by more than k2

pairs, at least two of them, r1, s1 and r2, s2 will be congruent mod k, so that

r2
2 −Ds2

2 = r2
1 −Ds2

1 = k

r2 ≡ r1, s2 ≡ s1 (mod k)

Moreover, we can suppose that

|r − 2− s2

√
D| < |r1 − s1

√
D|

Consider the quotient

r1 − s1

√
D

r − 2− s2

√
D

=
r1r2 −Ds1s2 + (r1s2 − r2s1)

√
D

k

By virtue of the congruences r2 ≡ r1, s2 ≡ s1 (mod k),

r1r2 −Ds1s2 ≡ r2
1 −Ds2

1 ≡ 0, r1s2 − r2s1 ≡ 0 (mod k)

so that
r1r2 −Ds1s2

k
= a,

r1s2 − r2s1

k
= b

are integers and

(r1 − s1

√
D) = (r2 − s2

√
D)(a + b

√
D)

implying
(r2

1 − s2
1D) = (r2

2 −Ds2
2)(a

2 + Db2)
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and cancelling r2
2 −Ds2

2 = r2
1 − s2

1D = k 6= 0, gives

a2 −Db2 = 1

We also have |a + b
√

D| > 1 implying that b 6= 0. ♦

The existence of a non-trivial solution, and consequently an infinite number of
solutions, to the Pell equation has now been proved. It is only left to confirm that the
method of Proposition 3 generates all positive solutions to a given equation. The proof
of this fact follows closely to Lagrange’s work but has been modified to aid in flow.

Proposition 5. The method given in Proposition 3 provides a complete solution to
the Pell Equation in the non-square parameter D.

Proof. Let (A,B) be the fundamental, non-trivial solution to the Pell Equation in
paramter D. If (a, b) is any other solution distinct from the fundamental, then b > B
and

a + b
√

D > A + B
√

D

Assume, to the contrary, that (a, b) is a non-trivial solution not given by the method
outlined in Proposition 3. In the series of powers

A + B
√

D, (A + B
√

D)2, (A + B
√

D)3, . . .

there are two consecutive terms such that

(A + B
√

D)n ≤ a + b
√

D < (A + B
√

D)n+1

Multiplying through by (A−B
√

D)n gives

1 ≤ (a + b
√

D)(A−B
√

D)n < A + B
√

D

Note that (a + b
√

D)(A−B
√

D)n can be reduced to the form p + q
√

D where p, q
are integers and p2 −Dq2 = 1, giving

1 ≤ p + q
√

D < A + B
√

D

and
0 < A−B

√
D < p− q

√
D ≤ 1

These inequalities imply that p > 0 and 0 ≤ q < B. But q can not be positive,
otherwise there would be a solution in positive integers smallter and (A,B). Therefore
p = 1, q = 0 and

a + b
√

D = (A + B
√

D)n

for some positive n. ♦
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In addition to proving this Theorem, Lagrange also succeeded in proving the cor-
rectness of Eulers method of generating the fundamental solution, described next.

6. Final Comments

No mention of how to find initial solution. Here we outline the general solution
method with an example.

Solve x2 = 1 + 17y2.

We begin with the continued fraction expansion of
√

17.

x =
√

17 = 4 +
1
x

⇒ 1
x

=
√

17− 4

⇒ x =
1√

17− 4
·
√

17 + 4√
17 + 4

=
√

17 + 4

Substituting yields:

√
17 = 4 +

1
x

= 4 +
1

4 +
√

17

= 4 +
1

8 + 1
8+...

= [4; 8, 8, 8, . . .]

Truncating this pattern at the first repetition, we get

x

y
= 4 +

1
8

=
33
8

Therefore, the pair (33, 8) is the least positive solution to the given Pell equation.

332 − 17 · 82 = 1

To create another solution, solve the following:

(x + y
√

17) = (33 + 8
√

17)2

= 332 + 33 · 16
√

17 + 82 · 17
= 2177 + 528

√
17
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Therefore, the pair (2177, 528) is the next solution to the given Pell equation.

This is an interesting topic that leads into a number of algebraic and number
theoretical topics. Though we can no longer continue this 2000 year search there are
still some paths that we have not been down yet, such as the one that leads to a
polynomial time algorithm to generate these solutions or a proof that none exists.
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