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Dedicated to the memory of Paul Erd�os

Abstract� We show several consequences of the abc�conjecture for questions in an�
alytic number theory which were of interest to Paul Erd�os� For any given polynomial
f�x� � Z�x�	 we deduce	 from the abc�conjecture	 an asymptotic estimate for the
frequency with which f�n� is squarefree	 when n is an integer �and also deduce such
estimates for binary homogenous forms�
 Amongst several applications of this result	
we deduce that there is a squarefree number in every interval of length O�x�� around
x	 and give the asymptotic formula	 predicted by Erd�os	 for the average moments for
the gaps between squarefree numbers


�� Introduction�

For any given polynomial f�x� � Z�x�� we investigate what proportion of the
integers f���� f���� f�	�� � � � are squarefree�


The values� at integers� taken by certain polynomials� are always divisible by a
square for not entirely obvious reasons �for example n�n����n����n�	� is always
divisible by ��� We take care of this as follows Let B be the greatest common
divisor of f�n�� n � Z� and let B� be the smallest divisor of B such that B�B� is
squarefree� Then f�n��B� can feasibly be squarefree for various integers n�

The study of this question has a rich history� It was Erd�os ��� who established
that if f�x� has degree � 	� and B � �� then there are in�nitely many integers
n for which f�n� is squarefree� There are no such results proven unconditionally
for any irreducible polynomials of degree � 	� though Browkin� Filaseta� Greaves
and Schinzel ��� did prove such a result for all cyclotomic polynomials under the
assumption of the abc�conjecture�

Similar results for binary homogenous forms� whose irreducible factors have low
degree� were established by Hooley ����� by Greaves ��	�� and by Browkin� Filaseta�
Greaves and Schinzel ���� Here we show that these questions can be completely
answered� as a consequence of the abc�conjecture� which we now describe

The abc�conjecture� �Oesterl�e� Masser� Szpiro�� Fix � � �� If a� b� c are coprime
positive integers satisfying a � b � c then

��� c�� N�a� b� c�
����
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where N�a� b� c� is the product of the distinct primes dividing abc�

This conjecture has many extraordinary consequences �such as Fermat�s Last
Theorem� other than perhaps �nitely many examples�� Following constructions
of Belyi ��� and Elkies �	�� and a little bit of elementary sieving� we shall prove
several results about the distribution of squarefree integers� as a consequence of the
abc�conjecture�

Theorem �� Suppose that f�x� � Z�x�� without any repeated roots� Let B be the
largest integer which divides f�n� for all integers n� and select B� to be the smallest
divisor of B for which B�B� is squarefree� If the abc�conjecture is true then there
are � cfN positive integers n � N for which f�n��B� is squarefree� where cf � �
is a positive constant� which we determine as follows�

cf �
Y

p prime

�
�� �f �p�

p��qp

�

where� for each prime p� we let qp be the largest power of p which divides B�� and
let �f �p� denote the number of integers a in the range � � a � p��qp for which
f�a��B� � � �mod p���
This result can be proved unconditionally if f has degree � � using the sieve of

Eratosthenes� It was proved unconditionally by Hooley ���� for f of degree 	�
Theorem � can be viewed as verifying the appropriate �local�global� principle

The factors
�
�� �f �p�

p��qp

�
represent the proportion of integers n for which f�n��B�

is not divisible by p�� We have thus shown that the proportion of positive integers
n for which f�n��B� is squarefree is exactly the product� over all primes p� of these
local densities�
As we noted above� there has also been considerable interest in squarefree values

of binary forms� The proof of the following result is a modi�cation of that of
Theorem �� though strangely involves the classi�cation of the �nite subgroups of
PGL���Q� �see the Appendix�

Theorem �� Suppose that f�x� y� � Z�x� y� is homogenous� without any repeated
linear factors� Let B be the largest integer which divides f�m�n� for all pairs
of integers m�n� and select B� to be the smallest divisor of B for which B�B� is
squarefree� We will assume that M�N �� in the following�� If the abc�conjecture
is true then there are � c�fMN pairs of positive integers m �M� n � N for which

f�m�n��B� is squarefree� where c�f � � is a positive constant� which we determine
as follows�

c�f �
Y

p prime

�
�� ��f �p�

p���qp

�

where� for each prime p� we let qp be the largest power of p which divides B�� and
let �f �p� denote the number of pairs of integers a� b in the range � � a� b � p��qp

for which f�a� b��B� � � �mod p���
�If one of these variables does not go to innity then the desired result may be obtained by

summing over applications of Theorem �
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We again note the �local�global� principle in action here� Theorems � and �
above carry over� with no signi�cant changes� to arbitrary number �elds K� that is�
one can state analogous results for f�x� � K�x� and f�x� y� � K�x� y�� though one
needs to give an appropriate formulation of the abc�conjecture in number �elds��
A similar proof allows us to solve various questions about the distribution of

squarefree numbers Let s� � � � s� � � � s� � 	 � s� � � � � � � be the
sequence of squarefree numbers� Filaseta and Trifonov ��� have shown that consec�

utive squarefree numbers cannot get too far apart that is� sn���sn � s
���
n log�sn��

Assuming the abc�conjecture we can get a sharper result

Theorem �� Suppose that the abc�conjecture is true and 	x � � �� Then� once x
is su
ciently large� there must be a squarefree integer in the interval �x� x � x���
In other words� sn�� � sn �� s

�
n �

Let a� � a� � 	 	 	 � ak be a �xed set of positive integers� From the sieve
of Eratosthenes one can show that there are � 	ax integers m � x for which
m�m� a��m� a�� � � � �m� ak are all squarefree� where the constant

	a � 	fa��a������akg �
Y
p

�
�� �a�p�

p�

�
�

and �a�p� is the number of distinct residue classes in the set �� a�� � � � � ak �mod p���
Thus there are � 
tx squarefree integers n � x for which the next largest squarefree
integer is n� t� where


t �
X

I�f��������t��g

����jIj	I�f	�tg�

which is easily proved using the inclusion�exclusion formula�
It was Erd�os ��� who began the study of the average moments of sn��� sn� that

is� �
x

P
sn�x
�sn���sn�A� showing that this tends to a limit as x�� for � � A � ��

this was extended to A � 	 by Hooley ����� to A � ���� by Filaseta ���� and to
A � �	��	 by Filaseta and Trifonov ����� If we de�ne S�x� t� to be the number of
sn � x for which sn�� � sn � t then the above sum equals �

x

P
t�� S�x� t�t

A� In
section �� we will deduce that

���
X

T�t��T

S�x� t��A x�TA���

from the abc�conjecture� Therefore

�

x

X
sn�x

�sn�� � sn�
A �

�

x

X
��t�T

S�x� t�tA �O

�
�

T

�
�

X
��t�T


tt
A �O

�
�

T

�
�

as x � �� Now letting T � �� and de�ning �A �
P

t�� 
tt
A� we deduce the

following theorem

�Vojta ���	 page ��� showed how to formulate the abc�conjecture in arbitrary number elds�
from which Elkies ��� elegantly deduced Faltings� Theorem
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Theorem �� Suppose that the abc�conjecture is true� For any 	xed A � � there
exists a constant �A � � such thatX

sn�x

�sn�� � sn�
A � �Ax�

Remark� In fact Theorem � follows from Theorem 	 as was shown in ���� We give
a simpli�ed version of that deduction here�
All of these results rely on the following consequence of Belyi�s Theorem� �rst

noted by Elkies �	������ and Langevin ���� �a proof is also sketched in section 	�

Theorem �� Assume that the abc�conjecture is true� Suppose that f�x� y� �Z�x� y�
is homogenous� without any repeated linear factors� Fix � � �� Then� for any
coprime integers m and n�

Y
primes pjf�m�n�

p
 maxfjmj� jnjgdeg�f������

Note that the constant implicit in �
� depends on both � and f �

Remark� The abc�conjecture is the case f�x� y� � xy�x � y� of the estimate in
Theorem �� Roth�s Theorem also follows easily from this estimate� since jf�m�n�j
is at least as large as the product of the primes dividing it�
Theorem � is �best possible� for any such f�x� y� �Z�x� y� of degree � �� that is�

one can always �nd coprime integersm�n with
Q

pjf�m�n� p� maxfjmj� jnjgdeg�f����

One can prove this via a standard �pigeonhole principle� argument let � be the
smallest prime which does not divide the discriminant of f�x� ��� and such that there
exists an integer t �� � �mod �� with f�t� �� � � �mod ��� We can use the Hensel
lifting lemma to determine tk such that f�tk� �� � � �mod �k� for any given positive
integer k� There are more than ��k integers a � bt�k with � � a� b � �k so two of
them are congruent �mod ��k�� and we let m�nt�k be their di�erence� If �r is the
highest power of � dividing both m and n and M � m��m�n�� N � n��m�n� then
we �nd that f�M�N� � � �mod ��k�r� whereas maxfjM j� jN jg� � ��k�r�� � ��k�r�
establishing the result�
If we wish to consider g�x� � Z�x�� then we can obtain a stronger consequence

of Theorem � than comes from simply setting n � �� If g�x� has degree d then we
let f�x� y� � yd��g�x�y�� thus g�x� � f�x� ��� but f has one higher degree than
before� So now� applying Theorem �� we obtain

Corollary �� Assume that the abc�conjecture is true� Suppose that g�x� � Z�x�
has no repeated roots� Fix � � �� ThenY

primes pjg�m�

p
 jmjdeg�g������

�This result was also noted by Langevin ������ By a similar counting argument to
the one following Theorem �� one can show that this result is �best possible�� that
is� one can always �nd arbitrarily large integers m with

Q
pjg�m� p� jmjdeg�g����

The next result� although an immediate corollary to Theorem � and Corollary
�� seems to be of independent interest�
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Theorem 	� Assume that the abc�conjecture is true� Suppose that f�x� y� �Z�x� y�
is homogenous� without any repeated linear factors� Fix � � �� If q� divides f�m�n��
for any coprime integers m and n then q � maxfjmj� jnjg���� Also� if g�x� �Z�x�
has no repeated roots and q� divides g�m�� then q� jmj����
We do not yet know� in general� whether this result is best possible� though we

expect so

Conjecture� Suppose that f�x� y� � Z�x� y� is homogenous� without any repeated
linear factors� of degree � �� There exist in	nitely many pairs of coprime inte�
gers m and n� for which there is an integer q 
 maxfjmj� jnjg� with q� dividing
f�m�n�� Similarly� for any g�x� � Z�x� without repeated roots of degree � � there
are arbitrarily large integers m for which there is an integer q
 m with q� dividing
g�m��

Using a �pigeonhole principle� argument as above� one only gets q 
 maxfjmj� jnjg
with q� dividing f�m�n�� and q 
 p

m with q� dividing g�m�� respectively�
We can� however� prove our Conjecture when f has degree � �and when g has

degree �� Any equation cv� � f�u� �� describes a curve of genus �� If this has
in�nitely many rational points �as must happen for well chosen values of integer c��
we can write them each in the form �m�n� r�n�� and then get the desired examples
since f�m�n� � cr��
The �rst result in Theorem � implies that if f�x� has degree � � then there are

only �nitely many rational solutions to yk � f�x� for any �xed k � �� a result
which follows from Faltings� Theorem� The second result in Theorem � implies
that if f�x� has degree � � then there are only �nitely many integer solutions to
yk � f�x� for any �xed k � �� a result which follows from the Thue�Siegel Theorem�
However we can conclude somewhat more
An integer n is called powerful if p� divides n for every prime p dividing n�

The �rst result in Theorem � implies that if f�x� y� � Z�x� y� has degree � � then
f�m�n�� with �m�n� � �� is powerful only �nitely often� Similarly� the second result
in Theorem � implies that if g�x� �Z�x� has degree � � then g�m� is powerful only
�nitely often�
Let r� � � � r� � � � � � � be the sequence of powerful numbers� If we let

x � y
p
� � �	 �

p
��k� for any integer k� then both �y� and x� � �y� � � are

powerful� Thus there are in�nitely many integers n for which rn��� rn � �� Erd�os
��� conjectured that there are never three consecutive powerful numbers� that is
rn�� � rn � �� It follows easily from the abc�conjecture that there are only �nitely
many such triples� for if t��� t� t�� are all powerful� then apply the abc�conjecture
to the equation � � �t� � �� � t� to get a contradiction� In fact the abc�conjecture
implies rather more

Theorem 
� Assume that the abc�conjecture is true� If r� � � � r� � � � � � � is
the sequence of powerful numbers then rn�� � rn �� as n���

To prove this� suppose it were false� so that there exist integers � � a � b for
which there are in�nitely many integers m with m�m� a and m � b all powerful�
But then for g�x� � x�x � a��x � b�� we have

Q
pjg�m� p � m���� contradicting

Corollary ��
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It is an open question to try to estimate the number of rn � x for which rn�� �
rn � �� in other words� to estimate the number of pairs of consecutive powerful
numbers up to x� The above construction gives 
 log x such pairs� and one might
guess that there are � c logx for some constant c � ��

We can also apply Corollary � to binomial coe�cients� to get For any �xed
integer k � 	� there are only �nitely many integers n for which �nk� is powerful�
In fact� Erd�os and Selfridge conjectured that the only example with 	 � k � n��
is
�
�	
�

�
� which we veri�ed in ���� for n � ��
� We also showed there� assuming

the abc�conjecture� that there are� in all� only �nitely many pairs of integers k� n
satisfying 	 � k � n��� for which

�
n
k

�
is powerful�

It has long been known that if d � ��n � ��r � � is squarefree� with n � �
then the class group of Q�

p�d� contains an element of order r� and� similarly� if
D � ��N � ���R � � is squarefree� with N � � then the class group of Q�

p
D�

contains an element of order R� As noted by Ram Murty in ����� we can thus
deduce from the abc�conjecture� via Theorem �� quantitative lower bounds for the
number of such quadratic �elds� Subsequently Murty ���� cleverly dispensed with
the assumption of the abc�conjecture� and even got sharper lower bounds� by �nding
a more elaborate class of such �elds� allowing him to directly apply the tools of sieve
theory�

Murty�s approach to lower bounds for the number of such real quadratic �elds
amounts to giving a lower bound for the number of distinct values of f�n� in Q�Q��
with � � n � N � for certain polynomials f � From Theorem � we immediately
deduce

Corollary �� Assume that the abc�conjecture is true� and that f�x� � Z�x� has
no repeated roots� Then there are 
f N distinct values of f�n� in Q�Q�� with
� � n � N �

We guess that the number of such distinct values is � c�fN for some constant

c�f � cf � �� though we are not sure what c
�
f should equal�

The result in Corollary � follows unconditionally when f has degree � 	� from the
remarks immediately following the statement of Theorem �� By modifying Murty�s
argument in ����� one has� in general� the unconditional lower bound
f N� log

�f N
distinct values of f�n� in Q�Q�� with � � n � N � where 	f � � is the number of
distinct irreducible factors of f  The fundamental lemma of the sieve� together
with the Cebotarev density theorem� gives that if u is a su�ciently large� �xed�
real number �depending on f� then there are u�f N� log�f N integers n� with

N�� � n � N � for which f�n��B is free of prime factors � N��u� Thus if f�n� �
aQ�� for such an integer n� where a is squarefree then a has� udeg f�logB �f �
prime factors� Now� Theorem �b of Evertse and Silverman ���� implies that the
number of integer solutions to Ay� � f�x� is bounded as a function of the number
of distinct prime factors of A� Therefore no more than an absolutely bounded
number of such n give rise to the same value of f�n��B in Q�Q�� and our result
follows�

The proof of the key result� Theorem �� follows easily from the following

�Used to estimate the Euler product that arises
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Lemma �� Given any homogenous f�x� y� � Q�x� y� we can determine homogenous
polynomials a�x� y�� b�x� y�� c�x� y� � Z�x� y� all of degree D � �� without common
factors� where a�x� y�b�x� y�c�x� y� has exactly D�� nonproportional linear factors�
including the factors of f�x� y�� and a�x� y� � b�x� y� � c�x� y��

�� Sketch of the Proof of Lemma ��

Belyi�s theorem ��� �� pg� ��� gives an extraordinary way to test whether a curve
is algebraic Curve C is algebraic if and only if there exists a rational morphism
  C � P� which is rami�ed over only f�� ���g� We shall not use his result� but
rather an observation that is �a simple modi�cation of� part of his proof

Lemma �� �Belyi���� For any 	nite subset S of P��Q�� there exists a rational
function �x� � Q�x�� rami	ed only over f�� ���g� such that �S� � f�� ���g�
This useful lemma is proved� for instance� by Serre as Theorem B on page ��

of ���� �for variations� see Belyi ���� Elkies �	�� Langevin ���� ���� or my own less
geometric account in ������
Assuming Lemma � we now proceed to the proof of Lemma �� Let S � f��� �� �

P�  f��� �� � �g and apply Lemma �� writing �x�y� � a�x� y��c�x� y�� where
a�x� y�� c�x� y� � Q�x� y� are homogenous forms� with the same degree as  �call it
D�� and without common factors� Let b�x� y� � c�x� y� � a�x� y�� Note that

�x�y� � � if and only if a�x� y� � ��

�x�y� � � if and only if b�x� y� � ��

�x�y� �� if and only if c�x� y� � ��

Therefore f�x� y� divides a�x� y�b�x� y�c�x� y�� If we write ����u� for the number of
distinct t � P��Q� for which �t� � u� then ������ �� ����� �� ����� equals
the number of distinct linear factors of a�x� y�b�x� y�c�x� y�� by the observation
immediately above� On the other hand� applying the Riemann�Hurwitz formula to
the map   P�� P�� we note �since P� has genus zero� and  is rami�ed only over
f�� ���g� that

�D � � �
X

u�f	����g

�
D �� ���u�

	
�

Thus ������ �� ����� �� ����� � D � � which concludes the proof�

�� Proof of Theorem ��

In �	� �around ������ Elkies notes that his methods allow him to deduce� from the
abc�conjecture� that Vojta�s conjectured K�analogue of the Second Main Theorem
of Nevanlinna theory is true for every number �eld K� Theorem � is just the case
K � Q� though the general case requires no further signi�cant ideas� This same
circle of ideas� with similar conclusions� appear in a paper of Langevin �����
We deduce Theorem � from Lemma � as follows Apply Lemma � and multiply

together the distinct irreducible factors of a�x� y�b�x� y�c�x� y� to we get a polyno�
mial f�x� y�g�x� y� of degree D � ��
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Let k � gcd�a�m�n�� b�m�n�� where �m�n� � �� It is easy to show that k divides
the resultant of a and b� which is a non�zero integer� so that k is bounded� Now we
apply the abc�conjecture directly to the equation a�k � b�k � c�k to get

maxfja�m�n�j� jb�m�n�jg��� �
Y
pjabc

p�
Y
pjfg

p � g�m�n�
Y

pjf�m�n�

p�

Write H � H�m�n� � maxfjmj� jnjg� Note that if � is �xed then jm��nj � H�
Thus jg�m�n�j � HD���deg�f�� Moreover� suppose that � �� � are �xed� Since
�m��n���m��n� � �����n� and ��m��n����m��n�� � �����m� we deduce
that maxfjm � �nj� jm � �njg 
 H� Thus� since a�x� y�� b�x� y� have no common
factors� maxfja�m�n�j� jb�m�n�jg 
 HD� The result follows from substituting these
two estimates into the equation above�

�� Proofs of Theorems � and ��

We begin by proving� in the notation of the Theorems

Proposition �� There are � cfN positive integers n � N for which f�n��B� is
not divisible by the square of a prime p � N �

Proposition �� There are � c�fMN pairs of positive integers m �M� n � N for

which f�m�n��B� is not divisible by the square of a prime p � maxfM�Ng�
We describe here the proof of Proposition �� the proof of Proposition � is mostly

analogous and we will comment after� only on where the proofs signi�cantly diverge�

To say that f�B� is squarefree means that it is not divisible by the square of any
prime p� Thus� in Theorem �� the number of n � N for which f�n��B� is squarefree
is equal to the number of n � N for which f�n��B� is not divisible by the square
of a prime p � z� plus an error term bounded by the sum� over all primes p � z� of
the number of integers n � N for which f�n��B� is divisible by p��
Now� if prime p does not divide either B or the discriminant of f � then �f �p� �

d �degree�f�� We will select z larger than Bdisc�f�� so that

�	�
X
p�z

�f �p�

p��qp
� d

X
p�z

�

p�
� �

z
�

Selecting z � �
� logN � we let M �

Q
p�z p

��qp � by the prime number the�

orem M � N����o���� By the Chinese Remainder Theorem� there are exactly

M
Q

p�z

�
�� �f �p�

p��qp

�
integers n in any interval �x� x�M �� for which f�n��B� is not

divisible by the square of a prime p � z� Thus there are

fN �O�M�g
Y
p�z

�
�� �f �p�

p��qp

�

integers n � N for which f�n��B� is not divisible by the square of a prime p � z�

By �	� we know that cf�
Q

p�z

�
�� �f �p�

p��qp

�
� � � O

�
�
z

�
� and so we have proved
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that there are � cfN integers n � N for which f�n��B� is not divisible by the
square of a prime p � z�
Now� there are �f �p�fN�p��qp � O���g integers n � N for which f�n��B� is

divisible by p�� for any given prime p� If p � z then this number is � dN�p��O�d��
Therefore the number of integers n � N for which f�n��B� is divisible by p�� for
some prime p in the range z � p � N is

�d

X
z�p�N

�
N

p�
� �

�
� N

z
�

N

logN
� o�N��

We have therefore proved Proposition ��

To prove Proposition �� suppose that N � M �the M � N case is handled
analogously�� Dealing with the primes p � z is done entirely analogously the use
of ��f �p�� as opposed to �f �p�� takes account of the slight di�erences in these cases�

For the primes p � z� we �rst remove all pairs �m�n� which have a common prime
factor � z� The number of such pairs is �Pp�zMN�p� �MN�z � o�MN��

Then we use the same argument as was used above for each f�m�n�� where m
is �xed � M � We have to be a little careful because the discriminant of f�m�x�
may be divisible by some primes which do not divide the discriminant of f��� x��
but all of these primes will divide m� However� for such primes p� we note that p�

divides f�m�n� if and only if p divides some non�zero coe�cient of f �note that
p does not divide n� since it already divides m�� However this is a �nite set of
primes� bounded independently of m� and thus the above estimates are uniform�
Proposition � follows�

Now Propositions � and � are proved� we can complete the proof of Theorems
� and � by showing that� for any �xed � � �� there are O��N� integers n � N for
which f�n� is divisible by the square of a prime � N � and similarly that there are
O��MN� integers m �M� n � N for which f�m�n� is divisible by the square of a
prime � maxfM�Ng� Observe that such results are true for f if they are true for
all of the irreducible factors of f � thus we will prove such a result assuming that f is
irreducible overZ�x� �orZ�x� y�� respectively�� Now the square� of any prime p � N �
is � N�� so certainly cannot divide a non�zero value jf�n�j of a linear polynomial
f �since it is a lot bigger�� In fact� we can alter the proofs of Propositions � and
� to make the conclusions true with all primes p � cN �or p � cmaxfM�Ng�
respectively� choosing c large enough implies that the square of any prime p � cN
is greater than jf�n�j �or jf�m�n�j� respectively� if f is quadratic� Thus Theorems
� and � follow from the following result �taking N � � to prove Theorem ��

Theorem �� Assume that the abc�conjecture is true� Suppose that f�x� y� �Z�x� y�
is homogenous and irreducible� of degree d � 	� Fix � � �� There are O��MN�
pairs of integers m and n� such that f�m�n� is divisible by the square of a prime
� maxfM�Ng�
In Theorem � we noted that f�m�n� is not divisible by the square of any integer

� maxfM�Ng���� This is not quite enough to deduce Theorem �� since we need
to also rule out slightly smaller primes� that is� as small as maxfM�Ng� Instead
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we will apply Theorem � to a new polynomial�

��� F �x� y� � f�x� y�f�x � y� y�f�x � �y� y� � � � f�x � �k � ��y� y��

F �x� y� has no repeated factors� for if it did then we would have roots �� � of
f�x� �� � �� with � � � � i for some positive integer i� Since f is irreducible� the
Galois group G for its splitting �eld extension is transitive and� so for any root 	 of
f�	� �� � � there exists � � G for which 	 � �	� Select that root 	 of f�x� �� � � for
which Re�	� is maximal� Then �	 � �	�i � 	�i� so Re��	� � Re�	��i � Re�	��
giving a contradiction�
Assume� for convenience� that M � N � Now� for every m� � M�n � N with

�m�� n� � �� there exists some integer m � M such that m� � m � in for some
� � i � k� where M is the set of integers m of the form m � i � jnk� where
� � i � n� �i� n� � �� � � j � �M�nk�� Theorem � applied to F �m�n� for each
m � M� n � N implies� that there are at most two f�m� in� n�� � � i � k� which
are divisible by the squares of primes � M � Thus� in total� there are O�jMj� �
O�N��MN�k� pairsm� �M�n� � N� �m�� n�� � �� such that f�m�� n�� is divisible
by the square of a prime � M � Selecting k � ����� implies Theorem �� provided
N � O��M��

We would like to apply a similar argument to deduce Theorem � when M �
O�N�� Let us suppose that we can �nd some �nite set T of �distinct�
 matrices
A �

�
a b
c d

�
� GL���Z�� such that for any su�ciently large R � maxfM�Ng�

there exists a set L of O���R�� lattice points such that

f�x� y� �Z�  � � x� y � R� �x� y� � �g �



�m�n��L

f�am� bn� cm� dn�  A � T g�

Let

F �x� y� �
Y
A�T

f�Ax� where Ax � �ax � by� cx� dy��

A priori we have no reason to believe that we can apply Theorem � to F �x� y�� since
it may have repeated roots� In the Appendix we show that� since deg�f� � �� there
is a group H of at most �� matrices� such that if f�x� and f�Ax� have common
roots then A � H� Let T � be a subset of the matrices in T � constructed by selecting
exactly one matrix from each orbit fhA  h � HgA�T � Then we can apply Theorem
� to G�x� y� �

Q
A�T � f�Ax�� for each �x� y� � L� Proceeding as before we now have

at most �����jLj � O���R�� � O��MN� pairs � � m�n � R with �m�n� � �� for
which f�m�n� is divisible by the square of a prime � R� and we have thus proved
Theorem ��

�Note that if q� divides f�m� n�	 where q � M 	 then
Q
pjf�m�n� p �Mdeg�f��� 
 Thus if three

of the f�m�in� n� were divisible by squares of primes� M 	 we�d have
Q
pjF �m�n� p�Mdeg�F ���

contradicting Theorem �

�We take gcd�a� b� c� d� � �	 without loss of generality	 and thus ensure that the matrices are

distinct in PGL���Z�
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It only remains to show that we can construct such a set T � and the set L of
lattice points for any given R We de�ne

L � ��� �R�� ��� �R�



��� ��R�� ��� R�



��� R�� ��� ��R��

and T to be the set of all �free words�� of length � ������ on the matrices
�
� �
� �

�

and

�
� �
� �

�
� We need to show that for every �x� y� � ��� R� � ��� R�� where the

gcd�x� y� � �� there is some A � T � such that A���x� y� � L� We will construct
A��� which will be a free word of length � ������ on

�
� ��
� �

�
and

�
� �
�� �

�
�

We now describe our algorithm to construct A��
Take A � I for all �x� y� � L� Otherwise� we may assume x� y � ��R� The

matrices correspond to the transformations �x� y�� �x�y� y� and �x� y�� �x� y�x�
�note that both maps keep gcd�x� y� � � �xed�� We select the �rst map if x � y�
the latter map if x � y �note x � y implies we have the point ��� ���� The new
lattice point is also inside the top right quadrant� and the sum of its ordinates has
been reduced by at least ��R� We repeat this process until the transformed lattice
point is in L� This must happen within ������ iterations of our algorithm� else
the transformed lattice point is still in the top right quadrant� and the sum of its
ordinates is � R�R� ��������R � ��R� which means that it is in L�

�� Proof of Theorem �� assuming Theorem 	�

We proceed much as in the previous section Let k � ����� and de�ne g�t� �
�t� ���t � ���t� 	� � � � �t � k��
Using the sieve of Eratosthenes one knows that there are � 



� x
� � �

�x
� integers

in the interval �x� x � x�� which are not divisible by the square of a prime � x��
Thus� if there are to be no squarefree integers in this interval� then there must be
at least �

�x
� integers m � �x� x � x�� divisible by the square of a prime � x�� But

that means there is an integer m � �x� x� x�� such that at least one�quarter of the
integers �m� ��� �m � ��� � � � � �m � k� are divisible by the square of a prime � x��
Thus g�m� is divisible by the square of an integer � �x��k�� � m� contradicting
Theorem ��

	� Proof of Theorem ��

As we noted in the introduction Theorem � follows once we prove ���� which we
will now do� By adjusting the constant in ��� as necessary� we can assume that
T is su�ciently large� By Theorem 	� we know that S�x� t� � � when t 
 x�� In
particular when t � x���A�A��� and x is su�ciently large� Thus we will prove ���
assuming that ��A � ��� � T � x���A�A���� Let B be the smallest integer � A�
We begin by noting that� by the sieve of Eratosthenes� there are � �	���t integers

in any interval of length t � T � which are not divisible by the square of any prime
� �T �note that 	�� � ������

	That is	 all expressions of the form XXY Y YXY YXXX � � �XY 	 with the Xs and Y s in any
order
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Let S��x�T � count the number of sn � x with T � sn�� � sn � �T � for
which there are � T�� integers in the interval �sn� sn��� which are not divisi�
ble by the square of any prime � �T or � TA� Note that for any sn � x counted byP

T�t��T S�x� t� but not by S
��x�T �� there must be � T��� integersm � �sn� sn���

which are divisible by the square of some prime � TA� Therefore

T

��

�
� X
T�t��T

S�x� t� � S��x�T �


A �

X
m�x

p�jm for some p�TA

�

�
X
p�TA

X
m�x� p�jm

� �
X
p�TA

x

p�
� x

TA
�

This contribution to the sum in ��� is acceptably small�

If sn is counted by S��x�T � then there are� T�� integers in the interval �sn� sn���
divisible by the square of a prime in the range ��T� TA�� Thus there are at least�
T���
B

�
di�erent B�tuples of integers of the form

sn � k�p
�
� � k�p

�
� � 	 	 	 � kBp

�
B � sn��

with the pj are distinct primes from ��T� TA�� Note that we can write kjp�j �

k�p
�
� � dj for � � j � B where � � d� � d� � 	 	 	 � dB � �T � Taking together all

such B�tuples from all of the sn counted by S��x�T �� we get

S��x�T �

�
�T���

B

�
�

X
�T�p��p������pB�T

A

pj distinct

X
��d��d��			�dB��T

X
k�p

�
��x

kjp
�
j�k�p

�
��dj for ��j�B

��

Let�s concentrate on the last sum �rst� If we let r � k�p
�
�� then we see that r � �

�mod p���� and r � �dj �mod p�j � for � � j � B� Thus r is in some �xed residue

class r	 �mod �p�p� � � � pB���� There are � x��p�p� � � � pB���� such integers r � x�
and this quantity is � �x��p�p� � � � pB�� since �p�p� � � � pB�� � T �AB � T �A�A��� �

x� Noting also that there are precisely
�

�T
B��

�
choices for the dj in the sum above�

we get

S��x�T �TB �B

X
�T�p��p������pB�TA

�
�T

B � �
�

�x

�p�p� � � � pB��

� xTB��

�
�X
p��T

�

p�


A
B

� x

T

which implies ����
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Appendix
 Fractional linear transformations

of roots of an irreducible polynomial��

Let f�x� � Z�x� be an irreducible polynomial of degree d � �� We wish to
determine all fractional linear transformations �that is elements of PGL���Q���
which send some root of f to some other root of f �

All such transformations are of the form � � a��b
c��d � with a� b� c� d �Z� Applying

any element � of the Galois group gives �	 � a���b
c���d � Since the Galois group� G� is

transitive� the action of the linear transformation de�nes a permutation of all of the
roots of f � Since we can compose permutations� we see that our transformations
form a group� call it H � Hf �

Quadratic polynomials� d � �

Make a change of variable of the form x � x � a to guarantee that f�x� is of
the form x� � m where m is not a square�� Such a transformation which sendsp
m� �pm gives

a
p
m� b

c
p
m� d

� �pm�

Multiplying through by the denominator� we obtain a
p
m� b � ��cm� d

p
m� so

that b � �cm and a � �d� Thus the set of such transformations are given by the
matrices ��d �cm

c d

�
� �c� d� � P��Q��

H is isomorphic to the group �under multiplication� fd� c
p
mg�Q
 with c� d � Q�

and thus has in�nite rank�

Higher degree polynomials� d � 	
Suppose now that �a� � b���c� � d� � � where � is a root of f � Then c�� �

�d� a��� b � �� But � is a root of an irreducible polynomial of degree � �� so we
must have c � a� d � b � �� that is our linear transformation is the identity map
�as a matrix it is the identity in PGL���Q���

Now if A � H each Ar� gives a root of f � and since there are d di�erent roots
we must have Ar� � As� �� �� say� for some � � r � s � d� Therefore An� � �
where n � s�r� and so An is the identity map by what we proved in the paragraph
above� In particular we see that A is invertible�

If A�B � H and A� � B� �� �� say� then AB��� � �� so AB�� is the identity�
so A � B� Therefore� since the A� must be distinct� H can have no more than d
elements� Thus we see that H is a �nite subgroup of PGL���Q�� all such subgroups
can be identi�ed


Special thanks to Dan Abramovich and Jean�Pierre Serre for their observations included below

I would also like to thank Malcolm Adams	 Dave Benson	 Elham Izadi	 Will Kazez	 Dino
Lorenzini	 Robert Rumely and Ted Shifrin for useful conversations pertaining to this section


�Note that the transformation x� x � a is itself a fractional linear transformation	 so we do
this without any loss of generality	 since we can compose such transformations
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Proposition A� The 	nite subgroups of PGL���Q� are precisely �� C�� C�� C�� C
�
D����D����D��� and D��
�

All the groups listed in Proposition A do occur as subgroups of PGL���Q��
Explicitly D��n � fAn

n � B� � I  AnBAn � Bg where B  z � ��z� and Cn is
generated by An� where

A� �

� �� �
� �

�
� A� �

�
� � �
� �

�
� A� �

�
� �
�� �

�
� and A
 �

�
� �
�� �

�
�

Realizing the �nite subgroups of PGL���Q� as Hf

Note that Hf � C� for f�z� � z�� �� and Hf � C� for f�z� � z� � �� where the
element in C� of order � is given by the involution z ��z� It is easy to construct
examples when jHj � � or �� by any ad hoc method�

Given one of the groups H in Proposition A� of order at least 	� can we �nd
polynomials f with Hf � H
 Dan Abramovich pointed out to me that if we
have a rational map   P� � P��H� and we take a set S of roots of some given
polynomial g� then� in all but �nitely many cases� ���S� will be the set of roots
of some polynomial f with deg f � jHjdeg g� An argument can be made that
�typically� if g is irreducible then f will also be irreducible�	� It is easy enough to
make Abramovich�s idea concrete in our �nitely many cases� to �nd examples of
irreducible f of degree jHj with Hf � H� when jHj � 	
In order to force f to be irreducible of degree jHj� we take S to contain one

element� We wish to write  as an invariant rational function of degree jHj� the
obvious function to try is the trace� �z� �

P
h�H hz� This usually worked� though

occasionally there was some cancellation between terms��� in which case we instead
used �z� �

P
h�H�hz�

� �whether there is such cancellation depends on which
particular explicit representation of H in PGL���Q� one uses in the calculations��

For the cyclic group H � Cn� we write �z� � u�z��cv�z� �
P

h�H hz where u
and v are monic without common roots� and c is a constant� Evidently the roots of
f�z� � u�z�� jv�z� are permuted by H� and u�z�� jv�z� is irreducible for �almost
all� j� by Hilbert�s Irreducibility Theorem� Thus if Cn is generated by Mn then we
get fn� as below

M� �

�
� �
�� �

�
� M� �

�
� � �
� �

�
� and M
 �

�
� �
�� �

�

with

f��z� � �z
� � 	z � ��� jz�z � ���

f��z� � �z
� � �z � ���z� � �z � �� � j�z� � z�� and

f
�z� � �z
� � 	z� � ���z� � 	z� � �z � �� � j�z � ��z�z � ���z � ����z � ���

��And �typically� can be made more precise via the Hilbert Irreducibility Theorem

��For example	 if the map z � �z is in H then

P
h�H hz � �




ABC ALLOWS US TO COUNT SQUAREFREES ��

We followed the same strategy with D��� �generated by B and A� as above�� to
obtain

f��� � ��� � ����z
� � ��	��z� � �����z� � ��	��z� � ����z
 � ���z�

� jz�z � ���	z � ����z � ����z � 	���z � ����z � ���

For the other dihedral groups we found that there was cancellation in
P

h�H hz�

and so we had to replace it in the above computations by
P

h�H�hz�
� this worked

on the three remaining occasions� and we obtained

f����z� � z� � �� jz��

f����z� � �z
� � z � ��� � jz��z � ���� and

f��
�z� � � � ��z � ��z
� � ���z� � ���z� � ���z� � �	�z
 � ���z� � ���z�

� ���z� � ��z�	 � ��z�� � �z�� � j��z � ��z�z � ���z � ����z � �����

�The class of polynomials f����z� are familiar from the construction of the ��
invariant of elliptic curves out of the j�invariant��

The �nite subgroups of PGL���Q�� Proofs

To prove that no groupsH can occur� other than those listed in Proposition A� we
use Serre�s result ������ Proposition ��� that if H is a �nite subgroup of PGL��� k��
where k is a �eld whose characteristic is coprime with the order of H� then the
only possibilities for H are the cyclic groups Cn� the dihedral groups D��n� the
alternating groups A� or A�� and the symmetric group S�� Moreover he remarks on
the same page that if the characteristic of k is not � then A� and S� are subgroups
of PGL��� k� if and only if �� is the sum of two squares in k� and A� is a subgroup
of PGL��� k� if and only if� in addition� �� is a square in k�
Thus we note that none of A�� A�� S� are subgroups of PGL���Q�� or even

PGL���R�� by Serre�s criterion� We are therefore left with the cyclic and dihe�
dral groups� To complete the proof of Proposition A we will prove the following

Lemma A�� If matrix A has 	nite order n in PGL���Q� then n � �� �� 	� � or ��

Proof of Lemma A�� A matrix A of �nite order n in PGL���Q� � PGL���Z�
satis�es an equation An � �I� with � � Z� as well as the quadratic equation
A� � TA�D � �� where T �Trace�A� and D �Determinant�A� are both integers�
Thus the minimal polynomial� m�x�� for A divides both x� � Tx�D and xn � ��
If m�x� has degree � then A � I in PGL���Q�� so that n � � and T � � �D�
So now assume that m�x� has degree � �� since it divides x��Tx�D� we must

havem�x� � x��Tx�D divides xn��� Thus the roots of m�x� are distinct �since
the roots of xn � � are distinct�� We see that n � � if and only if T � ��
So now assume n � 	 so that T �� �� Let � � j�j��n� The roots of x� � Tx �D

must be of the form �� and ��� where where � and � are �nth roots of unity� Then

��� � T�� �� � is real� and so � � �� ThereforeD � �� and thus ����
�
� T ��D���

The left side of this equation gives that this is an algebraic integer� the right side

that it is rational� and so it must be a rational integer� Since j�� � �
�j � �� we see

that the integer must be ������ �� � or �� and thus T � � or T � � D� �D� 	D or
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�D� These leads to the three cases x� � x � � divides x� � �� and x� � x � ���
divides x� � ���� and x� � x� ��	 divides x
 � ����� so that we can have n � 	� �
or �� respectively� In fact we have proved slightly more than previously claimed

Lemma A��� If A has 	nite order n in PGL���Q� then D �Determinant�A� �� ��
In fact� for T �Trace�A� we have n � � i� T � � �D� n � � i� T � �� n � 	 i�
T � � D� n � � i� T � � �D� and n � � i� T � � 	D�

Remark� In an �!�!�� email correspondence� Serre remarks that Cn and D��n are
subgroups of PGL��� k�� where k is a �eld of characteristic �� if and only if ��� � k�
where � is a primitive nth root of unity� Note that� by combining this with Serre�s
results from ����� Proposition A follows as an immediate consequence�
To prove this for Cn� Serre improves on our proof of Lemma A�� obtaining his

criterion by noting that T ��D � z � z � �� where z is actually a primitive nth
root of unity� He then extends this to D��n by showing� via an explicit matrix
construction� that if A represents a semisimple element of PGL��� k� then there is
an inner automorphism of that group� of order �� which transforms A to its inverse�

An observation

Note that any linear transformation A � PGL���Q� and any �eld automorphism
� obviously commute� Thus if there is some � � G and A � H which have the
same �action� on the roots of f �that is� A� � �� for all roots ��� then � must lie
in the center of G� and A in the center of H� Of the groups listed in Proposition
A� �� C�� C�� C�� C
�D��� are all commutative� D��� has trivial center� and D���

and D��
 have center C��
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