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Abstract

We consider the class of I-graphs I(n, j, k), which is a generalization over the class
of the generalized Petersen graphs. We study different properties of I-graphs such as
connectedness, girth and whether they are bipartite or vertex-transitive. We give an
efficient test for isomorphism of I-graphs and characterize the automorphism groups of
I-graphs.

Regular bipartite graphs with girth at least 6 can be considered as Levi graphs of
some symmetric combinatorial configurations. We consider configurations which arise
from bipartite I-graphs. Some of them can be realized in the plane as cyclic astral
configurations, i.e. as geometric configurations with maximal isometric symmetry.

1 Introduction

Trivalent or cubic graphs form an extensively studied class of graphs. Since they are sparse,
trivalent graphs can be readily drawn and visualized. Many graph theoretical problems
can be reduced to the trivalent case. The purpose of this paper is the study of I-graphs,
a special class of trivalent graphs. I-graphs were introduced in [6] and form a natural
generalization of generalized Petersen graphs [18]. An I-graph is described by three integer
parameters. We determine the necessary and sufficient conditions for testing whether two
I-graphs are isomorphic or not. We also classify I-graphs in terms of girth, bipartiteness,
and automorphism group.

Bipartite cubic graphs with girth at least 6 can be considered as incidence graphs (or Levi
graphs) of combinatorial configurations. Although configurations are mathematical objects
known for more than 150 years, the connection between them and certain classes of graphs
has not been widely investigated. Here we contribute some results concerning configurations
arising from I-graphs.

From the combinatorial point of view, some results follow from the properties of their
Levi graphs, for example about symmetry and about being triangle- or quadrangle-free, etc.

From the geometric point of view, there is an interesting connection to (cyclic) astral
configurations introduced in [14]. These configurations can be realized in the Euclidean plane
with maximal possible cyclic symmetry. In [5] the authors proved among other things that
the Levi graph of the smallest astral triangle-free configuration is the generalized Petersen
graph G(18, 5), which is, in turn, an I-graph.
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Only bipartite I-graphs can serve as Levi graphs of astral configurations, but Levi graphs
of astral configurations are not necessarily I-graphs. This fact gives us a motivation to study
a new class of bipartite cubic graphs, which we call C-graphs. The C-graphs generalize the
class of Levi graphs of all astral configurations and the class of bipartite I-graphs. We define
them by means of covering graphs. Using this definition we are not only able to easily
give answers about combinatorial properties of the specific configuration (e.g. existence of
triangles, quadrangles, etc.) but also to “encode” the information about its astral realization,
if it exists.

1.1 Generalized Petersen graphs and I-graphs

The generalized Petersen graph G(n, k) is a graph with vertex set

V (G(n, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}
and edge set

E(G(n, k)) = {uiui+1, uivi, vivi+k : i = 0, . . . , n− 1}.
Throughout the paper subscripts are to be read modulo n. Note that G(n, k) is isomorphic
to G(n, n − k) and G(n, n/2) is not simple. Therefore, for n ≥ 3, we consider only graphs
G(n, k) where k < n/2. For n ≤ 2 we allow two exceptions, G(1, 1) and G(2, 1), compare
Figures 2 and 3.

Generalized Petersen graphs constitute a standard family of graphs which represents
a generalization of the renowned Petersen graph G(5, 2). This important and well known
family of graphs that was introduced in 1969 by Mark Watkins [18] possesses a number of
interesting properties. For example, G(n, r) is vertex transitive if and only if n = 10, r = 2 or
r2 ≡ ±1 (mod n). It is a Cayley graph if and only if r2 ≡ 1 (mod n). It is arc-transitive only
in the following seven cases: (n, r) = (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5). The
family contains some very important graphs. Among others the n-prism G(n, 1), the Dürer
graph G(6, 2), the Möbius-Kantor graph G(8, 3), the dodecahedron G(10, 2), the Desargues
graph G(10, 3), etc.

The generalized Petersen graphs form a special case of the so-called I-graphs, see [6].
The I-graph I(n, j, k) is a graph with vertex set

V (I(n, j, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}
and edge set

E(I(n, j, k)) = {uiui+j , uivi, vivi+k : i = 0, . . . , n− 1}.
Since I(n, j, k) = I(n, k, j) we will usually assume that j ≤ k. Clearly G(n, k) = I(n, 1, k).
Following the usual representation of these graphs where we draw vertices ui on one circle
and vertices vi on another circle (with smaller radius), we call the vertices on these two
concentric circles the vertices on the outer rim and the vertices on the inner rim. Edges
between the two rims are called spokes. The class of graphs I(n, j, k) contains the class
G(n, k). We call an I-graph that is connected and not isomorphic to a generalized Petersen
graph a proper I-graph. The smallest proper I-graphs are I(12, 2, 3) and I(12, 3, 4) and are
depicted in Figure 1.

If we restrict to vertex transitive graphs, the two classes coincide (compare Theorem 7
and Corollary 8). Nevertheless, I-graphs that are not generalized Petersen graphs bring some
new features that are worth studying. For example, in [10] Frucht, Graver, and Watkins
characterize the automorphism groups of the generalized Petersen graphs. In particular, they
show that the automorphism groups of non-vertex transitive generalized Petersen graphs are
all dihedral. We show that this is not necessarily the case for proper I-graphs.
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(a) (b)

Figure 1: I-graphs I(12, 2, 3) (a) and I(12, 3, 4) (b) are the smallest proper I-graphs, i.e.
connected I-graphs that are not generalized Petersen graphs.

Figure 2: I-graph I(n, j, k) is a Zn cover-
ing graph over the handcuff graph G(1, 1)
with voltages and edge directions shown
above.

Figure 3: Graph G(j, j′, t′, k, k′, t) is volt-
age graph over G(2, 1). A Zn cover-
ing graph over this graph is denoted by
C(n, j, j′, t′, k, k′, t).

1.2 Covering graphs and C-graphs

To simplify the description of large graphs, the concept of voltage graphs and covering graphs
is generally used, see for example [13] or [19]. Using this method of description, I(n, j, k) is
a Zn covering graph over the handcuff graph G(1, 1) shown in Figure 2.

Now, let us define another family which generalizes bipartite I-graphs. Let C(n, j, j′, t′, k,
k′, t) denote a Zn covering graph over the voltage graph G(j, j′, t′, k, k′, t) shown in Figure 3.
Since the voltages on any spanning tree can be set to 0, we may assume that j′ = t′ = k′ = 0.
Therefore we denote the graph C(n, j, 0, 0, k, 0, t) by C(n, j, k, t). We will refer to this graph
by C-graph. As we will see in the next section, bipartite I-graphs form a subset of C-graphs.
Howewer, these two sets are not equal, an example of a C-graph which is not a bipartite
I-graph is C(3, 1, 1, 0).

Regular bipartite graphs with girth at least 6 can be considered as Levi graphs of sym-
metric configurations. In the last two sections we consider combinatorial configurations
which arise from C-graphs.
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2 Properties of I-graphs

Proposition 1. The graph I(n, j, k) is connected if and only if gcd(n, j, k) = 1.
If gcd(n, j, k) = d > 1, then the graph I(n, j, k) consists of d copies of I(n/d, j/d, k/d).

Proof. We use the fact that the covering graph is connected if and only if the local group
of any vertex is equal to the whole voltage group, see [13] or [19]. In the case when the
voltage group is cyclic and voltages on some spanning tree of the base graph are all 0, the
covering graph is connected if and only if the greatest common divisor of non-zero voltages is
relatively prime to the order of the group. In our case this means that I(n, j, k) is connected
if and only if gcd(n, j, k) = 1.

Theorem 2. A connected graph I(n, j, k) is bipartite if and only if n is even and j and k
are odd.

Proof. We know that a graph is bipartite if and only if it does not contain odd cycles. There
are three types of cycles in I(n, j, k), cycles with edges only in the outer rim, cycles with the
edges only in the inner rim, and cycles with edges in both rims. Cycles of the first type have
length n/ gcd(n, j) while cycles of the second type have length n/ gcd(n, k). Throughout the
proof, ia denotes a sequence of a edges on the inner rim, s denotes a spoke, and ob denotes
a sequence of b edges on the outer rim.

Let us assume that G = I(n, j, k) is bipartite. Since all the cycles are even, n/ gcd(n, j)
must be even. Thus, n must be even. Both j and k cannot be even, otherwise I(n, j, k) is
not connected by Proposition 1. Without loss of generality we may assume that j is odd.
We have to prove, that also k is odd. We prove this by contradiction. Suppose that k
is even. Then we can find an odd cycle C in G which has the form C = sik

′
soj′ , where

k′ = lcm(j, k)/k and j′ = lcm(j, k)/j. Since j is odd and k is even, j′ is even and k′ is odd.
Therefore, 2 + k′ + j′, the length of C, is odd. Note that in the case when lcm(j, k)/j is
greater than the length of the cycles in the outer rim, l = n/ gcd(j, n), then j′ should be
taken modulo l. Since we assume that l is even, the parity of j′ remains unchanged. The
same should be done for k′.

Conversely, suppose n is even, j and k are odd. Then all the cycles on the outer rim
and all the cycles on the inner rim are even. Any other cycle can only be of the form C =
ik1soj1sik2soj2s . . . . In order for C to be a cycle, the equality k1 ·k+j1 ·j+k2 ·k+j2 ·j+· · · ≡ 0
(mod n) must hold. The equality can be simplified to k′ · k + j′ · j ≡ 0 (mod n). Since j
and k are both odd and n is even, this equation can be fulfilled only if k′ and j′ are of the
same parity. But then C is an even cycle and I(n, j, k) is bipartite.

Proposition 3. A bipartite I-graph I(n, j, k) is isomorphic to the C-graph C(n
2 , j, k,

j+k
2 ).

Proof. Since I(n, j, k) is bipartite we may assume that n is even and j and k are odd. An
isomorphism between C(n

2 , j, k,
j+k
2 ) and I(n, j, k) is then given by the following rules:

ui �→ u2i, u′i �→ u2i+j , vi �→ v2i+j , v′i �→ v2i+j+k,

for i = 0, 1, . . . , n
2 − 1. Here ui, u

′
i, vi, v

′
i on the left sides of the rules denote the vertices of

C-graph, which we get from the fibers over u, u′, v, v′, respectively; see Figure 3.

Proposition 4. If j �= ±k then I(n, j, k) has a cycle of length 8. If j = ±k then in I(n, j, k)
there exists a cycle of length 4.

Proof. If j �= ±k, the walk u0ujvjvj+kuj+kukvkv0u0 is a cycle since 0, j, j + k and k are all
different. If j = ±k, then the walk u0ujvjv0u0 clearly forms a 4-cycle.
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Theorem 5. Let j, k < n/2. The graph I(n, j, k) has girth

• 3 if and only if n = 3j or n = 3k.

• 4 if and only if it has girth greater than 3 and n = 4j or n = 4k or j = k.

• 5 if and only if it has girth greater than 4 and n = 5j or n = 5k or 2n = 5j or 2n = 5k
or 2k = j or 2j = k or 2k = −j or 2j = −k.
• 6 if and only if it has girth greater than 5 and n = 6j or n = 6k or 2j = 2k or

2j = −2k or 3k = j or 3k = −j or 3j = k or 3j = −k.
• 7 if and only if it has girth greater than 6 and n = 7j or n = 7k or 2n = 7j or 2n = 7k

or 3n = 7j or 3n = 7k or 4k = j or 4k = −j or 4j = k or 4j = −k or 3j = 2k or
3j = −2k or 3k = 2j or 3k = −2j.

• 8 if and only if it has girth greater than 7.

All the numbers are to be read modulo n.

Proof. Note that the last point follows from Proposition 4. We will denote by i, o and s an
arbitrary edge from the inner rim, outer rim and a spoke, respectively. In a graph I(n, j, k)
we have 3 different classes of cycles with length at most 7: ii . . . i, oo . . . o and ii . . . isoo . . . os
which has length at least 4. We will call the latter cycle of type 3. We only give an outline
of the proof, which is basically the consideration of all possible cases. If the cycle of type
oo . . . o has length say l, the following must hold: n = la for some a and gcd(n, j) = a.
Similarly, for the cycle of type ii . . . i to have length l, n = la for some a and gcd(n, k) = a
must hold. We also bear in mind that j, k < n/2. The only cycles of type 3 which have
length 4 are the ones of the form isos, which are possible only if k = j. The cycles of type
3 which have length 5 are iisos and isoos. They are possible if 2k = j or 2k = −j in the
first case and 2j = k or 2j = −k in the second case. The proof for girth 6 and 7 is then
completed by considering conditions for the cycles of type iisoos, isooos, iiisos, iiiisos,
iiisoos, iisooos and isoooos to exist.

With the following theorem we give only a partial answer to the problem of distinguish-
ing between two I-graphs. The complete algorithm for checking whether two I-graphs are
isomorphic is given at the end of this section.

Theorem 6. Let n, j, k, and a be positive integers such that gcd(n, j, k) = 1 and gcd(n, a) =
1. Then the graph I(n, aj, ak) is isomorphic to I(n, j, k).

Proof. Since a and n are relatively prime, the numbers at, t = 0, . . . , n− 1 are all different
modulo n and can be used to label the vertices of I(n, aj, ak); the labels are now to be read
modulo an.

Let uat, vat, t = 0, . . . , n − 1, denote the vertices of the outer rim and the inner rim of
I(n, aj, ak), respectively, and xi, yi, i = 0, . . . , n−1, denote the vertices of the outer rim and
the inner rim of I(n, j, k). We define a mapping ϕ : V (I(n, aj, ak))→ V (I(n, j, k)) with

ϕ(uta) = xt, ϕ(vta) = yt, t = 0, 1, . . . , n− 1

This is clearly a bijection. It is easy to see that ϕ(uta) = ua and ϕ(vta) = yt also for t ≥ n.
We must show that ϕ is also a homomorphism. The edges in I(n, aj, ak) are of the form
utauta+aj , utavta, and vtavta+ak and the edges in I(n, j, k) are of the form xtxt+j , xtyt, and
ytyt+k, t = 0, . . . , n− 1. Since ϕ(uta) = xt, ϕ(uta+aj) = ϕ(u(t+j)a) = xt+j , ϕ(vta) = yt, and
ϕ(vta+ak) = yt+k, the edges from I(n, aj, ak) map to the edges in I(n, j, k). This finishes
the proof.
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Theorem 7. Let n, j, and k be positive integers such that gcd(n, j, k) = 1, gcd(n, j) �= 1
and gcd(n, k) �= 1. Then the graph I(n, j, k) is neither vertex transitive nor edge transitive.

Proof. Since gcd(n, k) �= gcd(n, j), the edges from the inner rim form cycles of different
length than the edges from the outer rim. Therefore there is no automorphism of I(n, j, k)
which interchanges the vertices from the inner and the outer rim setwise. Thus, if I(n, j, k)
is vertex transitive, there exists an automorphism which maps a cycle from the outer rim
to a cycle consisting of the edges of the inner rim, outer rim and spokes. That implies that
I(n, j, k) is also edge-transitive.

The proof that no I-graph satisfying the conditions of the theorem is edge-transitive is
very similar to the proof from [10] that only seven sporadic examples of the generalized
Petersen graphs can be edge transitive. Therefore we will only give the outline of the proof.

We find all possible types of 8-cycles in I(n, j, k) as we did in the proof of Theorem 5 for
smaller cycles, and the conditions which must be fulfilled by n, j, and k such that particular
types of cycles in I(n, j, k) exist. For each type of cycles we count the number of outer
edges, inner edges and spokes lying on such a cycle; given a cycle z in I(n, j, k), we denote
by r(z) the number of outer edges, by s(z) the number of spokes and by t(z) the number of
inner edges in z. Let Z denote the set of all 8-cycles in I(n, j, k). We define R =

∑
z∈Z r(z),

S =
∑

z∈Z s(z), and T =
∑

z∈Z t(z). We then find the numbers R, S, and T for all different
choices of n, j, k depending on the types of 8-cycles that I(n, j, k) contains and prove that
either R �= S or R �= T or S �= T .

Corollary 8. A graph I(n, j, k) is a generalized Petersen graph if and only if gcd(n, j) = 1
or gcd(n, k) = 1. If gcd(n, j) = 1 then I(n, j, k) = G(n, r), where r is the solution of the
equation k ≡ r · j (mod n).

Remark. If gcd(j, n) = 1, the equation k ≡ r · j (mod n) is always solvable and the solution
r can be obtained by the extended Euclidean algorithm. If r ≥ n/2 we can take the graph
G(n, n− r).
Proof. If gcd(j, n) = 1, the vertices on the outer rim form the cycle u0uju2j . . . u(n−1)ju0

of length n. We place the vertices of the inner rim in that same order. To get from u0 to
uk using the edges of the outer rim, we have to take r edges, where r is the solution of the
equation k ≡ r · j (mod n). Vertex v0 is then connected to vk, which is r places away in
the reordered graph. The same holds for the other vertices of the inner rim, since all the
arithmetic is modulo n. A similar proof can be used in the case gcd(n, k) = 1.

Now suppose that gcd(n, j) > 1 and gcd(n, k) > 1. If for some r the graph I(n, j, k) is
isomorphic to the generalized Petersen graph G(n, r), there is an isomorphism of I(n, j, k)
to G(n, r) which maps a cycle of length n, consisting of outer edges, inner edges and spokes,
to the outer edges of G(n, r). That implies that I(n, j, k) is edge-transitive, a contradiction
to Theorem 7.

The following proposition is partly proved in [18].

Proposition 9. Let n, r, and s be positive integers such that s �≡ ±r (mod n). Then G(n, r)
is isomorphic to G(n, s) if and only if r · s ≡ ±1 (mod n).

Remark. If r · s ≡ ±1 (mod n) then gcd(n, r) = gcd(n, s) = 1.

Proof. Let ui, vi, i = 0, . . . , n− 1, denote the vertices of the outer rim and the inner rim of
G(n, r), respectively, and xi, yi, i = 0, . . . , n − 1, denote the vertices of the outer rim and
the inner rim of G(n, s).

6



Let r · s ≡ ±1 (mod n). Then gcd(n, r) = gcd(n, s) = 1. The mapping ϕ : V (G(n, r))→
V (G(n, s)) defined by

ϕ(ui) = ysi, ϕ(vi) = xsi, i = 0, 1, . . . , n− 1

is an isomorphism from G(n, r) to G(n, s) since it is a bijection and the edges uivi, uiui+1

and vivi+r , i = 0, . . . n− 1, from G(n, r) map to the edges xsiysi, ysiysi+s and xsixsi+rs =
xsixsi±1, i = 0, . . . n− 1, from G(n, s).

Conversely, suppose G(n, r) is isomorphic to G(n, s). There are only seven different edge
transitive generalized Petersen graphs G(n, r) with unique parameters if r < n/2, see [10].
All other generalized Petersen graphs are not edge transitive and since s �≡ ±r (mod n), the
only possible isomorphism between G(n, r) and G(n, s) maps the vertices of the outer rim
of G(n, r) to the vertices of the inner rim of G(n, s) and vice versa. This is only possible
if the vertices of the inner rim of both G(n, r) and G(n, s) form a cycle. It follows that
gcd(n, r) = gcd(n, s) = 1 and r · s ≡ ±1 (mod n).

I-graphs with different parameters can be isomorphic as can be seen from Theorem 6 and
Proposition 9. The following theorem, together with Theorem 6 and Proposition 9 provides
a simple means to distinguish between different I-graphs.

Theorem 10. Let n, j, k, j′ and k′ be positive integers such that gcd(j, k) = gcd(j′, k′) = 1,
gcd(n, j) = gcd(n, j′) �= 1 and gcd(n, k) = gcd(n, k′) �= 1. Then the graph I(n, j, k) is
isomorphic to I(n, j′, k′) if and only if k · j′ ≡ ±k′ · j (mod n).

Proof. Let ui, vi, i = 0, . . . , n− 1, denote the vertices of the outer rim and the inner rim of
I(n, j, k), respectively, and let xi, yi, i = 0, . . . , n − 1, denote the vertices of the outer rim
and the inner rim of I(n, j′, k′).

Suppose I(n, j, k) is isomorphic to I(n, j′, k′) and let ϕ be the isomorphism of these
two graphs. Let j1 = gcd(n, j) = gcd(n, j′) and k1 = gcd(n, k) = gcd(n, k′). Then the
edges of the outer rim in both graphs form cycles of length n/j1 and the edges of the inner
rim form cycles of length n/k1. No proper I-graph can be vertex transitive by Theorem
7 and since n/j1 �= n/k1, the vertices of the outer rim in I(n, j, k) map to the vertices
of the outer rim in I(n, j′, k′) and the vertices of the inner rim in I(n, j, k) map to the
vertices of the inner rim in I(n, j′, k′). We may assume that ϕ(u0) = x0 and ϕ(uj) = xj′ ,
otherwise we relabel the vertices of I(n, j′, k′). The cycle C1 = u0, uj, u2j , . . . , u(n/j1−1)·j
maps to the cycle C′

1 = x0, xj′ , x2j′ , . . . , x(n/j1−1)·j′ and to preserve adjacency, the cycle
C2 = v0, vk, v2k, . . . , v(n/k1−1)·k maps to the cycle C′

2 = y0, yk′ , y2k′ , . . . , y(n/k1−1)·k′ (possibly
in the opposite direction). Taking k steps along the cycle C1 we reach ukj , and taking k steps
along the cycle C′

1 we reach xkj′ . Therefore ϕ(ukj) = xkj′ . Taking j steps along the cycle C2

we reach vjk and taking j steps along the cycle C′
2 we reach y±jk′ . Therefore ϕ(vjk) = y±jk′ .

Since ϕ(ujk) is adjacent to ϕ(vjk), they have the same index and k · j′ ≡ ±j · k′ (mod n).
Conversely, suppose k · j′ ≡ k′ · j (mod n). Given an integer a, the equation ij + pk ≡ a

(mod n) is solvable since j and k are relatively prime. The solutions are of the form i = i0+tk
and p = p0 − tj where i0j + p0k = a. We will show that the mapping ϕ : I(n, j, k) →
I(n, j′, k′) with ϕ(uij+pk) = xij′+pk′ and ϕ(vij+pk) = yij′+pk′ is the desired isomorphism
between I(n, j, k) and I(n, j′, k′).

First, let us show that ϕ is well-defined. Suppose a ≡ ij + pk ≡ i1j + p1k (mod n)
where i = i0 + tk, p = p0 − tj, i1 = i0 + t1k, p1 = p0 − t1j and i0j + p0k = a. Then
ϕ(uij+pk) = xij′+pk′ = xi0j′+p0k′+tkj′−tjk′ = xi0j′+p0k′ since k ·j′ ≡ k′ ·j (mod n). Similarly,
ϕ(ui1j+p1k) = xi0j′+p0k′ . The proof that ϕ(vij+pk) = ϕ(vi1j+p1k) is the same.
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Clearly, ϕ is a surjection, because j′ and k′ are relatively prime and the equation ij′ +
pk′ ≡ a (mod n) is then solvable for any a. A surjective mapping between finite sets with
equal number of elements is also a bijection.

We must prove that ϕ is also a homomorphism. The edges of type uava obviously
map to edges. Now let us consider the edges of type uaua+j, where a = ij + pk. Then
ϕ(ua+j) = ϕ(u(i+1)j+pk) = x(i+1)j′+pk′ = xij′+pk′+j′ is adjacent to ϕ(ua) = xij′+pk′ . The
remaining edges are of type vava+k, where a = ij+pk: ϕ(va+k) = ϕ(uij+(p+1)k) = yij′+pk′+k′

is adjacent to ϕ(va) = yij′+pk′ .
If k · j′ ≡ −k′ · j (mod n), the mapping ϕ : I(n, j, k) → I(n, j′, k′) with ϕ(uij+pk) =

xij′−pk′ and ϕ(vij+pk) = yij′−pk′ is an isomorphism.

In the case where n = jk or n = 2jk, j, k being relatively prime, the following corollary
provides us with a simple method for choosing representatives of different isomorphism
classes of I-graphs.

Corollary 11. Let n, j, k be positive integers such that gcd(n, j) = j1 �= 1, gcd(n, k) = k1 �=
1, gcd(j, k) = 1, and n = j1k1 or n = 2j1k1. Then the graph I(n, j, k) is isomorphic to the
graph I(n, j1, k1)

Algorithm. Algorithm for checking whether the graphs I(n, j, k) and I(n, j′, k′) are iso-
morphic.
Input: n, j, k, j′, k′

Output: True if and only if I(n, j, k) ∼= I(n, j′, k′)

1. d← gcd(n, j, k); d′ ← gcd(n, j′, k′) (number of connected components)

2. if d �= d′ then return False

3. n0 ← n/d; j0 ← j/d; k0 ← k/d; j′0 ← j′/d; k′0 ← k′/d (reduction to a single
connected component)

4. a← gcd(j0, k0); a′ ← gcd(j′0, k
′
0)

5. j1 ← j0/a; k1 ← k0/a; j′1 ← j′0/a
′; k′1 ← k′0/a

′ (Theorem 6)

6. P ← (gcd(n0, j1) = 1 or gcd(n0, k1) = 1); P ′ ← (gcd(n0, j
′
1) = 1 or gcd(n0, k

′
1) = 1)

7. if P �⇔ P ′ then return False

8. if P then (Generalized Petersen graphs, use Proposition 9)

8.1 let r be the smallest solution of the equation k1 ≡ r · j1 (mod n); let r′ be the
smallest solution of the equation k′1 ≡ r′ · j1 (mod n)

8.2 if r ≡ ±r′ (mod n) or r · r′ ≡ ±1 (mod n) then return True

9. if k · j′ ≡ k′ · j (mod n) then return True else return False (Theorem 10)
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3 The automorphism groups of I-graphs

In [10], Frucht, Graver, and Watkins characterized the automorphism groups of the gener-
alized Petersen graphs. In this section, we characterize the automorphism groups of proper
I-graphs.

Define mappings ρ, τ with

ρ(ua) = ua+1, ρ(va) = va+1 and τ(ua) = u−a, τ(va) = v−a,

which are clearly automorphisms of I(n, j, k); ρ can be viewed as a rotation and τ as a
reflection of the vertex set. The automorphism group of an I(n, j, k) therefore contains as a
subgroup the dihedral group Dn with 2n elements, generated by ρ and τ .

Throughout this section, the numbers n, j, k, j1, and k1 will be positive integers such
that gcd(n, j) = j1 �= 1, gcd(n, k) = k1 �= 1, gcd(j, k) = 1. According to Theorem 6,
Proposition 1, and Corollary 8, with such parameters all different connected proper I-graphs
I(n, j, k) will be considered. Since j and k are relatively prime, the equation ij + pk ≡ a
(mod n) can be solved for any integer a and we will use the numbers ij + pk to label the
vertices of I(n, j, k). By xij+pk we will denote a vertex of the graph I(n, j, k), which can be
either uij+pk or vij+pk .

The following Proposition shows that apart from the usual rotations and reflections of
the whole vertex set, some I-graphs also admit automorphisms, which rotate the cycles on
the outer rim and reflect the cycles on the inner rim or rotate the cycles on the inner rim
and reflect the cycles on the outer rim.

Proposition 12. Let n = j1k1 or n = 2j1k1. Then the graph I(n, j, k) has automorphisms
ϕ and ψ, defined by

ϕ(xij+pk) = x−ij+pk and ψ(xij+pk) = xij−pk

for i, p ∈ Z.

Proof. The proof that ϕ and ψ are well-defined and bijective is the same as in the proof of
Theorem 10, the only difference is that we use the fact that 2kj ≡ 0 (mod n). Now it is
easy to verify that ϕ and ψ are also homomorphisms.

Theorem 13. If n/(j1k1) > 2, then the automorphism group of the graph I(n, j, k) is
isomorphic to the dihedral group Dn otherwise it is isomorphic to the group Γ, defined by

Γ = 〈ρ, ϕ, ψ | ρn = ϕ2 = ψ2 = 1, ϕψ = ψϕ, ρϕ = ϕρa, ρψ = ψρb〉, (1)

where b ≡ −a (mod n) and a is the inverse in Zn of the element sk−tj such that sk+tj ≡ 1
(mod n).

Proof. By Theorem 7, I(n, j, k) is not vertex transitive and therefore any automorphism of
I(n, j, k) sends cycles containing only vertices of the outer (inner) rim to cycles containing
only vertices of the outer (inner) rim.

If a vertex ua on the cycle C1 = ua, ua+j, . . . , ua+(n/j1−1)j is fixed, the cycle is either
fixed or it is reflected to ua, ua+(n/j1−1)j , ua+(n/j1−2)j , . . . , ua+j . Any automorphism that
fixes ua also fixes va, since I(n, j, k) is not vertex-transitive.

Therefore the image of two cycles, one consisting of outer edges and the other consist-
ing of inner edges, determines any automorphism of I(n, j, k). This can be seen as follows.
Without loss of generality we may assume that the images of cycles u0, uj , . . . , u(n/j1−1)j

and v0, vk, . . . , v(n/k1−1)k are known and that u0 maps to u0. Since the image of the
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eight-cycle u0v0vkukuk+jvk+jvjuj is then uniquely determined, also the image of the cycle
uk, uk+j , . . . , uk+(n/j1−1)j is determined. Now we have two cycles consisting of the outer-
edges, each of them having at least one vertex adjacent to any cycle consisting of inner-edges,
and these two vertices are not n/2 places apart. That means that the images of all inner
cycles are determined, which determines the whole automorphism.

Let C2 = va, va+k, . . . , va+(n/k1−1)k. Then there are exactly n/(j1k1) vertices of C1

adjacent to the vertices of C2.
When n/(j1k1) > 2, C1 and C2 have at least three pairs of adjacent vertices and they

are either both fixed or both reflected by the same automorphism of I(n, j, k). Therefore
the stabilizer of ua has only 2 elements; namely, the identity and the reflection, which fixes
ua and va. Therefore the automorphism group of I(n, j, k) has 2n elements and must be the
group Dn itself.

If n/(j1k1) ≤ 2, then C1 and C2 have at most two pairs of adjacent vertices and one of
them can be fixed while the other one is reflected by the same automorphism of I(n, j, k).
Therefore the stabilizer of the vertex ua has at most 4 elements and the automorphism group
of I(n, j, k) has at most 4n elements.

Let ϕ, ψ be as in Proposition 12 and ρ, τ be defined as in the beginning of this section.
It is easy to verify the relations ρn = ϕ2 = ψ2 = 1 and τ = ϕψ = ψϕ.

Now we will show that ρϕ = ϕρa. Since j and k are relatively prime, there exist s and t
such that sk+ tj ≡ 1 (mod n). If sk+ tj is relatively prime to n and n = j1k1 or n = 2j1k1,
then also sk − tj is relatively prime to n and we can define a such that a(sk − tj) ≡ 1
(mod n). Let xij+pk be a vertex of I(n, j, k). Then

ρ(ϕ(xij+pk)) = x−ij+pk+1

and

ϕ(ρa(xij+pk)) = ϕ(xij+pk+a(sk+tj)) = x−(i+as)j+(p+as)k = x−ij+pk+a(sk−tj) .

The desired equality ρϕ = ϕρa holds, because a(sk − tj) ≡ 1 (mod n). The proof that
ρψ = ψρb, where b ≡ −a (mod n) is similar.

Since Γ contains τ = ϕψ, the dihedral group Dn is contained in Γ as a proper subgroup,
and Γ must have at least 4n elements. Therefore it is the whole automorphism group of
I(n, j, k).

Remark. For the generators of Γ we can also take ρ, τ = ϕψ (reflection), and ϕ; now

Γ = 〈ρ, τ, ϕ | ρn = τ2 = ϕ2 = 1, ρτρ = τ, ϕτϕ = τ, ϕρϕ = ρa〉 .
From this presentation it is evident that Dn, generated by ρ and τ , is a subgroup of Γ and
that Γ is actually a semidirect product of Dn and C2.

4 Configurations

An incidence structure is a triple (P,B, I) where P denotes the set of points, B the set
of blocks, and I ⊆ P × B is the incidence relation. If (p,B) ∈ I we say that the point p
and the block B are incident. A symmetric combinatorial configuration (vr) is an incidence
structure of v points and v blocks, called lines, such that r lines are incident with each point,
r points are incident with each line, and two lines meet in at most one point. In the case of
configurations we use geometric expressions and call blocks lines, say that the point p ∈ P
lies on the line B ∈ B if (p,B) ∈ I, etc.

10



Incidence structures and hence combinatorial configurations are closely related to graphs.
Let G(C) be a bipartite graph with one set of the bipartition representing points of the
incidence structure C, the other set of the bipartition representing lines of C, and with an
edge joining two vertices if and only if the corresponding point and line are incident in C.
The graph G(C) is called incidence graph or Levi graph of the incidence structure C. The
following proposition characterizes symmetric configurations in terms of their Levi graphs.

Proposition 14. An incidence structure is a (vr) configuration if and only if its Levi graph
is r-regular with girth at least 6.

For the proof and more about configurations and graphs see [8, 11, 12]. For enumeration
results about (v3) configurations the reader is referred to [1].

Example 1. The generalized Petersen graph G(10, 3) is bipartite graph with girth 6 (by
Theorem 5). Thus, it is an incidence graph of a (103) configuration. This is the well-known
Desargues configuration.

The use of geometric expressions shows the strong connection between combinatorial and
geometric configurations.

A geometric (vr) configuration is a set of v points and v lines in the Euclidean plane,
such that precisely r of the lines pass through each of the points, and each of the lines passes
through precisely r points. Clearly, each geometric configuration determines a combinatorial
configuration, while the reverse is not always true. For example, it is well known that the
only combinatorial (73) configuration (projective plane of order 2) cannot be realized with
points and lines in the Euclidean plane.

The problem of realization of combinatorial (v3) configurations in the Euclidean plane
has long history and dates back to H. Schroeter [16] in 1888. The most intriguing result is
due to E. Steinitz which (roughly) says that every connected (v3) configuration can be drawn
in the plane with at most one curved line. Later Steinitz conjectured [17] that every (v3)
with v > 10 can be realized as a geometric configuration. This has been contradicted in [9]
by an example with v = 16. The counterexample from [9] can easily be extended to v > 16
and, moreover, to contradict the Steinitz theorem (see also [4]). The counterexamples base
on the fact that we do not allow additional incidences between points and lines. By the
term additional incidence we call a situation where a point and a line are incident in the
realization in the plane, but not in the combinatorial configuration we attempt to realize
geometrically.

Here we will be interested in the realizations which have a certain amount of symmetry. A
geometric (v3) configuration is said to be astral if both points and lines form two orbits under
the group of (isometric) symmetries. This is the largest amount of symmetry any geometric
(v3) configuration can possess. In this paper we limit ourselves only to astral configurations
with cyclic symmetries, although there exist astral configurations with dihedral symmetries.
Figure 5 shows an example of a cyclic astral configuration.

We denote an astral configuration with cyclic symmetry by A(n, j, k, t), 1 ≤ j, k < n
2 ,

0 ≤ t < n, where n is the order of cyclic automorphism and the meaning of parameters j, k, t
is evident from Figure 4; j can be understood as a “span” that a line from the first orbit
makes between the points of the first orbit, k as a span that a line from the second orbit
makes between the points of the second orbit, and t as a “shift” that a line from second
orbit makes on the point of the first orbit.

Theorem 15. The Levi graph of a cyclic astral (v3) configuration is a C-graph. More
precisely, the Levi graph of A(n, j, k, t) is C(n, j, k, t).

11



Figure 4: Construction of an astral con-
figuration.

Figure 5: Astral (143) configuration
A(7, 1, 3, 2).

Proof. Let us denote points ofA(n, j, k, t) by pi (points in the first orbit) and qi (points in the
second orbit), see Figure 4, and lines by Pi and Qi, Pi = {pi, pi+j , qi}, Qi = {qi, qi+k, qi+t}.
The isomorphism between Levi graph of A(n, j, k, t) and C(n, j, k, t) is

pi �→ ui, qi �→ vi, Pi �→ u′i, Qi �→ v′i,

i = 1, 2, . . . , n. The vertices of the C-graph C(n, j, k, t) are denoted as in Figure 3.

Now, we can reverse the question: Which C-graphs are Levi graphs of some astral
configuration? By Proposition 14 such C-graphs must have girth at least 6.

Proposition 16. C-graph C(n, j, k, t) with n > 2, 0 < j, k < n/2, 0 ≤ t < n has girth at
least 6 if and only if the following inequalities hold:

j + k �= t, j �= t, k �= t, t �= 0.

Proof. If we consider C(n, j, k, t) as a Zn covering graph over the graph G(j, 0, 0, k, 0, t)
shown in Figure 3, then we get a 4-cycle in C(n, j, k, t) if and only if one of the four 4-cycles
through u, u′, v, v′ lifts to a 4-cycle. This happens precisely when the voltages on the edges
sum to 0; the four cases are: t = 0 or j + k − t = 0 or j − t = 0 or k − t = 0. The parallel
edges cannot lift to a 2- or 4-cycle, since the voltages on them are 0 and j (or k) and we
assume that 0 < j, k < n/2.

Hence, if integers n, j, k, t satisfy the conditions of Proposition 16, C-graph C(n, j, k, t)
determines a pair of combinatorially dual configurations. In fact, since there always exists
an automorphism of C-graph which interchanges black and white vertices, it determines only
one combinatorially self dual (self polar) configuration.

Proposition 17. Each combinatorial astral configuration is (combinatorially) self polar.

Proof. We need to prove that there exists an automorphism of order 2 of the C-graph
C(n, j, k, t) which interchanges black and white vertices. This automorphism is

ui �→ u′−i, u′i �→ u−i, vi �→ v′−i−t, v′i �→ v−i−t

(according to the notation of vertices shown in Figure 3).
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We will call configurations arising from C-graphs combinatorial astral configurations and
denote them by CA(n, j, k, t). Now, the question is whether a given combinatorial astral
configuration can be realized as a (geometric) astral configuration. The necessary condition
is given in the following Theorem.

Theorem 18. If the combinatorial astral configuration CA(n, j, k, t) can be realized in the
plane as an astral configuration A(n, j, k, t), then there exist real roots of the quadratic
equation

0 = cos kπ
n (cos 2jπ

n − 1)x2+
(
cos kπ

n (1− cos 2jπ
n )− sin (j+k−2t)π

n sin jπ
n

)
x + sin (k−t)π

n sin tπ
n . (2)

Proof. We may assume that the cyclic automorphism acts as a rotation by 2π
n around (0, 0)

and that the coordinates of p0, see Figure 4, are (1, 0). Point q0 must lie on a line through
p0 and pj . Hence its coordinates are

(
1− x+ cos 2jπ

n , x sin 2jπ
n

)

with x being the distance between q0 and p0 relative to the length of the line segment between
p0 and pj . The points q0, qk, and qt must be collinear, which gives the equation (2).

Remark. The quadratic equation (2) has a real solution if and only if its discriminant is not
negative. This is true when

sin (k−t)π
n ≥ −

(
sin (j+k−2t)π

n − 2 cos kπ
n sin jπ

n

)2

8 cos kπ
n sin tπ

n

. (3)

Note that the right side of the above inequality is always non-positive.
It turns out that it is possible that the solutions of (2) give a realization of the corre-

sponding configuration with additional incidences. An example is shown in Figure 6. The
following theorem tells when this happens.

Theorem 19. The combinatorial astral configuration CA(n, j, k, t) with parameters n > 4,
0 < j, k < n/2, 0 ≤ t < n satisfying Equation (2) is realizable in the plane as astral
configuration A(n, j, k, t) (i.e. without additional incidences), if there does not exist an
integer l, 0 ≤ l < n/2 such that

cos jπ
n cos kπ

n = cos lπ
n cos (k+j+l−2t)π

n (4)

holds.

Proof. The two different situations where additional incidences occur are shown in Fig-
ures 7(a) and 7(b). In the first case, see Figure 7(a), we assume that line � contains four
configuration points, where p0, pj and q0 are combinatorially incident with it and qs is not.
Next, let us assume that the radius of the outer orbit equals 1 and the radius of the inner
orbit equals R < 1. If y denotes the distance between � and the origin, then we can express it
either as y = cos jπ

n or as y = R cos (n−s)π
n . This gives R =

(
cos jπ

n

)
/
(
cos (n−s)π

n

)
. Similarly,

if z denotes the distance between �′ and the origin, then z = R cos kπ
n and z = cos θ where

θ is the angle between pt and midpoint of �′. Hence, R = cos θ/ cos kπ
n . Expressing θ from

the equation θ + 2tπ
n = jπ

n + (n−s)π
n + kπ

n and taking l = n− s, (l ≥ 1), we obtain (4) from
the two expressions for R.

The second case, see Figure 7(b), can be handled similarly: R = cos jπ
n (radius of the

second orbit), R cos kπ
n = y = cos θ, θ + 2tπ

n = jπ
n + kπ

n . From this facts (4) follows for
l = 0.

13



(a) (b)

Figure 6: “Astral” configuration A(12, 1, 5, 7) with additional incidences (a). If we extend
the lines of the configuration, it is evident that A(12, 1, 5, 7) is a subconfiguration of some
astral (244) configuration (b).

(a) (b)

Figure 7: Situations where additional incidences occur in A(n, j, k, t) (proof of Theorem 19).
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Remarks.

1. When looking for a suitable value for l > 0 we consider integer solutions of the equation

cos jπ
n cos kπ

n = cos lπ
n cos mπ

n . (5)

This kind of problems were studied, for example, in [7] and [15]. Integer solutions of
this equation also imply (with some additional conditions) the existence of some astral
(v4) configuration, see [3]. See [2] for more on astral (v4) configurations.

2. For l = 0 we consider integer solutions of

cos jπ
n cos kπ

n = cos mπ
n .

According to [7], the only solution that would come into question for a connected
configuration is n = 12, j = k = 3, m = 4. See Example 4 below.

3. If C = A(n, j, k, t) possesses additional incidences and l from Theorem 19 is greater
than 0, then C is a subconfiguration of some astral (v4) configuration. If l = 0, then
this is not the case.

Example 2. The smallest example of a combinatorial astral configuration is, according to
Proposition 16, CA(5, 2, 2, 1). It is also realizable as the astral configuration A(5, 2, 2, 1).
See [3] or [9] for its picture.

Example 3. The configuration A(12, 1, 5, 7), see Figure 6, has additional incidences. This
follows from Theorem 19. The corresponding value for l is 4 (other values are n = 12,
j = 5, k = 1, t = 7). Here, as in all cases where l > 0, the considered configuration is a
subconfiguration of some astral (v4) configuration.

Example 4. The configuration A(12, 3, 3, 1) also contains additional incidences. But in con-
trast to the configuration from the previous example, it is not a subconfiguration of some
astral (v4) configuration; now we have l = 0.

Bipartite I-graphs are also C-graphs. Since we lose one parameter, Proposition 16 and
Theorem 18 can be written in a simplified form for this family of graphs. Combinatorial
configurations arising from I(n, j, k) will be denoted by IA(n, j, k). Let us rewrite the two
theorems for I-graphs.

Proposition 20. Let n ≥ 8 be an even integer, 1 ≤ j ≤ k < n
2 two odd integers, and j �= k,

4j �= n, 4k �= n. Then there exists a combinatorial astral (n3) configuration IA(n, j, k)
which is isomorphic to CA(

n
2 , j, k,

j+k
2

)
.

Proof. The result follows from Theorem 2, Theorem 5 and Proposition 14.

Theorem 21. If the combinatorial configuration IA(n, j, k) is realizable as astral configu-
ration A(

n
2 , (j, k),

j+k
2

)
, then

1 ≤ j, k < n
4 or n

4 < j, k < n
2 .

Proof. The result follows from Theorem 18. The quadratic equation (2) has in this case
real solutions precisely when 1 ≤ j, k < n

4 or n
4 < j, k < n

2 (the condition (3) reduces to
cos 2kπ

n cos 2jπ
n ≥ 0).

Example 5. The smallest IA(n, j, k) configuration satisfying conditions of Theorem 21 (and
those of Theorem 19) is a combinatorial (143) configuration IA(14, 1, 3) which can be realized
as geometric configuration A(7, 1, 3, 2). See Figure 5.
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(a) (b)

Figure 8: “Astral” configuration A(12, 3, 3, 1) with additional incidences (a). This is evident
if we extend the lines (b).
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of points and lines, submitted.

[6] I. Z. Bouwer, W. W. Chernoff, B. Monson, Z. Star, The Foster Census, Charles Babbage
Research Centre, 1988.

[7] J.H. Conway, A.J. Jones, Trigonometric diophantine equations, Acta Arithmetica 30
(1976), 229–240.

[8] H.S.M. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc. 56
(1950), 413–455.

16
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