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Abstract

We survey the problem of constructing the groups of a given finite order. We
provide an extensive bibliography and outline practical algorithmic solutions to
the problem. Motivated by the millennium, we used these methods to construct
the groups of order at most 2000; we report on this calculation and describe the
resulting group library.

1 Introduction

The construction of the groups of a given finite order has a long history; it was initiated
by Cayley in 1854. The central task is to provide a complete and irredundant list of
the groups of a given order: a representative of each isomorphism type is present and
no two groups in the list have the same isomorphism type. The primary difficulty is
the reduction to isomorphism types; it is comparatively easy to give a complete list.

Historically, the approaches to this problem involved a large number of hand-
computations and case distinctions, and focused on very specific properties of the
groups. They were consequently ad-hoc in nature, and many contained significant
errors. We provide an extensive bibliography in Section 2.

More recently, practical algorithms have been developed to construct the groups of
a given order. These include:

e The p-group generation algorithm of Newman (1977) and O’Brien (1990).

e The p-group enumeration methods of Eick & O’Brien (1999).

The coprime split extension algorithm of Besche & Eick (1999a, 2000).
e The Frattini extension method of Besche & Eick (1999a, 2000).
e Algorithms to construct insoluble groups.

While these methods rely on group-theoretic properties, they are inherently general-
purpose. We outline the main features of each algorithm in Section 3.

Motivated by the millennium, we used implementations of these methods to enumer-
ate the 49487 365 422 groups of order 2!, and to determine explicitly the 423 164 062



remaining groups of order at most 2000. We report on this calculation in Section 4
and comment on its reliability.

The resulting catalogue of groups of order at most 2000 (excluding those of order
219) forms part of the electronic SMALL GROUPS library. This library is available
on the WEB and is distributed with the computer algebra systems GAP (The GAP
Team, 2000) and MAGMA (Bosma, Cannon and Playoust, 1997). The connection to
such systems is particularly useful, since they permit effective searching and further
study of the groups. We describe the library in Section 5. An important requirement,
centrally related to accuracy, is the ability to identify a given group in the library. We
consider this problem in Section 6.

While our algorithms (and their publicly-available implementations) can be used
to extend existing determinations, we believe that the new challenge is to construct
“generic” groups — for example, those whose orders factorise in a certain way. The
SMALL GROUPS library includes those groups whose orders have at most 3 prime
divisors; Besche & Eick (2001) present an algorithm to determine the groups of order
p" - q for a fixed prime-power p™ and an arbitrary prime q # p.

The development of group-theoretic database facilities (encompassing significant
amount of stored data and a query language) may assist effective exploration of the
groups; a prototype database for the groups of order dividing 256 was developed by
Butler, Iyer & O’Brien (1993).

2 Historical background

Here we review the history of group construction. We focus on groups which are “small”
in (at least) one of two senses: the magnitude of the group order or the number of its
prime factors. This material incorporates and updates earlier work of O’Brien & Short
(1988).

We discuss the work loosely sorted by increasing order, and provide information
on each order in chronological order. No claims are made about the accuracy of the
referenced work, except where explicitly stated, or on the comprehensiveness of the
references.

The term “enumeration” is used to describe the counting of groups; “determination”
indicates that presentations of the groups are obtained; “classification” indicates that
the groups are organised according to some criteria. The symbols p, ¢, r, and s denote
distinct primes.

Cayley (1854, 1859) determined the cyclic groups and the groups of order 4, 6, and
8. Netto (1882, pp. 133-137) determined the groups of order p* and those of order pq.
Kempe (1886) listed the groups of order 8 and, inaccurately, those of order 12. The
groups of order at most 12 were correctly listed by Cayley (1889).

The groups of order p® were independently determined by Cole & Glover (1893),
Holder (1893), and Young (1893). The groups of order p?q and pqr were listed by Cole
& Glover (1893) and Holder (1893). The work of the former on the groups of order



p?q was corrected by Holder (1895a). Miller (1921a, 1921b) wrongly claimed that
Hoélder’s work was inaccurate; a new determination was carried out by Lin (1974). The
groups of order p* were determined by Hélder (1893) and Young (1893). The groups
of square-free order were determined by Holder (1895b); the groups of order pgrs were
also determined by Baudet (1918). Levavasseur (1896b) determined the groups of order
8p; these were independently enumerated by Miller (1896a) who claimed that there are
errors in the work of Levavasseur.

Levavasseur (1896a) claimed that there were more than 75 groups of order 32. A
list of 51 groups was given by Miller (1896b). When Miller (1936) recalculated the
groups of order 32, he obtained only 47. Sophie (1962) provided an explanation for his
errors and also verified the correctness of his original list.

Miller (1896b) provided generating sets of permutations for the groups of order less
than 48. Burnside (1897, pp. 105-108) determined the groups of order 60.

The groups of order p® were listed by Bagnera (1898). Miller (1899) pointed out
errors for the groups of order 2° which were corrected by Bagnera (1899). A new list
was provided by de Séguier (1904, §154-159); Schreier (1926) published a list for p > 5.
Bender (1927) published a list showing errors in Bagnera’s calculations for the groups
of order 3° but omitted a maximal class group which was included by Blackburn (1958).
James (1968, 1980) provided a correct list of the groups of order 3°.

The groups of order 48 and 2p® were enumerated by Miller (1898) and those of
order p3q were determined by Western (1899). The groups of order p?q® were initially
determined by Le Vavasseur (1899a, 1902) and later by Lin (1974). They were also
enumerated by Laue (1982, pp. 214-243). The results of Lin and Laue are identical,
although Lin’s summary has a counting error.

The groups of order 16p were determined by Le Vavasseur (1899b, 1903); Lunn &
Senior (1934) claimed that there were errors in his work and enumerated the groups of
this order. The groups of order 8p® and 16p? were determined by Nyhlén (1919) (there
are known errors in his work for groups of order 216) and those of order 8p? by Zhang
(1983). The groups of order 168 were enumerated by Miller (1902); those of order 8pq
were determined by Wen (1984). Some groups whose orders are products of 6 primes
were determined by Malmrot (1925).

Glenn (1906) incorrectly determined the groups of order p*qr; the number of such
groups can be found using the work of Laue (1982, pp. 244-262). The groups of
order p®q? were determined by Tripp (1909). Both Nyhlén (1919, p. 37) and Malmrot
(1925, pp. 87-88) claim that Tripp’s list is incomplete for the groups of order 72 and a
list of 50 presentations is provided by Malmrot. In an independent enumeration, Miller
(1929) also found 50 groups. An inaccurate enumeration of the groups of order 96 was
given by Miller (1930b); Lunn & Senior (1934) enumerated the groups of order 32p.
The groups of order 96 are listed in Laue (1982, pp. 278-296); a corrigendum to this
work corrects some errors.

Potron (1904a, 1904b) gave an incomplete list of the groups of order 64. Miller
(1930a) claimed that there is a total of 294 groups. A correct list was calculated by
P. Hall and Senior in the 1930s and published by M. Hall & Senior (1964). McKay



(1969) corrected some of the supplied permutations representations.

The first work on the groups of order p®, for p an odd prime, is also in Potron
(1904a, 1904b). Tordella (1939) described some errors in this work but his work is
incomplete. Easterfield (1940) provided presentations for the groups, for p > 3, and
their classification into isoclinism families. Blackburn (1958) classified the maximal
class groups of order p®. A list of the groups calculated by James (1968) had a number
of errors and was incomplete. Kiipper (1979) corrected some of these errors. A revised
list, incorporating corrections by Keane for groups of order 3% and incorrectly the work
of Kiipper, was published by James (1980). It agreed, in the relevant sections, with
Blackburn (1958), and the subclasses of p-groups published by Leong (1974) and Miech
(1975). However, it contains a number of serious errors, some of which are documented
by Pilyavskaya (1983). A summary of known errors and corrections is given in Newman
& O’Brien (1986). The groups of order 3% were determined by Baldwin (1987).

A comprehensive listing of presentations and certain properties, in particular the
subgroup lattices, of the groups of order at most 100, excluding those of order 64 and
96, was provided by Neubiiser (1967). Recent treatments of metacyclic groups include
Sim (1994), Liedahl (1996) and Hempel (2000).

In the 1930s, P. Hall determined some of the isoclinism families for the groups
of order 128. An inaccurate enumeration of the groups of order 128 was given by
Rodemich (1980). An independent determination of these groups was provided by
James, Newman & O’Brien (1990). Wilkinson (1988) lists groups of order p’ and
exponent p; see Zbl 651.20025 for comments on known errors. The groups of order 256
were determined by O’Brien (1991).

The groups of order 108, 120, 144, 162, 180, and 200 were enumerated by Lunn
& Senior (1934, 1935). The groups of order 180 were determined by Jabber (1941)
and Taunt (1948) provided confirmation of his work. Taunt (1955) discussed the con-
struction of soluble groups of cube-free order. Laue (1982, pp. 214-243) enumerated
soluble groups of certain orders. Betten (1996) presents an algorithm to construct
soluble groups and used it to determine those of order at most 242. Insoluble groups
of order less than 960 were listed by Patris-Moreau (1975). A partial classification of
the perfect groups of order at most 1000000 was provided by Holt & Plesken (1989);
V. Felsch extended this work and his data library is available as part of GAP.

The non-nilpotent groups of order at most 1000 were determined by Besche & Eick
(1999a, 1999b). Their work agrees with that of Laue (1982), Betten (1996) and Lunn
& Senior (1934, 1935). Eick & O’Brien (1999) enumerated the 10 494 213 groups of
order 2°.

3 Construction and enumeration algorithms
We now provide an overview of our algorithms. Naturally, the techniques depend

on inherent group-theoretic structural properties, such as nilpotence and solubility.
A central requirement is that the algorithms are practical. Implementations of the



algorithms are publicly available in either of GAP or MAGMA.

3.1 The p-group generation algorithm

The p-group generation algorithm is used to determine groups of prime-power order.

The lower exponent-p central series of a p-group G is the descending series of sub-
groups defined recursively by P;(G) = G and P,11(G) = [P,(G), G]P,(G)? for i > 1. If
c is the smallest integer such that P..1(G) = 1, then G has exponent-p class c.

The p-group generation algorithm proceeds by induction down the lower exponent-p
central series. A single iteration determines up to isomorphism all immediate descen-
dants of a given p-group G of exponent-p class c: those groups H of exponent-p class
¢+ 1 such that H/P,(H) = G.

Observe that P;(G) = ®(G) the Frattini subgroup of Gj if the elementary abelian
group G/P;(G) has order p?, then G is a d-generator group. Clearly, G can be con-
structed by iterating the inductive step and so all d-generator p-groups can be obtained
as descendants of the elementary abelian group of order p?.

In more detail, the construction of the immediate descendants of a p-group G of
exponent-p class ¢ proceeds as follows. As a first step, we determine the maximal
central, elementary abelian Frattini extension of G. This extension G* is the p-covering
group of G and every immediate descendant of G is a quotient of G*.

By definition, G* has a normal subgroup M where G*/M = G and M is elementary
abelian, central and contained in the Frattini subgroup of G*. The subgroup M is the p-
multiplicator of G. Further, G* has exponent-p class at most c+1 and N := P, 1(G*) <
M is the nucleus of G. If U is a supplement of N in M, then G*/U is an immediate
descendent of G.

Moreover, Aut (G), the automorphism group of G, induces a linear action on M.
Two immediate descendants of G are isomorphic if and only if their corresponding
supplements are contained in the same orbit under Aut (G). Hence, to solve the iso-
morphism problem, we determine orbits of supplements to N in M under the induced
action of Aut (G). As a by-product, we also obtain the automorphism groups of the
immediate descendants, which permits iteration.

A description of the algorithm appears in Newman (1977) and in O’Brien (1990).

3.2 Enumerating p-groups

In the p-group generation algorithm, the isomorphism problem for immediate descen-
dants of a p-group G is solved by constructing orbits. If we want simply to count the
number of immediate descendants, we need only determine the number of such orbits.

We use the Cauchy-Frobenius Lemma (see, for example, Robinson (1996, p. 42))
for this purpose. Let D be the set of supplements to N in M and A = Aut (G) the
acting group. Then

1
# orbits in D under A = W Z Fiz,(D),

acA



where Fiz,(D) is the number of fixed points of a in D. Clearly, we can restrict this
fixed point computation to conjugacy class representatives of elements of A.

To determine the fixed points of elements of A acting on D, a cohomological-based
version of the p-group generation algorithm is introduced in Eick & O’Brien (1999).
They also present a particularly efficient algorithm for the special case where G is
elementary abelian, obtaining in effect a concrete realisation of the Higman (1960)
exponent-p class 2 calculation.

3.3 Coprime split extensions

We introduce a method to determine up to isomorphism all groups of order r - s with
a normal subgroup of order r where ged(|r|,|s|) = 1. It takes as input a list of the
groups of orders r and s. A special case appears in Besche & Eick (1999a, §5); a similar
approach was outlined by Taunt (1955).

Let G be a group of order r-s with a normal subgroup R of order r. Then G = Rx S
where |S| = s. The isomorphism type of G depends on the isomorphism types of R and
S and the action of S on R. If we assume R and S are given, it remains to determine
a list of actions of S on R such that the resulting list of isomorphism types is complete
and irredundant.

Each action of S on R corresponds to a homomorphism ¢ : S — Aut(R). Let
U = im(¢) and K = ker(¢)). Then S/K = U and 1 corresponds to a diagonal
subgroup D in Aut (R) x S such that D N Aut (R) =1 and D covers S.

Aut (R) x S

Aut (R) I S

The orbits of such diagonal subgroups D under the natural componentwise action
of Aut (R) x Aut (S) on Aut (R) x S are in one-to-one correspondence with a set of
actions of S on R such that the resulting list of isomorphism types of groups R x S is
both complete and irredundant.

Eick (1997) presents a practical method to compute subdirect products up to con-
jugacy. Its application here translates into the following algorithm.

(1) Determine up to conjugacy all subgroups U of order dividing s in Aut (R).

(2) For each U in the resulting list, determine up to conjugacy under Aut (S) the
normal subgroups K of S with S/K = U.
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(3) For each K < S with S/K = U, determine the diagonal subgroups in U x S/K
up to conjugacy under Ny (r)(U) X Staby (sy(K).

Step 3 can be realised by a double coset computation in V' \ Aut (U) / W where
V < Aut (U) is induced by action of Nayr)(U) on U and W < Aut (S/K) = Aut (U)
is obtained by the action of Stabau (s)(K) on S/K.

Observe that U and Inn(R) have coprime order and hence U = UInn(R)/Inn(R) <
Out (R). Thus the above steps can be performed in the smaller group Out (R) instead
of the full automorphism group Aut (R).

The algorithm must compute automorphism groups and isomorphisms, usually de-
manding calculations. However, in circumstances where these calculations are possible,
this method is more efficient than the Frattini extension method of Section 3.4, since
it solves the isomorphism problem by computing orbits. In particular, if S is a p-
group, its automorphism group can be computed efficiently using an algorithm of Eick,
Leedham-Green & O’Brien (2001); also if R has order g, ¢* or gr, then Out (R) is small.

3.3.1 A variation for generic groups

Besche & Eick (1999a) use the coprime split extension method to determine those
groups of order p™ - q, for given primes q # p, having a normal Sylow g-subgroup.

Besche & Eick (2001) generalise this approach to obtain these groups for all primes
q # p simultaneously. Following our earlier notation, let r = ¢ and s = p™. Then R
is cyclic of order ¢ and Aut (R) is cyclic of order ¢ — 1. Therefore the coprime split
extension approach can be applied generically, without specifying q.

The groups of order p™ - ¢ without normal Sylow g-subgroup exist for finitely many
primes only and can be determined using the Frattini extension method of Section 3.4.

3.4 The Frattini extension method

The Frattini extension method can be used to determine certain or all soluble groups
of a given order. The algorithm is described in Besche & Eick (1999a); an extension is
presented in Besche & Eick (2001).

Recall that the Frattini subgroup ®(G) is the intersection of all maximal subgroups
of the finite group G. A group H is a Frattini extension of G if there exists N << H
with N < ®(H) such that H/N = G. Thus each group G is a Frattini extension of its
Frattini factor G/®(G).

We construct the groups of order n as follows.

(1) Determine up to isomorphism candidates F' for the Frattini factors of the desired
groups of order n.

(2) For each candidate F":

(a) Compute the Frattini extensions of order n of F'.



(b) Reduce the resulting list of extensions to isomorphism type representatives.

The construction of candidates for the Frattini factors F' relies on the work of
Gaschiitz (1953). Let G be a soluble group of order n and F' = G/®(G) its Frattini
factor. Then |F| | n and each prime divisor of n divides |F|. Further, the socle Soc(F)
is a direct product of elementary abelian groups and has a complement K in F. The
socle complement K acts faithfully on Soc(F) and each Sylow p-subgroup of Soc(F)
is a semisimple I, K-module.

We determine candidates for the Frattini factors F' of the desired groups by consid-
ering all direct products of elementary abelian groups of order dividing n as possible
socles S for F. We then construct up to conjugacy all subgroups K of Aut (S) which
have suitable order and act semisimply on S. Finally, we obtain the desired candidates
FasSxK.

In step (2a), we compute Frattini extensions of a candidate F' using a recursive
approach. Let H be a Frattini extension of F' with |H| | n. Then each Frattini
extension of H is also a Frattini extension of F'. Let p be a prime dividing n/|H|. We
compute the irreducible F,H-modules M up to equivalence and for each module M
we calculate H%(H, M). Since M is irreducible, the non-trivial elements of H?(H, M)
correspond to the equivalence classes of Frattini extensions of H by M.

Thus, we obtain each Frattini extension of F' of order n at least once. However,
the iterated computation of Frattini extensions usually produces redundancy, since
equivalence of extensions is weaker than isomorphism. We use an action of Aut (H)
on H%(H, M) to eliminate some of this redundancy. Then, in step (2b), we reduce the
list of groups to representatives of distinct isomorphism types in two stages: we first
apply an efficient random method to search for isomorphic copies and then verify the
irredundancy of the remaining groups by determining distinguishing invariants. This
isomorphism reduction is described in Besche & Eick (2001).

Various group-theoretic properties are determined by the Frattini factor of a group.
Thus we can use the algorithm to construct groups with certain properties only, by
restricting the choice of the candidates for the Frattini factors. In particular, we can
construct non-nilpotent groups or groups without normal Hall subgroups only.

3.5 Constructing insoluble groups

Let G be a finite group with soluble residuum N: namely, N is the smallest normal
subgroup of G with G/N soluble. Then N is a perfect group. A catalogue of many
perfect groups of order at most one million was determined by Holt & Plesken (1989).

Assume we wish to determine the insoluble groups G of order n with given soluble
residuum N. We distinguish between two cases.

(1) If Z(N) > 1, then we apply the (well-known) cyclic extension method and sub-
sequently reduce to isomorphism type representatives.

(2) If Z(N) = 1, then we use a subdirect product construction to construct the
desired groups.



In case (1), we assume that H is a group with soluble residuum N and |H| | n.
Then G is a cyclic extension of H if H<{G and G/H cyclic. In this case G acts on H by
conjugation and induces a cyclic subgroup of Out (H). To determine cyclic extensions
of H, we compute Out (H) and loop over its conjugacy classes of cyclic subgroups.
For each representative, we construct all cyclic extensions of H having this action and
order dividing n.

By iterating this construction, we obtain all groups of order n with soluble residuum
N. However, this approach does not solve the isomorphism problem. Hence, after each
cyclic extension iteration, we reduce to isomorphism type representatives. Usually, this
is the most difficult part in this computation: we use a similar approach to the random
isomorphism test of Section 3.4 followed, if necessary, by the method of Hulpke (1996).

The cyclic extension method was also employed by Laue (1982) and Betten (1996).
An alternative approach was introduced by Archer (1998).

In case (2), we assume that we know a list of soluble groups S of order n/|N|. For
each S, we construct up to isomorphism the groups G with soluble residuum N and
G/N = §S. Let ¢ : G — Aut (N) be the natural conjugation action of G on N and let
U be the image of 9. Since N is centre-free, N = Inn(N) < U < Aut (N), and we can
view G as a subdirect product in U x S via G — U x S : g — (g%, gN).

The group Aut(N) x Aut(S) acts componentwise on Aut (N) x S. Using the
subdirect product construction of Eick (1997), we can efficiently determine the desired
subgroups G in Aut (N) x S up to conjugacy under the action of Aut (N) x Aut (S) in
a manner similar to that outlined in Section 3.3. This reduces the difficulty in finding

isomorphism type representatives significantly. A similar approach was used by Archer
(1998).

4 The groups of order at most 2000

The groups whose orders have at most 3 prime divisors were determined by Holder
(1893). We constructed the groups for the remaining 640 orders using the methods of
Section 3.

1. The groups of order 2!° and exponent-p class 2 were enumerated using the al-
gorithm of Section 3.2. All other p-groups were constructed using the p-group
generation algorithm.

2. The nilpotent groups were obtained as direct products of p-groups.

3. The non-nilpotent groups G of order p™ - ¢ for primes p # ¢ such that G has
a normal Sylow subgroup were constructed using the coprime split extension
method.

4. The non-nilpotent groups of orders 2 - 32 and 27 - 3 - 5 having a normal 2-
complement were constructed using the coprime split extension method.



5. All remaining soluble, non-nilpotent groups were constructed using the Frattini
extension method.

6. The insoluble groups were obtained using the methods of Section 3.5.

In Appendix A, we record the numbers of groups of order at most 2000; the resulting
library of groups is discussed in Section 5.

In practice, the difficulty experienced in constructing the groups of order n is
determined by the number f(n) of groups of that order. Pyber (1993) shows that
f(n) < n@2T+oMr(?  where u(n) is the largest exponent in the prime-power fac-
torisation of n. While this is an upper bound, we expect that the orders divisible by
prime-powers of large exponent will be the hardest cases for the construction algo-
rithms. We record the most difficult orders and the corresponding number of groups
in Table 1.

Order Number
210 11 49487 365 422
29.3 408 641 062
29 10 494 213
28.5 1116 461
28.3 1 090 235
28.7 1 083 553
27.3.5 241 004
27 . 32 157 877
28 56 092
26.33 47 937

Table 1: The number of groups for selected orders

The enumeration of the groups of order 2!° and exponent-p class 2 took approx-
imately 100 seconds using our MAGMA V2.5 implementation on a Sun UltraSPARC
Enterprise 4000 server. The remaining groups of order 2!° and all groups of order 2°
were determined using p-group generation; here we needed the extension of O’Brien
(1991). We also used our GAP implementation of the cohomology variation of p-group
generation to check some of these calculations.

For the groups of order 2" - p where p is an odd prime, it was necessary to use
the coprime split extension method for the groups with a normal Sylow subgroup and
restrict the Frattini extension method to the remaining groups. As one example, the
determination of the groups of order 2° - 3 with normal Sylow subgroup took approx-
imately 663 hours and the remaining 96 437 groups of this order were constructed in
461 hours; in both cases we used our GAP implementations under Linux.

The coprime split extension method was also essential in determining the groups of
orders 27-32 and 27-3-5. (These orders motivated the generalisation of the cyclic split
extension method of Besche & Eick (1999a) to the coprime split extension method.)
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4.1 Reliability of the data

The data was generated electronically, without intermediate hand computations. Hence
the primary error sources are possible programming errors in our implementations or in
the underlying computer algebra systems. Our implementations are publicly available
and thus can be inspected. We performed systematic cross-checks on the data in order
to limit the possibility of programming errors. Here we record some of these.

The groups of order at most 100 agree with the catalogues of Hall & Senior (1964),
Neubiiser (1967), Laue (1982), Betten (1996), and the enumerations of Lunn & Senior
(1934, 1935).

For a large number of orders having at most 3 prime factors, we constructed (and
cross-checked) the corresponding groups using both the descriptions of Hélder and the
Frattini extension method.

We determined those groups having a normal Hall subgroup for various orders —
including 192, 320, 448, 576, and 960 — in two ways: by the coprime split extension
method and by the Frattini extension method.

The non-nilpotent groups of order at most 1000 were constructed using independent
implementations in GAP 3 and GAP 4 of each of the Frattini extension and the coprime
split extension methods.

The groups of order 256 and 512 were determined using the p-group generation
algorithm and were independently enumerated using the methods of Section 3.2.

The automorphism groups of the groups of order 512 are used both by the coprime
split extension method and in the enumeration of the groups of order 2!°. These
automorphism groups were first obtained from p-group generation and later calculated
independently using either the algorithm of Eick et al. (2001) or a random approach.

As part of the Frattini extension method, we computed invariants of the constructed
groups to verify non-isomorphism. Hence we obtain evidence that these parts of the
library are irredundant.

5 The SMALL GROUPS library

Currently, the SMALL GROUPS library contains the following groups:
e The groups whose orders have at most 3 prime divisors.
e The groups of order at most 2000 except 2'°.
e The groups of order p” - q for primes p # q where p" divides 2%, 35, 5° or 74.

In both GAP and MAGMA, the groups are readily accessible and additional infor-
mation about them can be computed. Insoluble groups are returned as permutation
groups. Soluble groups are described by power-commutator presentations; these are
presentations of the form

(G1,--20n | G =9t - g for 1 <i<nwith0<e; <p;,
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[9;, 9i] :g{fll"'gf:" for 1 <i<j<nwith0<f; <p;).

5.1 Categories of groups and their internal descriptions

Internally, we store the groups in a compressed format. In selecting the format, we
distinguish among four categories of groups.

The generic groups whose orders have at most 3 prime divisors are not stored
explicitly but are instead defined by functions.

The split groups determined using the coprime split extension method are stored
using their construction components: the library number of their factors R and S and
a description of the operation of S on R.

The Frattini extension method and the p-group generation algorithm both return
power-commutator presentations. Each presentation is encoded as a single long integer
which effectively describes the exponents of the right-hand side of each relation; the
encoding procedure is described in Besche & Eick (1999a). We store this integer for
each encoded group. For reasons related to the development of the library, the soluble
groups of order at most 1000 except 768 are encoded.

The insoluble groups are stored using a small generating set for a small-degree
permutation representation.

In practice, additional compression is employed to store the groups of some orders
efficiently. The resulting SMALL GROUPS library is approximately 25 MB in size.

5.2 Organisation of the library

The groups of each order are organised as a sequence. The non-split groups are sorted
by increasing library number of their Frattini factor F'.

Of course, a group G may equal its Frattini factor F. Recall F' is a semidirect
product S x K where S is the Fitting subgroup of F'; further, S is a direct product
of elementary abelian groups. We sort the Frattini factors F' by increasing library
number of first S and then the complement K, and, finally, that of the preimage in G
of a complement of the Fitting subgroup of G/®(G).

Now we sort those groups G of a fixed order having the same Frattini factor. We
use the ordering of Newman & O’Brien (1989) for p-groups. For nilpotent groups we
use, recursively, the library numbers of their Sylow subgroups. Otherwise, we sort
according to the library number of the Fitting subgroup of G.

For split groups R x S, the construction algorithm dictates the sorting employed:
we use the library numbers of R and S and the sequence in which the implementation
of the coprime split extension method outputs the possible actions of S on R.

5.3 The development of the library

A precursor to the SMALL GROUPS library was released by Newman & O’Brien (1989).
It contained encodings for the groups of order dividing 128; later additions included
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the groups of order 256 and those of order dividing 729.

The 1st edition of the SMALL GROUPS library contained the groups of order at most
1000, except 512 and 768, stored as encodings. It incorporated the data of Newman
and O’Brien without changes.

For the 2nd edition of the library, we added the generic groups and the groups of
orders 2" - p for n < 8 and p an odd prime. The generic groups replaced the encoded
groups of corresponding orders. For the groups of order 2" - p we introduced the split
group format, but in this case the original data was incorporated unchanged.

Here, we describe in effect the 3rd edition of the library. While the library may
expand in future, we plan no changes to the published parts. It is designed so that it
can be expanded easily without affecting existing parts.

6 Identifying a group in the library

Given an arbitrary group of order at most 2000, can we identify this group in the
SMALL GROUPS library?

A group whose order has at most 3 prime divisors can be identified following
Holder’s analysis of these groups. Hence, for each generic group in the library, we
have an effective recognition algorithm available.

By considering its order and testing for normal Hall subgroups, we identify whether
a given group is split. If so, we recursively identify its components, R and S, and the
operation of S on R.

We now outline two approaches to identify encoded and insoluble groups in the
library. The first is a general algorithm to solve the isomorphism problem for p-groups.
The second uses invariants of the stored groups.

These methods allow identification of all groups in the library, except those of order
1536.

6.1 Standard presentations for p-groups

O’Brien (1994) presents a practical algorithm to decide isomorphism of two finite p-
groups. He defines a standard presentation for each p-group and provides an algorithm
to construct this presentation. Hence, given two p-groups described by arbitrary presen-
tations, deciding their isomorphism is essentially the same problem as the construction
of their standard presentations.

The encoding of a p-group stored in the library is that of the standard presentation
of the group. Hence to find the identifier of an arbitrary p-group, we construct its
standard presentation, encode this presentation, and locate this encoding in the library.

Implementations of the algorithm are available in GAP and MAGMA.
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6.2 Identification via invariants

We computed a list of distinguishing invariants for all encoded groups in the library,
except those of orders 512 and 1536. This list of invariants is stored in a compressed
format and is 41 MB in size. It provides a very efficient approach to identify an encoded
group in the library: we compute certain invariants for the given group and locate them
in the stored list.

We use a labelled tree to refine our search. The root node is the set of all groups in
the library. Each depth level corresponds to a new invariant; the edges linking children
to a parent are labelled by different values of this invariant. Each child node is the
subset of groups which take this value for the invariant.

Hence, at each level of the tree, we have a partition of all of the groups and by
proceeding downwards, this partition is refined. The leaves usually correspond to
single groups; in a few cases they correspond to small sets of groups. (In the latter case
we use random isomorphism testing to distinguish among the groups in such a set.) Of
course, leaves may be at different levels of the tree.

The invariants at the first two levels of the tree are the group order and the abelian
invariants of its derived series. If the group is soluble, we next use invariants of a special
CGS (Eick, 1997); otherwise we use abelian invariants of its centre. At subsequent
levels we consider invariants based on conjugacy classes of elements. We partition
the conjugacy classes of a group by element order and class length. We use a 3-
tuple to identify each subset of the partition: the number of classes it contains, their
representative order, and their length. Then we use power-maps and other mappings
related to conjugacy classes to split up the given partition of conjugacy classes. Thus
we obtain more refined invariants which we use at subsequent levels.

The algorithm is described in Besche & Eick (1999a, 2001) and an implementation
is available in GAP.
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A The number of groups of order at most 2000

+0 | +1 +2 | +3 +4 | +5 +6 | +7 +8 | +9

0 1 1 1 2 1 2 1 5 2
10 2 1 5 1 2 1 14 1 5 1
20 5 2 2 1 15 2 2 5 4 1
30 4 1 51 1 2 1 14 1 2 2
40 14 1 6 1 4 2 2 1 52 2
50 5 1 5 1 15 2 13 2 2 1
60 13 1 2 4 267 1 4 1 5 1
70 4 1 50 1 2 3 4 1 6 1
80 52 | 15 2 1 15 1 2 1 12 1
90 10 1 4 2 2 1 231 1 5 2
100 16 1 4 1 14 2 2 1 45 1
110 6 2 43 1 6 1 5 4 2 1
120 47 2 2 1 4 5 16 1| 2328 2
130 4 1 10 1 2 5 15 1 4 1
140 11 1 2 1 197 1 2 6 5 1
150 13 1 12 2 4 2 18 1 2 1
160 238 1 55 1 5 2 2 1 57 2
170 4 5 4 1 4 2 42 1 2 1
180 37 1 4 2 12 1 6 1 4 13
190 4 1 | 1543 1 2 2 12 1 10 1
200 52 2 2 2 12 2 2 2 51 1
210 12 1 5 1 2 1 177 1 2 2
220 15 1 6 1 197 6 2 1 15 1
230 4 2 14 1 16 1 4 2 4 1
240 208 1 5| 67 5 2 4 1 12 1
250 15 1 46 2 2 1| 56092 1 6 1
260 15 2 2 1 39 1 4 1 4 1
270 30 1 54 5 2 4 10 1 2 4
280 40 1 4 1 4 2 4 1| 1045 2
290 4 2 5 1 23 1 14 5 2 1
300 49 2 2 1 42 2 10 1 9 2
310 6 1 61 1 2 4 4 1 4 1
320 || 1640 1 4 1 176 2 2 2 15 1
330 12 1 4 5 2 1 228 1 5 1
340 15 1 18 5 12 1 2 1 12 1
350 10 | 14| 195 1 4 2 5 2 2 1
360 162 2 2 3 11 1 6 1 42 2
370 4 1 15 1 4 7 12 1 60 1
380 11 2 2 1| 20169 2 2 4 5 1
390 12 1 44 1 2 1 30 1 2 5
400 221 1 6 1 5| 16 6 1 46 1
410 6 1 4 1 10 1 235 2 4 1
420 41 1 2 2 14 2 4 1 4 2
430 4 1| 775 1 4 1 5 1 6 1
440 51 | 13 4 1 18 1 2 1| 1396 1
450 34 1 5 2 2 1 54 1 2 5
460 11 1 12 1 51 4 2 1 55 1
470 4 2 12 1 6 2 11 2 2 1
480 || 1213 1 2 2 12 1 261 1 14 2
490 10 1 12 1 4 4 42 2 4 1
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+0 1 +2 | 43 +4 5 +6 7 +8 | +9
500 56 1 2 1| 202 2 6 6 4 1
510 8 1 | 10494213 | 15 2 1 15 1 4 1
520 49 1 10 1 4 6 2 1 170 2
530 4 2 9 1 4 1 12 1 2 2
540 119 1 2 2| 246 1 24 1 5 4
550 16 1 39 1 2 2 4 1 16 1
560 180 1 2 1 10 1 2 9 12 1
570 12 1 11 1 4 2 | 8681 1 5 2
580 15 1 6 1 15 4 2 1 66 1
590 4 1 51 1 30 1 5 2 4 1
600 205 1 6 4 4 7 4 1 195 3
610 6 1 36 1 2 2 35 1 6 1
620 15 5 2 1] 260 5 2 2 5 1
630 32 1 12 2 2 1 12 2 4 2
640 || 21541 1 4 1 9 2 4 1 757 1
650 10 5 4 1 6 2 53 5 4 1
660 40 1 2 2 12 1 18 1 4 2
670 4 1 1280 1 2 7 16 1 4 1
680 53 1 4 1 51 1 15 2 42 2
690 8 1 5 4 2 1 44 1 2 1
700 36 1 62 1] 1387 1 2 1 10 1
710 6 4 15 1 12 2 4 1 2 1
720 840 1 5 2 5 2 13 1 40 | 504
730 4 1 18 1 2 6 195 2 10 1
740 15 5 4 1 54 1 2 2 11 1
750 39 1 42 1 4 2 189 1 2 2
760 39 1 6 1 4 2 2 1| 1090235 1
770 12 1 5 1 16 4 15 5 2 1
780 53 1 4 5| 172 1 4 1 5 1
790 4 2 137 1 2 1 4 1 24 1
800 1211 2 2 1 15 1 4 1 14 1
810 113 1 16 2 4 1 205 1 2 11
820 20 1 4 1 12 5 4 1 30 1
830 4 2 1630 2 6 1 9 3 2 1
840 186 2 2 1 4 2 10 2 51 2
850 10 1 10 1 4 5 12 1 12 1
860 11 2 2 1| 4725 1 2 3 9 1
870 8 1 14 4 4 5 18 1 2 1
880 221 1 68 1 15 1 2 1 61 2
890 4 5 4 1 4 1| 19349 2 2 1
900 150 1 4 7 15 2 6 1 4 2
910 8 1 222 1 2 4 5 1 30 1
920 39 2 2 1 34 2 2 4 235 1
930 18 2 5 1 2 2 222 1 4 2
940 11 1 6 1 42 3 4 1 15 1
950 10 1 42 1 10 2 4 1 2 1
960 || 11394 2 4 2 5 1 12 1 42 2
970 4 1 900 1 2 6 51 1 6 2
980 34 5 2 1 46 1 4 2 11 1
990 30 1 196 2 6 1 10 1 2 15
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+0 1 +2 3 +4 | +5 +6 7 +8 9
1000 199 1 4 1 4 2 2 1 954 1
1010 6 2 13 1 23 2 12 2 2 1
1020 37 1 4 2 | 49487365422 4 66 2 5 9
1030 4 1 54 1 4 2 11 1 4 1
1040 231 1 2 1 36 2 2 2 12 1
1050 40 1 4 1 4 2 | 1028 1 5 1
1060 15 1 10 1 35 2 4 1 12 1
1070 4 4 42 1 4 2 5 1 10 1
1080 583 2 2 6 4 2 6 1 1681 6
1090 4 1 7 1 2 2 15 1 16 1
1100 51 2 4 1 170 1 4 5 5 1
1110 12 1 12 2 2 1 46 1 4 2
1120 1092 1 8 1 5| 14 2 2 39 1
1130 4 2 4 1 254 1 42 2 2 1
1140 41 1 2 5 39 1 4 1 11 1
1150 10 1| 157877 1 2 4 16 1 6 1
1160 49 3 4 1 18 1 4 1 53 1
1170 32 1 5 1 2 2| 279 1 4 2
1180 11 1 4 3 235 2 2 1 99 1
1190 8 2 14 1 6 1 11 4 2 1
1200 1040 1 2 1 13 2 16 1 12 5
1210 27 1 12 1 21 69 | 1387 1 16 1
1220 20 2 4 1 164 4 2 2 4 1
1230 12 1 153 2 2 1 15 1 2 2
1240 51 1 30 1 4 1 4 1 1460 1
1250 55 4 5 1 12 2 14 1 4 1
1260 131 1 2 2 42 3 6 1 5 5
1270 4 1 44 1 10 3 11 1 10 1
1280 || 1116461 5 2 1 10 1 2 4 35 1
1290 12 1 11 1 2 1| 3609 1 4 2
1300 50 1 24 1 12 2 2 1 18 1
1310 6 2 244 1 18 1 9 2 2 1
1320 181 1 2 1 4 2 12 1 42 1
1330 8 5 61 1 4 1 12 1 6 1
1340 11 2 4 1 11720 1 2 1 5 1
1350 112 1 52 1 2 2 12 1 4 4
1360 245 1 4 1 9 5 2 1 211 2
1370 4 2 38 1 6| 15| 195 5 6 2
1380 29 1 2 1 14 1 32 1 4 2
1390 4 1 198 1 4 8 5 1 4 1
1400 153 1 2 1 227 2 4 5 | 19324 1
1410 8 1 5 4 4 1 39 1 2 2
1420 15 4 16 1 53 6 4 1 40 1
1430 12 5 12 1 4 2 4 1 2 1
1440 5958 1 4 5 12 2 6 1 14 4
1450 10 1 40 1 2 2| 179 1 1798 1
1460 15 2 4 1 61 1 2 5 4 1
1470 46 1 1387 1 6 2 36 2 2 1
1480 49 1 24 1 11 | 10 2 1 222 1
1490 4 3 5 1 10 1 41 2 4 1
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+0 | +1 +2 3 +4 | +5 +6 7 +8 9
1500 174 1 2 2 195 2 4 1 15 1
1510 6 1 889 1 2 2 4 1 12 2
1520 178 | 13 2 1 15 4 4 1 12 1
1530 20 1 4 5 4 1 | 408641062 1 2 0
1540 36 1 4 1 15 2 2 1 46 1
1550 16 1 54 1 24 2 5 2 4 1
1560 221 1 4 1 11 1 30 1 928 2
1570 4 1 10 2 2] 13 14 1 4 1
1580 11 2 6 1 697 1 4 3 5 1
1590 8 1 12 5 2 2 64 1 4 2
1600 10281 1 10 1 5 1 4 1 54 1
1610 8 2 11 1 4 1 51 6 2 1
1620 477 1 2 2 56 5 6 1 11 5
1630 4 1 1213 1 4 2 5 1 72 1
1640 68 2 2 1 12 1 2 3 42 1
1650 38 1 9 2 2 2 137 1 2 5
1660 11 1 6 1| 21507 5 10 1 15 1
1670 4 1 34 2 60 2 4 5 2 1
1680 1005 2 5 2 5 1 4 1 12 1
1690 10 1 30 1 10 1 235 1 6 1
1700 50 | 309 4 2 39 7 2 1 11 1
1710 36 2 42 2 2 5 40 1 2 2
1720 39 1 12 1 4 3 2 1| 47937 1
1730 4 2 5 1 13 1 35 4 4 1
1740 37 1 4 2 51 1 16 1 9 1
1750 30 2 64 1 2| 14 4 1 4 1
1760 1285 1 2 1 228 1 2 5 53 1
1770 8 2 4 2 2 4 260 1 6 1
1780 15 1 110 1 12 2 4 1 12 1
1790 4 5 | 1083553 1 12 1 5 1 4 1
1800 749 1 4 2 11 3 30 1 54 3
1810 6 1 15 2 2 9 12 1 10 1
1820 35 2 2 1 1264 2 4 6 5 1
1830 18 1 14 2 4 1 117 1 2 2
1840 178 1 6 1 5 4 4 1 162 2
1850 10 1 4 1 16 1 1630 2 2 2
1860 56 1 10 5 15 1 4 1 4 2
1870 12 1 1096 1 2] 21 9 1 6 1
1880 39 5 2 1 18 1 4 2 195 1
1890 120 1 9 2 2 1 54 1 4 4
1900 36 1 4 1 186 2 2 1 36 1
1910 6| 15 12 1 8 1 4 5 4 1
1920 || 241004 1 5 1 15 4 10 1 15 2
1930 4 1 34 1 2 4 167 1 12 1
1940 15 1 2 1| 3973 1 4 1 4 1
1950 40 1 235 1 2 1 15 1 6 1
1960 144 1 18 1 4 2 2 2 203 1
1970 41 15 15 1 12 2 39 1 4 1
1980 120 1 2 2| 1388 1 6 1 13 4
1990 4 1 39 1 2 5 4 1 66 1
2000 963
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