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Abstract. Actual individual preferences are neither complete (=total) nor anti-

symmetric in general, so that at least every quasi-order must be an admissible input

to a satisfactory choice rule. It is argued that the traditional notion of “indifference”

in individual preferences is misleading and should be replaced by equivalence and

undecidedness.

In this context, some types of majorities and minorities of different strength are

studied which lead to classes of social choice rules C : (S; R) 7→ C(S; R) ∈ P(S)\{∅}

working for profiles R of arbitrary reflexive relations. These rules are discussed by

means of many familiar, and some new conditions, including immunity from binary

arguments and stability. Moreover, it is proved that every choice function satisfying

two weak Condorcet-type conditions can be made invariant under substitution of

blocks of alternatives.

1. Introduction

In this paper, we shall reconsider the question of how a group of indi-

viduals should proceed to make their decision if they want to realize

exactly one out of a certain set X of alternatives. We shall do this

under the usual assumptions that (i) all information relevant for the

choice is which individuals prefer which alternatives to which other

alternatives, and that (ii) the result of the procedure should not only

be some alternative(s) that are “best” in X, but rather some “best”

alternative(s) for each non-empty subset S of X. For the sake of sim-

plicity, we will not consider “degrees” of preference here, although there

are some good arguments that, for example, fuzzy relations are a more

precise model of actual individual preferences. Still, the ideas presented

here can probably be translated into a fuzzy preference setting, and the

classes of generalized majority/minority relations we will study below

may perhaps be interpreted as fuzzy social preferences.

If we understand (i) in a way that denies either the existence of “de-

grees” of individual preference, or their measurability, or at least their

relevance, we can assume that the individual preferences are given as
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binary relations onX, and since their significance lies in the comparison

of different alternatives, we may adopt the convention to use reflexive

relations only. We will see, however, that it is neither justified nor (for

most purposes) necessary to assume that individual preference relations

have any special properties other than reflexivity.

As usual, we deal with a finite set N of individuals, and without

loss of generality let N = {1, . . . , n} and n > 1. I will use i, j, . . .

as variables over individuals. The possible alternatives build a set X,

and it is important that X is finite, too, but this is not an actual

restriction since, in all practical situations, there will always be only

finitely many feasible alternatives. We may as well assume that |X| =

m > 2. Alternatives will be denoted by variables x, y, . . ..

The motivation for (ii) is this: Because X is meant to contain also

those alternatives that might turn out to be actually impossible af-

ter the decision is made, and because, on the other hand, there are

situations in which two or more alternatives appear in the individ-

ual preferences in completely equivalent ways, we shall consider social

choice rules C, i.e. algorithms that provide the group with a (multival-

ued) choice function rather than a single alternative. This is a function

C : P(X) \ {∅} → P(X) \ {∅} that assigns to each nonempty S ⊆ X

a (hopefully small) subset C(S) ⊆ S of alternatives that I will call

acceptable here. Then, as soon as the set S of feasible alternatives is

known to the group, they can choose some x ∈ C(S) either randomly,

or by delegating that decision to some individual, or in whatever al-

ternative way. In fact, some authors discuss algorithms that directly

assign a probability distribution to S rather than a subset. But even in

such a model, which is more general than the present one, a discussion

of choice rules remains important, since it is rather natural to define an

induced choice rule by letting C(S) be the set of alternatives receiving

a nonzero probability.

In order to have a fixed interpretation of the input to the algorithm

C, let us assume that, for each pair (x, y) ∈ X × X each individual

i ∈ N has been

asked whether or not she thinks that

alternative x is at least as desirable to her as alternative y.

The input to the algorithm is then the resulting profile (of individual

preferences) on X, i.e. the tuple R = (R1, . . . , Rn) of reflexive binary

relations on X, where xRi y holds if and only if i has answered “yes”

to the above question. To make clear from which profile R the out-
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put choice function is derived, the set C(S) will in some places more

accurately be denoted by C(S; R).

An isomorphism between profiles R on X and R′ on X ′ is here

a bijection ϕ : X → X ′ between the two sets of alternatives for

which there is another bijection ψ : N → N ′ between the two sets

of individuals such that xRi y ⇐⇒ ϕ(x)R′
ψ(i) ϕ(y) for all x, y ∈ X and

i ∈ N . In this case, R and R′ will be called isomorphic. For example,

the identity map idX is an isomorphism between R = (R1, . . . , Rn)

and Rψ := (Rψ(1), . . . , Rψ(n)) for every permutation ψ : N → N of

individuals. Throughout this paper I will adopt a very broad idea of

equality and independence: We will only consider rules that are anony-

mous w.r.t. individuals and neutral w.r.t. alternatives, which can be

summarized in the following condition of isomorphism invariance:

(Iso) C(ϕ[S]; R′) = ϕ[C(S; R)]

whenever ϕ is an isomorphism between R and R′.

We may then think of R and Rψ as being essentially the same profile.

Moreover, our rules will be independent of irrelevant alternatives, i.e.

fulfill

(I) C(S; R) = C(S; R|S),

where R|S = (R1|S , . . . , Rn|S) and Ri|S = Ri ∩ (S × S) are the re-

strictions of R and Ri to S, respectively. The condition expresses the

idea that, for a choice of feasible alternatives, only (preferences about)

feasible alternatives should be relevant This has the nice consequence

that C is already determined as soon as C(X; R) is known for all X

and all profiles R on X.

2. All quasi-orders are admissible individual preferences

To begin with, a given profile R provides us with the following ad-

ditional relations: Pi := Ri \ R
op
i is the asymmetric part of Ri, where

Ropi = {(x, y) : (y, x) ∈ Ri}, and asymmetric means that xPi y excludes

y Pi x. Pi contains the expressed strict preferences of i. The rest of

Ri is its symmetric part Ei := Ri ∩ R
op
i , the expressed equivalences

of i. Although this relation was elsewhere called “indifference” and

was then consequently denoted by the letter I, our terminology is
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better for two reasons: It resembles standard order-theoretical termi-

nology, and, what is especially important in our context of probably

incomplete preferences, Ei must not be confused with the relation

xUi y :⇐⇒ ¬(xRi y ∨ y Ri x) which, according to the interpretation

we started with, encodes the expressed undecidedness of i whether to

prefer x, or y, or whether to value them as equally desirable.

Being undecided does not automatically imply being also uncon-

cerned, because it may simply be the case that a person measures the

alternatives with more than just one criterion and that x is better with

respect to one aspect but y with respect to another. My point is that,

in fact, in the fewest situations each individual uses only one criterion

to evaluate alternatives. Let us therefore consider the situation of an

individual i with a set Ci of different criteria so that each criterion

c ∈ Ci provides him with a different preference relation Ric. There

is no legitimation (and no necessity) to forbid him to consider x at

least as desirable as y if and only if x is at least as good as y with

respect to all his criteria. More precisely: It well makes sense and

should therefore surely be legitimate for i to represent his preferences

by the relation Ri :=
⋂

c∈Ci
Ric. It should also be his right to use as

many and as independent criteria as he likes. But then the resulting

Ri might be any partial order (i.e. reflexive, transitive, antisymmetric,

but not necessarily complete), even if all used criteria lead to linearly

ordered (i.e. complete, transitive, and antisymmetric) preferences Ric.

This follows from a basic order-theoretical fact (see, for example, [1]):

LEMMA 1. Any partial order on a finite set X is an intersection of at

most |X| many linear orders on X, any quasi-order on X an intersec-

tion of at most |X| many weak orders of the form (X×X)\((X\S)×S)

for some S ⊆ X.

In the latter kind of weak orders there are two blocks S, X\S of equally

desirable alternatives such that those from S are preferred to the rest.

They naturally arise from binary criteria, therefore Lemma 1 implies

that even if only binary criteria are used, Ri might still be even any

quasi-order (i.e. reflexive and transitive, but not necessarily complete

or antisymmetric). The immediate and in my eyes indisputable conse-

quence of this is that, contrary to the completeness assumption that

occurs throughout the literature, every quasi-order on X must be an

admissible individual preference relation.
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A quite different argument against the completeness assumption

comes from the fact that i might have different intentions when ex-

pressing xEi y rather than xUi y: On the one hand, saying “x and y are

equally desirable to me” can be interpreted as a vote not to distinguish

between x and y, i.e., a vote for having either both or none of them in

C(S). On the other hand, xUi y may be interpreted as the statement

“I do not want to decide about x and y” in the sense that i wants to

delegate the decision about x and y to those individuals that have more

information about, or more interest in the distinction between x and

y. Such a delegation is an often sensible and, in practice, very common

behaviour, especially when (i) there are many alternatives, or (ii) some

pairs of alternatives differ only in their effect on few individuals, or (iii)

some individuals have restricted information.

Before we turn to the concept of majority and minority, let us finally

remember that it has also been noticed that, in some cases, individual

preferences may contain cycles. But, despite the fact that we have to be

a bit careful with Pareto-type principles then (see below), there seems

to be no problem at all in dealing with cyclic preferences, too, at least

not when the preference information that is taken into account by the

rule C in any case only consists of some cardinalities like the following:

rxy := |{i ∈ N : xRi y}|,

pxy := |{i ∈ N : xPi y}|,

exy := |{i ∈ N : xEi y}| = eyx = rxy − pxy,

uxy := |{i ∈ N : xUi y}| = uyx = n− dxy,

dxy := |{i ∈ N : xRi y ∨ y Ri x}| = dyx = pxy + pyx + exy, and

dS := |{i ∈ N : xPi y for some x, y ∈ S}|.

In some places below, I will identify irreflexive relations with their

reflexive counterparts and use a somewhat sloppy arrow notation; for

example, A = a � c→ b← a, d→ b should be read as

A = {(a, a), (b, b), (c, c), (d, d), (a, c), (c, a), (c, b), (a, b), (d, b)}.

Only in case of quasi-orders, the more convenient Hasse diagrams can,

and will be used; the above example would therefore rather look like
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this:

A =
ac d
� �
b

.

Analogously to the order-theoretic notions of “minimal” and “smallest”

elements, let us call an alternative x A-optimal if, for all y, y Ax implies

xAy, while an A-best element is some x such that xAy for all y. As

there are not always optimal elements of A|S , we will often use its

transitive hull trS(A) =
⋃∞
k=0(A|S)k, that is, the smallest quasi-order

on S containing A|S .

3. Binary arguments supported by majorities

Despite some irritating phenomena that are related to the concept of

“majority”, this notion is surely the most important idea in the theory

of social choice. It is well known that we can’t expect any alternative

to have majority support, but whatever exact definition of majority we

may adopt, an alternative x should only be acceptable to the group if

it is at least in some sense “defendable” against arguments a majority

of the group might give against x. The most important type of such

arguments seems to be what may be called “binary” arguments: A part

of the group might argue that another alternative y is more desirable

to them than x and that therefore x should not be acceptable. Since,

for every alternative there might be a majority that favours a different

alternative, we should think about possibilities to counter and refuse

some of these binary arguments so as to make a choice possible. Assume

that we have in some way decided which kinds of binary arguments to

consider important, and let y Ax denote the fact that the given profile

R contains such an argument for y against x. Now consider the following

possible conditions on C:

(wImA) If x ∈ C(S), y ∈ S \ {x}, and y Ax,

there must be z ∈ S \ {y} with z A y.

(ImA) If x ∈ C(S), y ∈ S, and y Ax, then x trS(A) y

(i.e. there must be z1, . . . , zm ∈ S with xAz1A · · ·AzmAy).

(sImA) Each x ∈ C(S) must be optimal in trS(A)

(i.e. if x ∈ C(S), y ∈ S, and y trS(A)x, then also x trS(A) y).
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The condition (wImA) of weak A-immunity claims that when y is used

in an argument against x, x can only be acceptable if the proposed

“better” alternative y is subject to a similar argument.

Perhaps one should at least require the stronger property of A-

immunity (ImA) which claims that the argument y Ax must even be

answered with a sequence of similar arguments that lead back to x. This

is because the existence of such a sequence effectively demonstrates

that the argument y Ax is destructive in two respects: (i) It cannot

“consistently” be taken into account without the risk of making all

alternatives inacceptable (rather than just x): if the argument y Ax is

successful, then so should be all others in the sequence, which would

result in excluding x, y, z1, . . . , zm at once. (ii) The argument is also

somehow useless for its supporters, because it does not place y in an

essentially better position than x.

The appeal of the even more restrictive strong A-immunity (sImA)

is that it treats the situation more symmetrically: Even if there is only

a sequence of arguments leading from y to x instead of a direct one,

there shall also be such a sequence leading back.

Let us look at some possible concretizations of the notion of majority,

that is, some possible definitions of A as a function of R. The following

binary relations on X encode (proper) majorities of different types and

strengths α in terms of the individual preferences: For all S ⊆ X,

x, y ∈ S, and 1
2 < α 6 1, let

xMα y :⇐⇒ pxy > αn, (=⇒ pxy > 0)

xNα y :⇐⇒ rxy > αn, (=⇒ rxy > 0)

xMS
α y :⇐⇒ pxy > αdS > 0,

xNS
α y :⇐⇒ rxy > αdS > 0,

xBα y :⇐⇒ pxy > αdxy > 0,

xDα y :⇐⇒ rxy > αdxy > 0,

x Pα y :⇐⇒ pxy > α(pxy + pyx) > 0,

xRα y :⇐⇒ pxy > 0, rxy > α(rxy + ryx),

xUα y :⇐⇒ pxy > pyx, pxy + uxy > αn

(⇐⇒ rxy > ryx, ryx 6 (1− α)n), and

xEα y :⇐⇒ pxy > pyx, pxy + exy > αdxy
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(⇐⇒ rxy > ryx, rxy > αdxy).

(For α = 1, Pα, Rα, Uα and Eα should, of course, not be confused with

the preferences of individual 1.)

Most of these definitions have in common that the individuals con-

stituting the majority share some opinion about x and y and build a

fraction of at least α of all in some way relevant individuals. Moreover,

there must at least be one individual within a majority. That unifying

opinion can be either strictly preferring x to y (which corresponds

to using the number pxy in Mα, Bα, and Pα, for example), or just

considering x at least as desirable as y (which corresponds to using

rxy in Nα, Dα, and Rα). The relevant individuals are either all (where

n is used), or those that are not undecided about x and y (which

corresponds to using dxy), or only those that express a strict preference

about x and y (as in Pα). Although rxy + ryx does not, in general,

enumerate some subset of individuals, Rα has the appeal that, similarly

to Pα, it considers those majority arguments “equally strong” in which

the proportion rxy/ryx is constant. This is because xRα y is mainly

equivalent to rxy/ryx > α
1−α (the condition pxy 6= 0 is added only to

ensure antisymmetry and the inclusions that are stated below). In some

of the definitions, dS occurs instead of n, which models kinds of “semi-

relative” majorities. This could provide a compromise between using

absolute majorities and the possible requirement that C(S) should be

at least independent of individuals that are completely undecided about

all feasible alternatives. On the other hand, it might be problematic if

whether or not individual i is counted would depend on perhaps just

one alternative’s being feasible or not.

The last two definitions deserve a more detailed explanation: They

express the idea that in the first place only individuals with strict

preferences for x over y will raise the corresponding argument against y,

but that then additional individuals may join them to build a majority.

For example, if only slightly more people strictly prefer x to y than y to

x, the former might persuade all who equally desire x and y to support

their argument, so that in the end a very strong majority evolves (rela-

tive to all decided individuals); this is assumed in the definition of Eα.

One could also assume that, on the contrary, the undecided individuals

are persuaded to constitute an (absolute) majority, which leads to Uα.

Since α > 1
2 , it can easily be seen that, despite Nα, NS

α , and Dα,

all of the above relations are antisymmetric. Moreover, we have some,
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perhaps unexpected, inclusions that are shown in the lower part of the

diagram on page 12: (i) When α grows, the relations obviously shrink

(which is represented by the dotted lines).

(ii) Mα ⊆M
S
α ⊆ Bα ⊆ Rα ⊆ Pα ⊆ Eα ⊆ Dα,

because n > dS > dxy, rxy = pxy + exy, and

αdxy + exy > α(rxy + ryx) > α(pxy + pyx) + exy > αdxy.

Similarly, Mα ⊆ Nα ⊆ NS
α ⊆ Dα, MS

α ⊆ NS
α , and Bα ⊆ Uα. (iii) For

α 6 n
2n−1 , xRα y is equivalent to pxy 6= 0 and rxy/ryx > n

n−1 , the latter

being equivalent to rxy > ryx. Then xRα y is already implied by xEα y,

so that Rα = Pα = Uα. (iv) xUα y implies ¬ y N1−α+1/n x.

Summarizing this section, we have the following classes of majority

relations: Mα and Nα encode absolute majorities, MS
α and NS

α semi-

relative majorities, Bα and Dα relative ones, Pα and Rα proportional

ones, and Eα and Uα encode persuaded majorities. Moreover, M , M S ,

B, P , E and U will be called the strict types, and the rest non-strict.

4. Rules based on immunity from classes of binary

arguments

For a fixed profile R, each of the sets {trS(Aα) : 1
2 < α 6 1}, where A

is one of the ten types M , N , MS , . . . , is a chain of quasi-orders. Now

it is important that X is finite: Then the chain is also finite, and the

following Lemma applies:

LEMMA 2. Every chain Q1 ⊆ · · · ⊆ Qm of finite quasi-orders has a

common optimal element, i.e. some x that is Qk-optimal for all k 6 m.

Proof. Since Qm is finite, the set Sm of its optimal elements is not

empty. Let Sm−1 ⊆ Sm be the (also non-empty) set of optimal elements

of Qm−1|Sm
. Then each x ∈ Sm−1 is also Qm−1-optimal, because

y Qm−1 x =⇒ y Qm x =⇒ y ∈ Sm =⇒ xQm−1 y.

Thus, denoting the set of optimal elements of Qk|Sk+1
by Sk, we induc-

tively get S1, the still not empty set of all common optimal elements.

�

choice.tex; 23/01/2001; 12:58; p.9



10

Note that, consequently, the set of common optimal elements can be

found in polynomial time. The above observation enables us to fulfill

(sImA) not only for one specific majority relation, say M1/2+ε, but at

once for a whole class of majority relations of the same type but of

different strength: We may simply define C(S) as the set of common

optimal elements of, for example, the chain {trS(Mα) : 1
2 < α 6 1}.

Then any x ∈ C(S) can be defended against a sequence of arguments

yMα z1Mα · · ·MαzmMα x with a sequence of equally strong M -type

arguments. Exchanging M by any of the other types of majority re-

lations and varying the lower and upper bounds for α, we get a large

number of majority-based rules with very good immunity properties.

Let us introduce the following notation: For 1
2 6 β < γ 6 1, the rule

based on the chain {trS(Aα) : β < α 6 γ}, where A is one of M , N ,

MS, . . . , will be denoted by A(β,γ]. For example, we just introduced

the ruleM(.5,1].

It seems quite natural to me to take minorities in the same way into

account as majorities: Suppose we apply the definitions of Mα, . . . , Uα
even for 0 < α 6 1

2 , except that we drop all of the “ > 0”-requirements

here. Then Dα, Pα, and Rα become complete relations for α 6 1
2 (but

only Uα andEα remain antisymmetric in general), and in the inclusions,

Rα and Pα change places: Still Mα ⊆ Nα ⊆ N
S
α ⊆ Dα, but now

Mα ⊆M
S
α ⊆ Bα ⊆ Pα ⊆ Rα ⊆ Dα

and Uα ⊆ Eα = Rn/(2n−1). Moreover, R1/2 = P1/2, and no longer

Bα ⊆ Uα.

Now, requiring (ImAα
) as well for 0 < α 6 1

2 would ensure that also

a minority argument y Aα x will be successful if only if it can be taken

into account “consistently”. In such a case it is not only harmless to

give the minority this “direct” power to exclude y, but it may even be

indicated in certain situations: (i) When an absolute or semi-relative

majority type is used and many individuals are undecided (because of

too few information, for example), or (ii) when a strict type other than

P is used and many individuals equally desire x and y (because they

are not affected by their distinction, for example), minority arguments

should be taken into account.

Moreover, if we even require (sImAα
) for 0 < α 6 1

2 , a minority

argument y Aα x which is refused as a single argument, may still have
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“indirect” power: Other such arguments can help constituting a se-

quence of arguments leading to the exclusion of x, if at least one of

them is non-refusable. While indirect influence works with all of the

types, direct influence of a minority is only possible if A is none of the

complete types D, P , or R: If, for example, y Dα x for some α 6 1
2 but

for no α′ > 1
2 , then ryx 6 1

2dyx, thus rxy > 1
2dxy > αdxy, hence also

xDα y. However, in the crucial situations (i) and (ii) described above,

a subgroup of individuals that would be a minority of one of the other

types might well constitute a majority of type D, P , or R.

The rules A(β,γ] with 0 6 β 6 γ 6 1
2 will be called minority-based

rules, those with 0 6 β 6 1
2 < γ 6 1. mixed rules.

As for the question which of the possible types of majority/minority

to use, it may turn out that this cannot be completely decided in the

usual axiomatic way. Thus, in addition to the short axiomatic discussion

in the next section, the rules should also be compared from a more

practical perspective. Surely, some types like M , N , B, P , and D look

more “simple” or “natural” than others, and E and U are based on

questionable behavioural imputations. There is a good reason to prefer

some of the “larger” types: Whatever type A we use, an x ∈ C(S) may

become subject to an argument supported by a majority of a different

type, say y A′
α x. It may then still possible to refuse y Aα x on the basis

of a sequence of Aα-arguments leading back to y, if only A′
α ⊆ Aα,

i.e., the rule using A is in some sense also immune from arguments

corresponding to types smaller than A.

Following an argument from Section 2, another criterion is that

xEi y and xUi y should not always have the same effect, which is a

point against using M and P .

In all, the non-persuaded, relative types D (being the largest such)

and B (being the largest that allows “direct” influence of minorities)

seem to give the best compromises so far. As for the range of α, its

lower bound β should be taken as small as possible in order to keep the

resulting set C(S) as small as possible. On the other hand, taking the

upper bound γ not to large could be a sort of protection of minorities,

since then it would be possible to counter arguments of strength > γ

by a sequence of arguments of strength γ. However, even in such a

case one would probably add trs(A1) to the chain, the corresponding

rules will be denoted by A(β,γ],1 Depending on how much power and
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Figure 1. Majority and minority relations

protection we want to give minorities, one could for example use the

rules D(.5,1], D(0,1], B(0,1], B(0,2/3],1, or even B(0,.5],1.
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5. Some conditions discussed

Pareto-principles. The idea that y is unacceptable if all individuals

(strictly) prefer x to it can only work when there is a minimal amount

of rationality in at least one individual’s preferences. Thus, in a setting

where cyclic individual preferences are explicitly admitted, adequate

formulations of this idea must take possible cycles into account:

(wP) y /∈ C(S) whenever xM1 y for some x ∈ S, but not

y trS(M1)x.

(sP) y /∈ C(S) whenever xN1 y for some x ∈ S, but not y trS(N1)x.

(sP’) y /∈ C(S) whenever xB1 y for some x ∈ S, but not y trS(B1)x.

(NNP) x ∈ C(S) whenever x ∈ S and xN1 y for some y ∈ C(S).

The weak and strong Pareto-principles (wP) and (sP) are just the con-

ditions (ImM1
) and (ImN1

), while the alternative (sP’) is just (ImB1
).

Since M is the smallest majority type, adding the relation trS(M1) to

a chain {trS(Aα)} gives again a chain. This results in a class of (wP)-

modified rules I will denote by A(β,γ]M1. The case of (sP) is different:

trS(N1) cannot always be added, but:

LEMMA 3. Suppose y is trS(Aα)-optimal, and xN1 y for some x ∈ S.

Then x is also trS(Aα)-optimal in each of the following cases:

(i) A ∈ {N,NS , D}.

(ii) A ∈ {M,MS , P}, and RiPiRi ⊆ Pi for all i ∈ N .

(iii) A ∈ {B,R,E}, and all Ri are transitive.

Proof. Immediate since (i) N1 ⊆ Nα∩N
S
α ∩Dα, (ii) xN1 y and RiPiRi ⊆

Pi for all i ∈ N imply pxz > pyz and pzy > pzx for all z ∈ X, and (iii)

xN1 y and RiRi ⊆ Ri for all i ∈ N imply rxz > ryz and rzy > rzx. �

Therefore, among the common trS(Aα)-optimal elements there is at

least one N1-optimal element as long as (i), (ii), or (iii) holds. Particu-

larly, we get the (sP)-modified rules N (β,γ],1, N
S
(β,γ]N 1, and D(β,γ]N 1

by adding trS(N1) to the defining chain. For other types A, the analo-

gously defined algorithms A(β,γ]N 1 only produce a nonempty set C(S)

if all individual preferences show at least some minimal amount of
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“rationality” in form of some transitivity property. On the other hand,

in my opinion, (sP) is not always reasonable anyway: It misinterprets

equivalence as undecidedness and ignores that xEi y often expresses

i’s intention that either both or none of x and y be accepted. This is

of particular importance if the alternatives at hand affect individuals

that do not belong to the deciding group, as for example when an

award must be given to a single candidate: Suppose that, except one,

all members i of a not too small jury have xEi y. Then it seems wise to

rather select one of the candidates x, y randomly than excluding one

of them only on the basis of a single juror’s preferences.

Analogously, the second strong form (sP’) of the Pareto-principle

can be fulfilled by using an (sP’)-modified rule A(β,γ]B1 with

A ∈ {B,U,R, P,E,D}. Again by the previous lemma, A(β,γ] ful-

fills the last condition (NNP), non-negative Pareto, for all pro-

files if A ∈ {N,NS , D}, but only for “rational” profiles if A ∈

{M,MS , P,B,R,E}. Finally, for profiles of quasi-ordered preferences,

one may satisfy all four conditions using an algorithm A(β,γ]B1M1N 1

with A ∈ {B,R, P,E,D}.

Responsiveness.

(sNNR) If x ∈ C(S; R) 63 z, y ∈ X, i ∈ N , R′
i \ {x, y}

2 = Ri \ {x, y}
2,

and either xEi y and xP ′
i y, or y Pi x and y E′

i x,

then x ∈ C(S;R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rn) 63 z.

(PR) If x, y ∈ C(S; R), i ∈ N , R′
i \ {x, y}

2 = Ri \ {x, y}
2,

and either xEi y and xP ′
i y, or y Pi x and y E′

i x,

then y /∈ C(S;R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rn).

Assume x ∈ C(S; R), and now only one individual i replaces either (i)

a strict preference y Pi x by an equivalence y E ′
i x, or (ii) an equivalence

xEi y by a strict preference xP ′
i y, while all other individual preferences

remain the same, giving a profile (R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rn). Then

the change should neither make x unacceptable, nor make any former

unacceptable alternative z acceptable. This strong version (sNNR) of

the well known condition of non-negative responsiveness is easily seen

to hold for all of our majority/minority-based rules so far:

Proof. The relevant cardinalities change only for x and y, and at

most by one: either (i) rxy and exy increase and pyx decreases, or (ii)

pxy increases, and exy and ryx decrease. Also, dS remains unchanged.

Consequently, each of our majority/minority relations Aα is changed
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to some A′
α that differs only in that possibly the arrow x → y is

added and/or the arrow y → x is removed. Therefore x remains

trS(Aα)-optimal. Now let Aα be one of those relations for which z

is not trS(Aα)-optimal, say w trS(Aα) z but not z trS(Aα)w, and as-

sume that z becomes trS(A′
α)-optimal. (i) If still w trS(A′

α) z, the now

also existing path z A′
α · · ·A

′
α w must contain the only possible new

arrow x → y, i.e. z A′
α · · ·A

′
α xA

′
α y A

′
α · · ·A

′
α w. But then z trS(Aα)x,

hence w trS(Aα)x, and thus x trS(Aα)w, since x is trS(Aα)-optimal.

This gives the contradiction z trS(Aα)w. (ii) If, on the other hand, no

longer w trS(A′
α) z, the corresponding Aα-path must have contained the

now removed arrow y → x, i.e. wAα · · ·Aα y Aα xAα · · ·Aα z, thus also

x trS(A′
α) z. But then z trS(A′

α)x, since z is trS(A′
α)-optimal, hence

also z trS(Aα)x. Together with x trS(Aα)w (by optimality of x), we

get again the contradiction z trS(Aα)w. �

The related condition of positive responsiveness (PR) expresses the

idea that, if a “non-deterministic” choice C(S) with |C(S)| > 2 is

interpreted as a kind of “social undecidedness”, it should be possible

to turn it into a “deterministic” choice with |C(S)| = 1 by only slight

changes in the individual preferences. However, the same objection that

was given against (sP) is also a point against (PR), and none of our

rules satisfies it, since for the three profiles
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each of the majority relations has always the same set of optimals.

Condorcet-type conditions. It seems reasonable that if an alterna-

tive is strictly preferred to each other alternative by a (possibly varying)

majority, it should be the one and only choice. Also, if x is acceptable

compared to every single alternative y ∈ S, one might want it to be

acceptable in all of S, too (cf. [3]):

(C) C(S) = {x} whenever C({x, y}) = {x} for all y ∈ S.

(GC) x ∈ C(S) whenever x ∈ C({x, y}) for all y ∈ S.
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Until now, these are only fulfilled by some of our majority/minority-

based rules. When only antisymmetric or only complete relations are

used, (C) holds: Suppose we use the common optimal elements of a

chain trS(F1) ⊆ · · · ⊆ trS(Fm) of quasi-orders, and (i) either all of

the relations Fk are antisymmetric or (ii) all of them are complete.

Then ∀ y 6= x ∃ k : xFk y |Fk x implies ∀ y 6= x : xFm y |F1 x, so that no

y 6= x is trS(Fm)-optimal in case of (i) resp. trS(F1)-optimal in case of

(ii). The variant (GC) is even fulfilled when both antisymmetric and

complete (but no other) types are used: Suppose x is Fk|{x,y}-optimal

for all y ∈ S. Then y Fk x for no y ∈ S \ {x} if Fk is antisymmetric,

and xFk y for all y ∈ S if it is complete instead. In both cases x is

trS(Fk)-optimal.

However, we can still also use rules based on types that are neither

antisymmetric nor complete, since any rule C can be modified so as

to fulfill (C) and/or (GC): Let C (C)(S) be (the uniquely determined)

singleton {x} if C({x, y}) := {x} for all y ∈ S, and C (C)(S) := C(S)

otherwise. This cuts C down to its (C)-modification C (C). Moreover,

C(GC)(S) := C(S) ∪ {x ∈ S : x ∈ C({x, y}) for all y ∈ S}

yields a (GC)-modified rule C(GC) which gives larger sets than C in

general.

LEMMA 4. If C satisfies (wImA), (ImA), (P), (sP), or (sP’), then so

do C(C) and C(GC), respectively.

Proof. As for (C): Under the assumption, y Ax ∈ C({x, y}) implies

xAy. As for (GC): Analogously, y Ax ∈ C (C)(S) \ C(S) implies x ∈

C({x, y}), hence again xAy. �

Unfortunately, (sImA) is preserved by neither modification: (GC):

For the profile










c a

| |

ac , b , b , c

| | | |

b ac a b











,
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we get M.5 = MS
.5 = B.5 = c→ b↔ a, so taking all trS(M.5)-optimals

leads to a ∈ C({a, b}) ∩ C({a, c}), but a is not optimal. (C): For











a a c

| | |

c , c , b , b , b , ac , ac

| | | | | | |

b b a ac ac b b











,

we get {Mα : 1
7 = β < α 6 γ = 4

7} = {c ↔ b ↔ a → c, c → b ↔

a, c → b ← a}, so M(β,γ] leads to C({a, b}) = C({a, c}) = {a}, hence

C(C)(S) = {a}, but a is not trS(M3/7)-optimal.

Stability. It would be somewhat strange if the same rule, applied to its

first result, would “cut down” the choice set further instead of leaving

it unchanged. One would rather expect the following stability:

(St) The choice function S 7→ C(S; R) is idempotent,

i.e. C(C(S; R); R) = C(S; R).

Although, in the first place, of our rules only those based on complete

relations satisfy (St), any rule C has its obvious (St)-modification C (St),

which is defined by C (St)(S) :=
⋂∞
m=1 C

m(S) and obviously fulfills (I),

(Iso), (wImA), (ImA), (sImA), (wP), (sP), (sP’), (NNP), (C), and (GC),

if only C does.

Other conditions.

(CA) x ∈ C(S), if x ∈ C(S ′), x ∈ S ⊆ S′, and C(S) ∩C(S ′) 6= ∅.

(β) If x, y ∈ C(S), and S ⊆ S ′, then x ∈ C(S ′)⇐⇒ y ∈ C(S ′).

(SUA) C(S) = C(S ′) whenever S ⊆ S ′ and C(S′) ⊆ C(S).

In [2], Sen gives the following intuition for a slightly stronger version of

Chernoff’s condition (CA): “if x is a best alternative in a given set and

belongs to a certain subset of it, then xmust also be best in that subset,

e.g. a world champion must also be champion in his country”. Although,

with a suitable interpretation of “best”, this intuition is absolutely

correct in my opinion, it is not, however, accurately expressed by (CA)

or Sen’s stronger condition (α), since we cannot, in general, expect the

elements of C(S) to be “best” in a sense as strong as indicated by
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the word “champion”. Consider the well-known minimal example for a

cyclic majority relation,







a b c
| | |
b , c , a
| | |
c a b






,

where X := {a, b, c}. Here, C(X) should be X indisputably, and, at

least to me, it is almost equally obvious that C({a, b}) should be {a}.

But (CA) would require C({a, b}) = {a, b}, which is absolute nonsense.

However, when x ∈ S ∈ S ′ is a best alternative in S ′ in the sense

that x ∈ C({x, y}) for all y ∈ S ′, it should indeed be in C(S) (and as

well in C(S ′), of course), but this requirement is already expressed in

condition (GC).

As a support for (β), Sen gives the intuition that, “if two alternatives

are both best in a certain subset, then one can be best for the whole

set if and only if so is the other”, which would be correct when “best”

could is interpreted as “at least as good as any other”. But, as we have

already seen, the reason for C(S) containing more than one alternative

may be that some alternatives are just not comparable: Assume that

X = {a, b, c, d} and all individuals have the same preferences

a c

| |

b d

.

Then (Iso), (I), and (P) require C(X) = {a, c} and C({a, d}) = {a, d},

which is a perfect solution, but not in accordance with (β).

A similar example shows that (SUA) is not absolutely reasonable

in presence of undecidedness: Suppose both of two individuals have

xUi y, which results in C({x, y}) = {x, y} when (Iso) and (I) hold,

and now a third alternative z becomes feasible. If both are undecided

about z except that one prefers x to z and the other prefers z to y,

x should become the only acceptable alternative, in contradiction to

(SUA). Suzumura [3] shows that (CA) and (SUA) are implied by many

other conditions which I consequently won’t discuss here.
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6. Invariance under substitution of blocks of alternatives

When the number of alternatives is large, an important technique in

actual decision processes is that the alternatives may be grouped to-

gether to form a smaller number of clusters, since then one can first

choose between these clusters and then inside the chosen cluster(s). For

example, if the alternatives are some thousand video taped movies in

a store, it is practically impossible, even for a single person, to write

down a preference relation by comparing each pair of movies separately.

Instead, the alternatives are usually compared in classes, i.e. the group

may classify them according to their genre, then choose some genre,

and finally choose a single movie belonging to that genre. There is

no problem in doing so, at least as long as all individuals consider a

classification by genre also significant for their own preferences. But, in

the above example, some individuals might prefer a clustering by age,

length, or actors, so that they probably would not accept the suggested

procedure to first choose a genre.

I will not discuss the difficult question of how, in general, to produce

a meaningful clustering which all individuals will accept, but there is

one situation I consider important for an axiomatic discussion of choice

functions: Suppose there is a subset B ⊆ X of alternatives that “belong

together” in the sense that, for each individual i and each alternative

x outside of B, i values all alternatives in B alike when compared with

x. Then it seems very likely that all individuals would agree that B is a

meaningful cluster and can therefore be treated like a single alternative

in the beginning. However, there might at the same time also exist other

subsets B ′ for which the very same is true. Therefore, it would be good

to know that, in the end, the resulting choice did not depend on the

use of classification B or any other classification B ′, but would have

been the same without any classification at all.

To be able to make this argument more precise, let us define a block

of a reflexive relation R on X to be a subset B ⊆ X with |B| > 2

such that, for all x ∈ X \ B, whenever xR y for some y ∈ B, xR y for

all y ∈ B, and whenever y Rx for some y ∈ B, y Rx for all y ∈ B.

An equivalent formulation of the latter is this: For all x ∈ X \ B,

B ∩ xR 6= ∅ implies B ⊆ xR, and B ∩ Rx 6= ∅ implies B ⊆ Rx,

where I used the usual order-theoretic notation xR = {y ∈ X : xR y}

and Rx = {y ∈ X : y Rx}. Note that there may be a lot of possibly
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intersecting blocks. If B is a common block of R1, . . . , Rn, then we shall

call it a block of R.

To treat B like a single alternative corresponds to using a new

set of alternatives S/B := S \ B ∪ {B} and a new profile R/B :=

(R1/B, . . . , Rn/B) of individual preferences

Ri/B := Ri|X\B ∪ {(B,B)}

∪ ({B} × (BRi \ B)) ∪ ((RiB \ B)× {B}),

where BRi = {y ∈ X : xRi y for some x ∈ B}

and RiB = {y ∈ X : y Ri x for some x ∈ B}.

In other words, for all x, y ∈ X/B, xRi/B y if and only if either (i)

x 6= B, y 6= B, and xRi y, or (ii) x = y = B, or (iii) x = B, y 6= B,

and z Ri y for all z ∈ B, or (iv) x 6= B, y = B, and xRi z for all z ∈ B.

For example:

R =



















a c

/ \ / \

b c bb′ d

| | , | |

b′ c′ c′ a

|

d



















, B = {b, b′} =⇒ R/B =



















a c

/ \ / \

B c B d

| , | |

c′ c′ a

|

d



















.

The set {c, c′} is only a block of the first relation.

Now, our above consideration finally yields the following condition

on C:

(Sub) For each block B ⊆ S of R:

C(S; R) =











C(S/B; R/B) if B /∈ C(S/B; R/B)

C(S/B; R/B) \ {B}

∪ C(B; R) if B ∈ C(S/B; R/B).

This expresses the claim that, whatever block B we use, the acceptable

alternatives are (i) those outside of B that are acceptable when treating

B like a single alternative, and (ii) if B itself is then acceptable, too,

also those alternatives inside of B that would be acceptable when only

the B-alternatives were considered.
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THEOREM 5. Let C : (S,R) 7→ C(S; R) be a social choice rule that

fulfills (Iso), (I), (GC), and (C). Then C (Sub)(S; R) :=































C(S; R) if no B ⊂ S is a block of R

C(Sub)(S/B; R/B) if B ⊂ S is a block of R

and B /∈ C(Sub)(S/B; R/B)

C(Sub)(S/B; R/B) \ {B} if B ⊂ S is a block of R

∪ C(Sub)(B; R) and B ∈ C(Sub)(S/B; R/B),

where ⊂ denotes proper containment, recursively defines another rule

C(Sub) such that:

1. C(Sub)(S; R) = C(S; R) whenever no block of R is properly

contained in S.

2. C(Sub) fulfills (Iso), (I), (GC), (C), and (Sub).

I have put the somewhat lengthy proof into the appendix. When C(S)

can be computed in polynomial time for all S, then also C (Sub)(S).

We have already seen that the requirements of the theorem are ful-

filled by all rules based on only antisymmetric or only complete

majority/minority relations, and also by the (C)- and (GC)-modified

rules.

LEMMA 6. If blocks of R are always blocks of A, the modification

C → C(Sub) preserves (wImA), (ImA), and (sImA).

Proof. Assume that B ⊆ S is a block of R. Then B is also a block of

A. For (sImA), let x ∈ S \B, x ∈ C(S/B; R/B), and y trS(A)x. Then

(i) y /∈ B : y trS/B(A/B)x =⇒ x trS/B(A/B) y =⇒x trS(A) y,

(ii) y ∈ B : B trS/B(A/B)x =⇒ x trS/B(A/B)B =⇒x trS(A) y.

On the other hand, let B ∈ C(S/B; R/B), x ∈ C(B; R), and y trS(A)x.

Then

(iii) y /∈ B : y trS/B(A/B)B =⇒ B trS/B(A/B) y =⇒x trS(A) y,

(iv) y ∈ B, y trB(A)x : x trB(A) y =⇒x trS(A) y,

and (v) otherwise y ∈ B and the A-path from y to x must leave B,

i.e. y trS(A) y′Az trS(A)wAx′ trS(A)x for some x′, y′ ∈ B and z, w ∈

S \B, which implies xAz trS(A)wAy and thus x trS(A) y.
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For (wImA) and (ImA), the arguments are analogous, where (v) does

not occur. �

7. Conclusion

As we have seen, it is not a real problem to allow individual preferences

to be incomplete and even cyclic, i.e., any reflexive relation. In fact,

Lemma 1 shows that we should at least allow all quasi-orders. The

requirements of immunity from binary arguments, (ImA), for a large

class of majority and/or minority relations A of different strength di-

rectly lead to social choice rules which already fulfill some of the most

frequently discussed axioms. Using proper modifications, one may fulfill

additional axioms, since Lemmata 2, 3, 4 and Theorem 5 imply
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COROLLARY 7. Let F be a chain of majority relations with M1 ∈ F ,

and C be the rule for which C(S) is the set of common optimals of

{trS(A) : A ∈ F}. Then the rules C(C)(GC)(St) and C(C)(GC)(Sub) fulfill

the axioms (Iso), (I), (P), (C), (GC), and (wImA) and (ImA) for all

A ∈ F . Moreover, N1 ∈ F implies (sP), and B1 ∈ F implies (sP’).

Depending on whether (sP) or (sP’) is required, a look at Figure 1

shows that one may for example choose one of the chains

F = {Dβ , . . . , Dγ , N
S
δ , . . . , N

S
ε , Nζ , . . . , Nη, N1,M1}

with 0 < β 6 γ 6 δ 6 ε 6 ζ 6 η 6 1,

F = {Dβ , . . . , Dγ , Rδ, . . . , Rε, Pζ , . . . , Pη , E 1

2

,

Uϑ, . . . , Uκ, Bλ, . . . , Bµ,M
S
ν , . . . ,M

S
ξ ,Mπ, . . . ,M%,M1}

with 0 < β 6 · · · 6 η 6 1
2 6 ϑ 6 · · · 6 %, or

F = {Dβ , . . . , Dγ , Eδ, . . . , Eε, Pζ , . . . , Pη ,

Rϑ, . . . , Rκ, Bλ, . . . , Bµ,M
S
ν , . . . ,M

S
ξ ,Mπ, . . . ,M%,M1}

with 0 < β 6 n
2n−1 < γ 6 · · · 6 %.

Furthermore, it was argued that considerations about possible power

of minorities and the need to “protect” minorities against majorities

may help deciding what types of relations and what range of strengths

actually to use, where the types B and D seem to have the greatest

appeal.

Many things remain to be done: First of all, I did not check whether

the (C)- and (GC)-modifications also preserve (sNNR) and whether

the (St)- and (Sub)-modifications preserve (Sub) and (St), respectively.

Secondly, what about strategic voting? And, what seems to be most

important to me, there should be some “experimental” investigations

by means of stochastic simulations which would randomly generate

profiles of preferences of different type: either arbitrary, or complete

and/or acyclic and/or transitive and/or antisymmetric. By their means

it should be possible to distinguish between the rules where the ax-

iomatic approach alone does not provide a satisfactory evaluation. In

fact, first “on-the-fly”-simulations seem to suggest that, depending on

the degrees of antisymmetry and completeness in the individual pref-

erences and on the relative sizes of S and N , either the combination of
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strict types like B and P or the combination of non-strict types like D

and R has a very large probability of giving a “deterministic” choice

C(S) with |C(S)| = 1.

Appendix

Proof of THEOREM 5. Mainly, we have to verify that C ′ := C(Sub) is indeed

well-defined, i.e. that the definition is not circular and does not depend on

the choice of B. We can do this by induction on the size of S: Let R and

S be given. For |S| = 1, no block is properly contained in S, and the five

conditions in 2. hold, because here C ′(S) = S, independently of any profile.

Now assume that well-definedness of C ′(S̃; R̃) and the five conditions have

already been proved for all R̃ and all |S̃| < |S|. Let B1, B2 ⊂ S be blocks of

R. Then |B1|, |B2|, |S/B1|, |S/B2| < |S|, so that the definition is not circular,

and, without loss of generality, we have one of the following five situations:

(i) B1 ∩ B2 = ∅: Then B1 and B2 are also blocks of R/B2 and R/B1,

respectively, the profile R21 := (R/B2)/B1 on S21 := (S/B2)/B1 is isomorphic

to the profile R12 := (R/B1)/B2 on S12 := (S/B1)/B2, R/B1|B2

∼= R|B2
,

and R/B2|B1

∼= R|B1
. Therefore, by induction, C ′(S; R) \ (B1 ∪ B2) =

C ′(S21; R21) = C ′(S12; R12). Moreover, when B1 is used in the recursion,

either

C ′(S; R) ∩ B1 = C ′(B1; R)

or it is empty, the former if B1 ∈ C
′(S/B1; R/B1). If, on the other hand, B2

is used, either

C ′(S; R) ∩ B1 = C ′(S/B2; R/B2) ∩ B1 = C ′(B1; R/B2)

or it is empty, the former if B1 ∈ C ′(S21; R21). But, by induction,

B1 ∈ C
′(S/B1; R/B1)⇐⇒ B1 ∈ C

′(S12; R12)⇐⇒ B1 ∈ C
′(S21; R21),

and C ′(B1; R) = C ′(B1; R/B2). The case of C ′(S; R) ∩ B2 is analogous. This

shows that C ′(S; R) does not depend on whether B1 or B2 is used in the

recursion.

(ii) B1 ⊆ B2: Then B1 is a block of R|B2
, B2/B1 is a block of R/B1, and

R/B2
∼= (R/B1)/(B2/B1). Again,

C ′(S; R) \B2 = C ′(S/B2; R/B2) = C ′(S12; R12).

Now, when directly using B2,

C ′(S; R) ∩ B1 = C ′(B2; R) ∩B1 = C ′(B1; R)
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if B2 ∈ C ′(S/B2; R/B2) and B1 ∈ C ′(B2/B1; R/B1). On the other hand,

when first B1 is used,

C ′(S; R) ∩ B1 = C ′(B1; R)

if B1 ∈ C ′(S/B1; R/B1). But B1 ∈ B2/B1 which is a block of R/B1,

hence B1 ∈ C ′(S/B1; R/B1) is equivalent to B2 ∈ C ′(S/B2; R/B2) and

B1 ∈ C ′(B2/B1; R/B1).

Moreover, when we directly use B2,

C ′(S; R) ∩ (B2 \B1) = C ′(B2; R) \B1 = C ′(B2/B1; R/B1) \ {B1}

if B2 ∈ C
′(S/B2; R/B2). When B1 is used instead,

C ′(S; R) ∩ (B2 \B1) = C ′(S/B1; R/B1) ∩ (B2 \ {B1})

= C ′(B2/B1; R/B1) \ {B1}

if B2/B1 ∈ C ′((S/B1)/(B2/B1); (R/B1)/(B2/B1)). Again, this last condi-

tion is equivalent to B2 ∈ C ′(S/B2; R/B2), because there is a canonical

isomorphism between (R/B1)/(B2/B1) and R/B2 that maps B2/B1 to B2.

(iii) |B1 ∩ B2| > 2: Then also B3 := B1 ∩ B2 is a block of R, so that we

can apply (ii) two times because of B3 ⊆ B1 and B3 ⊆ B2.

(iv) |B1 \ B2|, |B2 \ B1| > 2: The reader may easily verify that then also

B′

1 := B1 \B2 and B′

2 := B2 \B1 are blocks of R, so that we may first apply

(ii) on B1 and B′

1, then (i) on B′

1 and B′

2, and finally (ii) on B′

2 and B2.

(v) |B1| = 2, |B1 ∩ B2| = 1, say B1 = {x, y} and x ∈ B2: As for x: Using

B2,

x ∈ C ′(S; R)⇐⇒ x ∈ C ′(B2; R) and B2 ∈ C
′(S/B2; R/B2),

while using B1,

x ∈ C ′(S; R)⇐⇒ x ∈ C ′(B1; R) and B1 ∈ C
′(S/B1; R/B1).

But (I) and (Iso) show that both conditions are equivalent, because the canon-

ical isomorphism between R|B2
and R/B1|S/B1

maps x to B1, and the one

between R|B1
and R/B2|S/B2

maps x to B2.

As for y: When we use B2,

y ∈ C ′(S; R)⇐⇒ y ∈ C ′(S/B2; R/B2).

When B1 is used instead,

y ∈ C ′(S; R)⇐⇒ y ∈ C ′(B1; R) and B1 ∈ C
′(S/B1; R/B1).
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Again, both conditions are equivalent: First, R/B2|S/B2

∼= R|B1
, so that (I)

and (Iso) imply the equivalence of y ∈ C ′(S/B2; R/B2) and y ∈ C ′(B1; R).

Moreover, because B2 and B1 are blocks, the latter implies that, for all z ∈ B2,

y ∈ C ′({y, z}; R) and therefore x ∈ C ′({x, z}; R). Now (GC) shows that then

also x ∈ C ′(B2; R), i.e. B1 ∈ C ′(S/B1; R/B1).

As for z ∈ B2 \ {x}: Using B2,

z ∈ C ′(S; R)⇐⇒ z ∈ C ′(B2; R) and B2 ∈ C
′(S/B2; R/B2),

while if we use B1,

z ∈ C ′(S; R)⇐⇒ z ∈ C ′(S/B1; R/B1).

As above, R/B1|S/B1

∼= R|B2
, so that (I) and (Iso) imply the equivalence of

z ∈ C ′(S/B1; R/B1) and z ∈ C ′(B2; R). Moreover, the latter implies that

C ′(B2; R) 6= {x}, so that, by (C), there must be some w ∈ B2 \ {x} such that

w ∈ C ′({x,w}; R). Since B1 and B2 are blocks, w ∈ C ′({y, w}; R) and thus

x ∈ C ′({y, x}; R), so that finally B2 ∈ C ′(S/B2; R/B2).

Now a straightforward proof shows that (C) and (GC) also hold for S and

R, while (Iso) and (I) are obvious, and (Sub) holds by definition. �
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