A solution to the Subbarao relation

Chris Nash
Aerotek CE/Lexmark International
e-mail : chris_nash@prodigy.net, nashc@lexmark.com

Abstract

In [1], Subbarao notes that the relation $n \cdot \sigma(n)=2 \bmod \phi(n)$ holds for prime values of n, and also for $n=4,6,22$. The existence of other composite solutions was not known. In a closely-related problem in [3], Carlos Rivera and Jud McCranie posed questions about the function $z(n)=\phi(n)+\sigma(n)-2 n$. A solution to the Rivera/McCranie problem is presented, then the Subbarao question is completely solved using properties of this function $z(n)$.

1 Definitions

Definition 1. We define the function $z(n)$ on positive integers n by

$$
\begin{equation*}
z(n)=\phi(n)+\sigma(n)-2 n \tag{1}
\end{equation*}
$$

2 Solution of Carlos Rivera's Puzzle 76

Theorem 1. $z(n) \geq 0$, with equality only holding if $n=1$ or n is prime.
Proof. We first note the following relations which follow directly from the definitions of $\phi(n)$ and $\sigma(n)$:

$$
\begin{align*}
\sigma(n) & =\sum_{d \mid n} d \tag{2}\\
n & =\sum_{d \mid n} \phi(d) \tag{3}
\end{align*}
$$

By applying the Möbius inversion formula to (3) we have

$$
\begin{equation*}
\phi(n)=\sum_{d \mid n} \mu(n / d) \cdot d \tag{4}
\end{equation*}
$$

We note both (2) and (4) include a term for $d=n$ that evaluates to n, and so we have the formula

$$
\begin{align*}
z(n) & =(\phi(n)-n)+(\sigma(n)-n) \\
& =\sum_{d \mid n}^{d<n} \mu(n / d) \cdot d+\sum_{d \mid n}^{d<n} d \\
& =\sum_{d \mid n}^{d<n}(\mu(n / d)+1) \cdot d \tag{5}
\end{align*}
$$

Since each term in (5) is non-negative we conclude $z(n) \geq 0$. For equality to hold, either the sum must be empty, or each term must equal zero. An empty sum only occurs in the case $n=1$, otherwise we require

$$
\begin{equation*}
\mu(n / d)=-1 \forall d \mid n, d<n \tag{6}
\end{equation*}
$$

In particular, this means n cannot have two or more distinct prime factors. If n had distinct prime factors p and q, choose $d=n / p q$ and we have a contradiction with (6). Hence n must be a power of a prime.

Similarly, if $n=p^{r}$ for some $r>1$, choose $d=1$ and again we have a contradiction with (6).

Finally it is easy to demonstrate that, if n is prime, $\phi(n)=n-1$ and $\sigma(n)=n+1$.

Hence $z(n)=0$ if and only if $n=1$, or n is prime.

3 The Subbarao relation

Theorem 2. The Subbarao relation

$$
\begin{equation*}
n \cdot \sigma(n)=2 \bmod \phi(n) \tag{7}
\end{equation*}
$$

has no composite solutions except for $n=4,6,22$.
Proof. We have, from (1),

$$
\sigma(n)=2 n+z(n) \bmod \phi(n)
$$

and thus

$$
n \cdot \sigma(n)=n(2 n+z(n)) \bmod \phi(n)
$$

Let us assume n is composite and (7) is true. Then

$$
\begin{equation*}
2 n^{2}+n z(n)-k \phi(n)=2 \tag{8}
\end{equation*}
$$

for some integer k. The proof now proceeds by cases.
Case I: If n has a repeated prime factor p^{r} for some $r>1$, then p^{r-1} divides the left side of (8). Hence p^{r-1} must divide 2 , so p must be 2 , and r must be 2 . $n=4$ is a known solution. If $n=4 m$ for some odd integer $m>1$, some prime factor of m will contribute an additional factor 2 to $\phi(n)$, so the left-hand side is divisible by 4 while the right-hand side is not, a contradiction.
Case II: Suppose now $n=2 p$ for some odd prime p. We note that $z(n)=2$, and considering (8) modulo ($p-1$) gives

$$
2.2^{2}+2.2=2 \bmod (p-1)
$$

Hence $(p-1)$ divides 10, producing the solutions $p=3$ and $p=11$, corrsponding to the known composite solutions $n=6$ and $n=22$.

Case III: Suppose now $n=2 m$ for some odd composite number m with no repeated factor. We note that in (5), none of the μ terms can be zero, hence every term in the sum is even. Furthermore each prime factor of n contributes at least one factor 2 to $\phi(n)$. Hence 4 divides every term on the left-hand side of (8), a contradiction, and there are no solutions n of this form.
Case IV: Finally assume n is a product of distinct odd primes. As above, we see $z(n)$ is even, but now show that $z(n)$ is not divisible by 4 . Let us define $f(x)$ as the number of prime factors of x. Then (5) becomes

$$
\begin{equation*}
z(n) / 2=\sum_{d \mid n, f(n / d) \text { is even }}^{d<n} d \tag{9}
\end{equation*}
$$

We note every term in the sum in (9) is odd. We also note the number of terms in this sum is

$$
\sum_{r=1}^{2 r<=f(n)}\binom{f(n)}{2 r}=2^{f(n)-1}-1
$$

each choice of $2 r$ factors denoting all combinations of factors of n / d. Since $f(n)>1$ in this case, we note the number of terms is therefore odd, hence $z(n) / 2$ is an odd number. As before each prime factor of n contributes a factor of 2 to $\phi(n)$. Since n is also odd, we have

$$
\begin{aligned}
2 n^{2} & =2 \bmod 4, \\
n z(n) & =2 \bmod 4, \\
\phi(n) & =0 \bmod 4
\end{aligned}
$$

and the left-hand side of (8) is again divisible by 4 , a contradiction and thus there are no solutions n of this form.

It is immediately verified the Subbarao relation holds for all primes. Summarizing, the only composite numbers satisfying the Subbarao relation are $n=4,6,22$.

References

[1] Richard K. Guy, "Unsolved Problems In Number Theory", B37, p.92. (Springer-Verlag, New York, 1994).
[2] E.Bach; J.Shallit: "Algorithmic Number Theory". (Foundation of Computer Science Series, MIT Press, 1996).
[3] C. Rivera, J. McCranie: "Puzzle 76. $z(n)=\operatorname{sigma}(n)+\operatorname{phi}(n)-2 n "$, http://www.sci.net.mx/ ${ }^{\sim}$ crivera/puzzles/puzz_076.htm

