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Abstract. A numerical exploration of the behavior of the sequence
of largest quadratic residues (and also of the largest quadratic non-
residues) modulo the primes has revealed some unexpected �ndings.
Some of the �ndings are proven but several intriguing and surprising
observations, conjectures are also presented. These features shed light
on the intricate relation between the primes and the quadratic residues.
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1. Introduction

The realm of quadratic residues is famous of o�ering special attractions and
now the author is trying to escort the reader to a niche in the neighbor-
hood of the quadratic reciprocity low, which is seemingly unexplored so far
though it is hiding a few remarkable gems. Let us see �rst a sequence hav-
ing a simple de�nition and showing � by a super�cial inspection � not too
many interesting peculiarities. The sequence of largest (in the sense of not
exceeding the moduli) quadratic residues modulo the subsequent primes (see
A88190 in [2]) starts as (100 terms):
A =[1, 1, 4, 4, 9, 12, 16, 17, 18, 28, 28, 36, 40, 41, 42, 52, 57, 60, 65, 64, 72,
76, 81, 88, 96, 100, 100, 105, 108, 112, 124, 129, 136, 137, 148, 148, 156, 161,
162, 172, 177, 180, 184, 192, 196, 196, 209, 220, 225, 228, 232, 232, 240, 249,
256, 258, 268, 268, 276, 280, 281, 292, 305, 300, 312, 316, 329, 336, 345, 348,
352, 352, 364, 372, 377, 378, 388, 396, 400, 408, 417, 420, 424, 432, 436, 441,
448, 456, 460, 460, 465, 466, 484, 489, 497, 498, 508, 520, 521, 540,...]
At a �rst glance it looks semi-monotonic (in the ai ≤ ai+1 sense) but around
the 20th term one can notice that the members ...65,64,72,... violate also
the semi-monotonic behavior. Later on there occur similar �glitches� (e. g.
...305,300,312,...). If we regard all the cases where ai+1 ≤ ai (i. e. A
is non monotonic), then we can �nd quite a few such places. We will see
below that these non monotonic places do not occur completely at random,
characteristic behavior with speci�c features can be observed at these indices.
In the �rst sub-chapter of Chapter 3 the characteristics of A and some re-
lated sequences are described, in the second sub-chapter we deal with the
sequence of largest quadratic non-residues of P � which is denoted by Ã
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�, where several speci�c consequences of the quadratic reciprocity theorem
are demonstrated. In the third sub-chapter we show that A and Ã can be
merged in a logical way into a single sequence which maintains most of the
features of its parents, though also exhibits some original features.

2. Notations, definitions

Bold capitals, e. g. X, are used to denote an in�nite integer sequence.
The corresponding lower case symbol with a lower index xi, denotes the i-th
member of X.
P denotes the sequence of primes.
In general, any lower case symbol stands for an integer.
The notation |a|q is used for the least absolute residue class congruent a(mod q),
i. e. −q + 1 ≤ |a|q ≤ q − 1.
C = A ? B is a sequence with members ci = ai ? bi, where ? ∈ {+,−, ·}.
Clearly, by these operations the set of integer sequences form a ring.
Xk (where k > 0) is the �k-th truncation� of sequence X, i. e. xk,i = xi+k .

The operator Q̂(q) = z is the � largest true quadratic residue modulo q�, i. e.
z = max{r < q | (r/q) = 1}, where (r/q) is the Jacobi symbol.
Thus formally the sequence A above is de�ned by its members as ai = Q̂(pi),
or we may also use the A = Q̂(P) notation. Note that this way we introduced
a well de�ned transformation for an arbitrary positive sequence.

3. Looking deeper into...

Since, due to the Gauss's criterion (see e. g. [4] at p. 285), it is rather easy
to calculate the sequence A above (e. g. by a program similar to what is
given in the Appendix), the author calculated the sequence (as well as all the
other related sequences, we discuss later) up to the index of 105. This size
is quite enough to make serious inspections which yielded a few interesting
observations, as well as it is enough to regard most of the observations as
conjectures, proposing the observed properties being generally valid.

3.1. The sequence of largest quadratic residues of the primes. Let us
concentrate �rst at the �glitches� of A, i. e. where it is non-monotonic. The
sequence of those primes pi for which Q̂(pi) ≤ Q̂(pi−1) (A is non-monotonic)
can be found at A88193 in [2].
Observation 1. One can notice that the relative density of the indices where
the �glitches� occur, is almost constant. It is seemingly decreasing rather
slowly, perhaps converging asymptotically to some positive value (somewhere
below 0.05), though one can not exclude that it converges to zero, or even
that the number of non-monotonic positions in A is �nite. The observed
behavior within the explored range is demonstrated in Table 1.
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Index range No. of non-monotonic positions
1- 10000 605

10001- 20000 541
20001- 30000 504
30001- 40000 481
40001- 50000 500
50001- 60000 471
60001- 70000 463
70001- 80000 491
80001- 90000 491
90001-100000 470

Table 1. The number of non-monotonic points in the se-
quence A per 104 terms

Observation 2. If we denote the i-th element of the sequence of primes
P by pi and denote the corresponding element in A by ai, then for i > 3,
whenever ai ≤ ai−1then pi ≡ 7 (mod 8) (or |pi|8 = −1). Additionally, it is
also observable that if i > 4 then pi 6≡ 2 (mod 5). Note that the reverse of
these combined modal conditions does not hold!
Observation 3. It is related to the di�erence sequence B = P −A, i. e.
the sequence of bi = pi−ai. The initial one-hundred members of B (see also
A88192 in [2]) are as follows:

B =[1, 2, 1, 3, 2, 1, 1, 2, 5, 1, 3, 1, 1, 2, 5, 1, 2, 1, 2, 7, 1, 3, 2, 1, 1, 1, 3, 2,
1, 1, 3, 2, 1, 2, 1, 3, 1, 2, 5, 1, 2, 1, 7, 1, 1, 3, 2, 3, 2, 1, 1, 7, 1, 2, 1, 5, 1, 3,
1, 1, 2, 1, 2, 11, 1, 1, 2, 1, 2, 1, 1, 7, 3, 1, 2, 5, 1, 1, 1, 1, 2, 1, 7, 1, 3, 2, 1,
1, 1, 3, 2, 13, 3, 2, 2, 5, 1, 1, 2, 1,...]
One can notice immediately that the members of this sequence are either
1 or a prime number (which is also proven below). Also note, that in the
ring of integer sequences (corresponding to the de�nition of operations in
Chapter 2) the sequences, which are built from primes and 1, are analogues
of the �primes� among the naturals, thus B is a �prime� sequence.
Observation 4. For i > 1, bi = 1 if and only if |pi|4 = 1. This is actually a
fact, since it is identical to the well known (−1/p) = (−1)(p−1)/2 quadratic
reciprocity relation [1] (where (x/p) is the Legendre symbol). This also
means that asymptotically one half of the terms of B = P − A are units.
We will call later these trivial members.
Observation 5. Concerning the non-trivial members bi of B = P − A,
bi ∈ P if and only if pi ≡ 3 (mod 4). The �only if� follows from the fact
presented at Observation 4, while the �if� side is also a provable fact:

Lemma 3.1. For every p ∈ P such that p ≡ 3 (mod 4), ∃m prime, m < p,
such that (−m/p) = 1, while ∀r such that 0 < r < m, (−r/p) = −1.

Proof. Since p ≡ 3 (mod 4), therefore due to the Euler's criterion (−1/p) =
(−1)(p−1)/2 = −1. Obviously, there exists such 0 < m < p, that (−m/p) = 1,
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Index prime p in B
2 3 2
4 7 3
9 23 5
20 71 7
64 311 11
92 479 13
246 1559 17
752 5711 19
1289 10559 23
2084 18191 29
3383 31391 31
31284 366791 43
35558 422231 37
56644 701399 41

Table 2. The �rst occurrence of di�erent primes in the se-
quence B

therefore let us assume that m is the least such value. We need to see that
m is prime. Since (−m/p) = (−1/p) · (m/p) = 1, hence (m/p) = −1.
Let us assume now that m is composite. Since (m/p) = −1, therefore ∃p′ ∈ P
factor of m, such that (p′/p) = −1. Obviously p′ < m, therefore m is not the
least quadratic non-residue of p, i. e. q = p−m is not the largest quadratic
residue. Hence, m must be prime. ¤

Note that in the 105 terms, every prime number p ≤ 43 turns up in B,
though not in a monotonic order. The �rst occurrence of di�erent primes in
B according to the index of primes is shown in Table 2.
Observation 6. A strange correlation can be observed between the mem-
bers of the sequence B and of D = A1 −A, the �rst di�erence sequence of
A, where the members of D are di = ai+1− ai (see also A88191 in [2]). The
observation is that when i is such that di ≤ 0 (i. e. A is non-monotonic)
then if bi+1 = 3 ⇒ di = 0, whereas if di = −1 ⇒ bi+1 = 7 (cf. sequences
A88194 and A88195 in [2]).
Observation 7. This also relates to the indices where A is non-monotonic
(i. e. at index i, such that di ≤ 0). For every such an i, it holds that
bi+1 > −di . This can be proven easily:

Lemma 3.2. If ai ≤ ai−1 then bi > −di−1 , where A = Q̂(P), B = P−A
and D = A1 −A.

Proof. Since ∀i > 1,ai < pi and also pi > pi−1 +1, now ai < ai−1 < pi−1 and
also pi−ai > pi−1−ai−1 +1, i. e.: bi > bi−1 +1. Hence −di−1 = ai−1−ai =
pi−1 − bi−1 − pi + bi < pi − 1− bi−1 − pi + bi = bi − (bi−1 + 1) < bi. ¤
Corollary 3.3. When di−1 < 0 then −di−1 < bi − (bi−1 + 1) and also
bi > bi−1 + 1.
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Index i pi (|pi|4) ai

1
15196
15197
15198
15199

166301 ( 1)
166303 (-1)
166319 (-1)
166349 ( 1)

166300
166300
166296
166348

2
28215
28216
28217
28218

327581 ( 1)
327583 (-1)
327599 (-1)
327619 (-1)

327580
327580
327580
327617

3
34084
34085
34086
34087

403061 ( 1)
403063 (-1)
403079 (-1)
403097 ( 1)

403060
403060
403056
403096

4
45373
45374
45375
45376

550661 ( 1)
550663 (-1)
550679 (-1)
550691 (-1)

550660
550660
550656
550689

5
48868
48869
48870
48871

596861 ( 1)
596863 (-1)
596879 (-1)
596899 (-1)

596860
596860
596856
596897

6
66945
66946
66947
66948

840821 ( 1)
840823 (-1)
840839 (-1)
840841 ( 1)

840820
840820
840802
840840

7
79004
79005
79006
79007

1006781 ( 1)
1006783 (-1)
1006799 (-1)
1006847 (-1)

1006780
1006780
1006762
1006842

Table 3. The �rst 7 �twin� non-monotonic locations in the
sequence A

Observation 8. At a �rst glance, the indices where A is non-monotonic
seem to be �apart� from each other, i. e. if ai ≤ ai−1 ⇒ ai+1 > ai. However,
by checking this illusion, it was found that the indices i = 15197 and i+1 =
15198 are the �rst two consecutive ones where the di members of D (the
di�erence sequence of A) are non-positive (...0,−4, ...) . It is also notable
that in every case (i ≤ 105) when such �twin glitches� were observed, the
lower member of the two consecutive non-positive members of D is 0 and
the element in B prior to the 0 element in D is a trivial (unit) element. By
mathematical notations: if ai ≤ ai−1 ≤ ai−2 then di−1 = 0 (i. e. ai−1 =
ai−2) and also pi−2 − ai−2 = bi−2 = 1.

Remark. The density of these �twin glitches� is fairly low: up to the index of
105 one can �nd only 7 such positions (see Table 3) and there is only a single
case (at i = 28215) where there are two consecutive 0-s in the sequence D
(corresponding to 3 identical terms in A).
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Observation 9. The most remarkable fact which can be noticed in the
middle column of Table 3 is that the �rst three subsequent primes in each of
the 7 groups are such that taken them modulo 120, we get {101, 103, 119}.
By mathematical notation: if i is such that Q̂(pi+2) ≤ Q̂(pi+1) ≤ Q̂(pi) (i.
e.: ai+2 ≤ ai+1 ≤ ai) then {pi, pi+1, pi+2} ≡ {101, 103, 119} (mod 120). Note
that there exist 76 triplets with such modular property (mod 120) among the
�rst 105 primes but only 7 of them have this particular property. Though the
number of observed cases is fairly low, still this observation can be proposed
as a conjecture, due to its beauty.

3.2. Sequence of largest quadratic non-residues of primes. By ex-
ploring the behavior of largest quadratic non-residues (the numbers which
are not quadratic residues) of the sequence of primes P (A88196 in [2]), one
can see a qualitatively very similar behavior as presented for the largest qua-
dratic residues, hence the following observations are rather symmetric to the
preceeding ones:
Observation 10. The sequence of largest quadratic non-residues of primes
is also �almost� monotonic:

Ã =[1, 2, 3, 6, 10, 11, 14, 18, 22, 27, 30, 35, 38, 42, 46, 51, 58, 59, 66, 70,
68, 78, 82, 86, 92, 99, 102, 106, 107, 110, 126, 130, 134, 138, 147, 150, 155,
162, 166, 171, 178, 179, 190, 188, 195, 198, 210, 222, 226, 227, 230, 238, 234,
250, 254, 262, 267, 270, 275, 278, 282, 291, 306, 310, 308, 315, 330, 332, 346,
347, 350, 358, 366, 371, 378, 382, 387, 395, 398, 402, 418, 419, 430, 428, 438,
442, 446, 452, 459, 462, 466, 478, 486, 490, 498, 502, 507, 518, 522, 539,...]
Calculating the terms of the sequence Ã up to 105 terms, it was possible to
determine how the density of non-monotonic �glitches� varies (see table 4).

Range Occurrence of non-monotonic positions
1- 10000 442

10001- 20000 398
20001- 30000 393
30001- 40000 360
40001- 50000 375
50001- 60000 384
60001- 70000 382
70001- 80000 350
80001- 90000 369
90001-100000 344

Table 4. The number of non-monotonic positions in the se-
quence Ã

Observation 11. Denoting the i-th element of the sequence of primes P
by pi and the corresponding element in Ã by ãi then if ãi ≤ ãi−1then pi ≡
1 (mod 8). This is a neat mirror relation to Observation 2 (see also A88199
in[2]).
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Observation 12. This relates to the di�erence sequence B̃ = P−Ã, having
the members b̃i = pi − ãi (A88297 in [2]). The �rst hundred members of B̃
are as follows:

B̃ =[1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 5, 1, 1, 3, 5, 2, 1, 1,
2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 5, 2, 1, 1, 1, 1, 2, 3, 1, 7, 1, 3, 1, 2, 1,
2, 3, 1, 2, 1, 1, 5, 2, 1, 5, 1, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 7, 1, 2, 1, 5, 1, 1, 3, 5,
2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2,...]
One can notice immediately that the members of this sequence seem to be
either one or a prime number.

Observation 13. It is well noticeable that for i > 1, b̃i = 1 if and only if pi ≡
3 (mod 4). Analogously to Observation 4, this fact is also well known, hence
it is identical to the (−1/p) = (−1)(p−1)/2 quadratic reciprocity relation
(where (x/p) is the Legendre symbol). This also means that asymptotically
one half of the terms of B̃ = P− Ã are units.
Observation 14. This is also symmetric to Observation 5, i. e. for the
members b̃i of B̃ = P− Ã, b̃i ∈ P if and only if pi ≡ 1 (mod 4). This is also
a provable fact, the proof is quite symmetrical to the proof of Lemma 3.1
and it follows easily from the quadratic reciprocity theorem:
Lemma 3.4. For every p ∈ P such that p ≡ 1 (mod 4), ∃m prime, m < p,
such that (−m/p) = −1, while ∀ 0 < r < m, (−r/p) = 1.

Proof. Since p ≡ 1 (mod 4), therefore (−1/p) = (−1)(p−1)/2 = 1. Obviously,
there exists such m < p, that (−m/p) = −1, therefore let us assume that
m is the least such value. We need to see that it is prime. Since (−m/p) =
(−1/p) · (m/p) = −1, hence (m/p) = −1.
Let us assume now that m is composite. Since (m/p) = −1, therefore ∃p′ ∈ P
factor of m, such that (p′/p) = −1. Obviously p′ < m, therefore m is not the
least quadratic non-residue of p, i. e. q = p−m is not the largest quadratic
non-residue of p. Hence, m must be prime. ¤
Observation 15. This relates to a strange correlation between the members
of the sequence B̃ and of D̃ = Ã1− Ã, the di�erence sequence of Ã, having
the members d̃i = ãi+1 − ãi (A88198 in [2]). The observation is that where
d̃i ≤ 0 (i. e. Ã is non-monotonic) then b̃i+1 = 5 ⇔ d̃i = −2 (cf. sequences
A88200 and A88201 in [2]). Note, that unlike Observation 6, this a symmetric
(if and only if) relation.

Observation 16. This also relates to the indices where Ã is non-monotonic
(i. e. d̃i ≤ 0). Thus if d̃i ≤ 0 then b̃i+1 > −d̃i. The an easy proof can be
constructed analogously to the one given at Observation 7.

Observation 17. Concerning the sequence Ã, it is surprising that � in
contrary to what was found for the sequence A (see Observation 8) � there
are no subsequent indices below 105 where Ã is non-monotonic, i. e. if
ãi ≤ ãi−1 ⇒ ãi+1 > ãi if i < 105. It is a challenging question whether there
exist any �twin glitches� in Ã.
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Observation 18. This one has no pair in relation to the largest quadratic
residues. It was found that at the indices where Ã is non-monotonic the
members of the di�erence sequence D̃ are always even, i. e. if ãi < ãi−1 ⇒
ãi−1 − ãi = −d̃i−1 = 2k for some k ≥ 0.

3.3. The mixed sequence. The next twist is based on the fact that about
half of the members of both A and Ã are trivially units (see observations
4 & 13). Also note that where ai is trivial, there ãi is non-trivial, and
vice-versa. Thus, one can merge the two sequences by omitting the trivial
unit terms from A (corresponding to the indices i where |pi|4 = −1 ) and
substitute them from Ã. In other words: if |pi|4 = 1 then we take the largest
quadratic non-residue modulo pi, otherwise we take the largest quadratic
residue modulo pi. In this manner, we obtain the sequence as follows (A91380
in [2]):
A =[1, 1, 3, 4, 9, 11, 14, 17, 18, 27, 28, 35, 38, 41, 42, 51, 57, 59, 65, 64, 68,
76, 81, 86, 92, 99, 100, 105, 107, 110, 124, 129, 134, 137, 147, 148, 155, 161,
162, 171, 177, 179, 184, 188, 195, 196, 209, 220, 225, 227, 230, 232, 234, 249,
254, 258, 267, 268, 275, 278, 281, 291, 305, 300, 308, 315, 329, 332, 345, 347,
350, 352, 364, 371, 377, 378, 387, 395, 398, 402, 417, 419, 424, 428, 436, 441,
446, 452, 459, 460, 465, 466, 484, 489, 497, 498, 507, 518, 521, 539,...]
Observation 19. We can see that this sequence is qualitatively similar to
both A and Ã, hence this is also �almost� monotonic. See Table 5.
Observation 20. Correspondingly to Observations 2 and 11, a very compact
form can be written for i > 1 members of A: if ai ≤ ai−1then |pi|8 = |pi|4.

Analogously to the above, we can de�ne B = P−A (A91382 in [2]):
B =[1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 3, 2,
2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 7, 5, 2, 3, 2, 3, 2, 2, 3, 7, 7, 2, 3, 5, 2, 3,
2, 3, 2, 2, 2, 11, 5, 2, 2, 5, 2, 2, 3, 7, 3, 2, 2, 5, 2, 2, 3, 7, 2, 2, 7, 5, 3, 2, 3,
5, 2, 3, 2, 13, 3, 2, 2, 5, 2, 3, 2, 2, ...]
Apart from the �rst term, it is obvious due to the way A was constructed,
that B consists of prime numbers only ( for i > 1). Since B can be created
from B and B̃ by merging these two, such a way that if bi > 1, the i-th
member of B is bi, otherwise it is b̃i. Therefore, the Lemmas 3.1 and 3.4
are automatically valid for B. This is formulated in a very compact way
in Theorem 3.5. Note, that the sequence B is identical (apart from its �rst
term) to the sequence which is de�ned as �the smallest positive quadratic
non-residue modulo pi� which can be found at [3]. This identity is obvious
from the proofs given for the Lemmas 3.1 and 3.4.
Theorem 3.5. For every odd p ∈ P, ∃m ∈ P, m < p, such that (−m/p) =
− |p|4 while ∀ 0 < r < m, (−r/p) = |p|4.
A basically equivalent form: For every p ∈ P, ∃m ∈ P, m < p, such that
(m/p) = −1 while ∀ 0 < r < m, (r/p) = 1.

Proof. It follows from Lemmas 3.1 and 3.4 and as such, it is a consequence
of the Quadratic Reciprocity Theorem. ¤
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Range No. of non-monotonic positions
at LQR at LQnR overall

1- 10000 180 237 417
10001- 20000 182 223 405
20001- 30000 170 214 384
30001- 40000 165 204 369
40001- 50000 157 200 357
50001- 60000 155 200 355
60001- 70000 139 213 352
70001- 80000 152 196 348
80001- 90000 142 195 327
90001-100000 133 192 325

Table 5. The number of non-monotonic positions in the se-
quence A

Remark 3.6. Thus, if x ∈ B1 then x ∈ P. But is it also true that if x ∈ P
then x ∈ B ? It seems a very hard question, whether every prime is present
in B or some of them never show up. However, it is a great temptation to
conjecture that every prime is present in B.

The distribution of non-monotonic positions in the mixed sequence is demon-
strated in Table 5. It is surprising that the number of non-monotonic points
at largest quadratic residues (LQR) seems to be systematically lower com-
pared to the number of non-monotonic points at largest quadratic non-
residues (LQnR). This is even more surprising if one compares this �nding
with the data in Tables 1 and 4, showing larger number of non-monotonic
points in the sequence A than in Ã. This e�ect may easily be caused only by
the relatively small number of observed terms, since it is known that there
are several other features related to the sequence of primes which show a
slight asymmetry by observing several millions of terms, though the symme-
try is proven asymptotically. Note that most of the non-monotonic positions
both in A and in Ã are such that either ai or ai+1is trivial, therefore not
present in A; hence the majority of the non-monotonic positions in A are at
di�erent indices than in A and in Ã.
Also note, that the relation proved in Lemma 3.2 (given after Observation
7) is also easily provable for the mixed sequence A, hence the corollary also
holds.
It is also worthwhile to look at the �twin� non-monotonic positions in A. Up
to the index of 105 there exist 7 such locations (by accident exactly the same
as in A, though at completely di�erent locations).
The qualitative observables are also di�erent (cf. Observation 8 and see
Table 6):

• the 0 di�erence has seemingly no speci�c role,
• one of the members of each of the twins in A is LQR while the other
is LQnR, i. e. if ai ≤ ai+1 ≤ ai+2 then |pi+1|4 · |pi+2|4 = −1.
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Index i pi (|pi|4) ai

1
16877
16878
16879
16880

186469 ( 1)
186479 (-1)
186481 ( 1)
186551 (-1)

186467
186466
186462
186544

2
19897
19898
19899
19900

223429 ( 1)
223439 (-1)
223441 ( 1)
223463 (-1)

223427
223426
223424
223458

3
35556
35557
35558
35559

422203 (-1)
422209 ( 1)
422231 (-1)
422239 ( 1)

422201
422198
422194
422236

4
37082
37083
37084
37085

441829 ( 1)
441839 (-1)
441841 ( 1)
441877 (-1)

441827
441826
441824
441875

5
43577
43578
43579
43580

526667 (-1)
526679 (-1)
526681 ( 1)
526703 (-1)

526665
526656
546652
526698

6
62743
62744
62745
62746

783707 (-1)
783719 (-1)
783721 ( 1)
783733 ( 1)

783705
783700
783698
783731

7
74910
74911
74912
74913

950029 ( 1)
950039 (-1)
950041 ( 1)
950071 (-1)

950027
950022
950022
950068

Table 6. The �rst 7 �twin� non-monotonic locations in A,
the �mixed� sequence

• the primes with the same index where A has twin non-monotonic
positions are such that in decimal representation the �rst ends always
by 9 while the second by 1,

• the element di at the �rst member of the twins is always larger in
absolute value than the at the second member.

4. Conclusion

The behavior of the largest quadratic residues of primes seems to be a rela-
tively unexplored range in the �eld of elementary number theory. However,
as it is illustrated above, there are some unexpected jewels within this range.
The author assumes that some of the unproved, presented observations are
provable quite easily, though a few seem to be quite hard or are not generally
valid. Naturally, the reader could ask many more questions related to the
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behavior of the sequences A, Ã and A, as well as of their relatives, which
may be challenging and intriguing.
A possible way further is to study the general behavior of the transformation
Y = Q̂(X). Certainly, it is related to the �density� of X whether Y = Q̂(X)
is monotonic or not. It is rather easy to construct the �densest� sequence
having a monotonic Q̂-transform (it is left to the reader). It is also clear
that by skipping a small fraction of the members (though probably an in�nite
number!?) from the sequence of primes, the remaining sequence will have a
monotonic Q̂-transform.

Appendix:

A PARI/GP [5] code to generate the sequences A, Ã and A :
{/* Function: mixqr(fl,fr,to).

If fl=1 then it calculates the largest quadratic residues of primes,
if fl=-1 then the largest quadratic non-residues, while
if fl=0 then the largest �mixed� quadratic residues of the sequence of primes
for the index range of [fr,to].
If the range (to-fr) < 500, it generates a detailed output,
otherwise only the non-monotonic points are accounted,
and the �twin� non-monotonic places are listed. */
mixqr(fl,fr,to)=local(v=[],d=[],l=[],mp=[],mv=[],md=[],ml=[],j=0,nm=0,nmm=0,nnr=0,nqr=0,n=0);
for(i=fr,to,k=prime(i)-1;r=-1*(prime(i)%4-2);
if(fl==0,if(r==1,
q=kronecker(k,prime(i));while(q>-1,k-=1;q=kronecker(k,prime(i))),
q=kronecker(k,prime(i));while(q<1,k-=1;q=kronecker(k,prime(i)))),
q=kronecker(k,prime(i));while(q<>fl,k-=1;q=kronecker(k,prime(i))));
if((to-fr)<500,print(i" "prime(i)," "k" "prime(i)-k" "k-j" "r" "prime(i)%8);
v=concat(v,k);l=concat(l,prime(i)-k);if(n>0,d=concat(d,k-j)));n+=1;
if(k-j<=0, mp=concat(mp,prime(i);if((i-nm)<2,print(i" "prime(i)" "n));nm=i);
mv=concat(mv,k);ml=concat(ml,prime(i)-k);if(n>1,md=concat(md,k-j));nmm+=1;
if(r==1,nnr+=1,nqr+=1));
j=k);
if((to-fr)<500,print(v);print(d);print(l));
print(nmm" ",nqr" ",nnr);print(mp);print(mv);print(md);print(ml);
v=[nmm,nqr,nnr];return(v) }
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