Quadratic reciprocity

Robin Chapman

8 December 2003

Let p be an odd prime number. We consider which numbers $a \not \equiv 0$ are squares modulo p. If $a \equiv b^{2}$ then $a \equiv(-b)^{2}$ and as $b \not \equiv-b(\bmod p)$ then $x^{2} \equiv a(\bmod p)$ has precisely the two solutions $x \equiv \pm b(\bmod p)$. It follows that there are exactly $\frac{1}{2}(p-1)$ such a up to congruence modulo p, which are $1^{2}, 2^{2}, \ldots\left[\frac{1}{2}(p-1)\right]^{2}$. These are the quadratic residues modulo p. The $\frac{1}{2}(p-1)$ remaining values modulo p, for which the congruence $x^{2} \equiv a(\bmod p)$ is insoluble are the quadratic nonresidues modulo p. We define the Legendre symbol ($\frac{a}{p}$) as follows:

$$
\binom{a}{p}=\left\{\begin{aligned}
0 & \text { if } p \mid a, \\
1 & \text { if } a \text { is a quadratic residue modulo } p \\
-1 & \text { if } a \text { is a quadratic nonresidue modulo } p
\end{aligned}\right.
$$

The Legendre symbol $\left(\frac{a}{p}\right)$ depends only on a modulo p, that is,

$$
\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right) \quad \text { whenever } \quad a \equiv b \quad(\bmod p) .
$$

Theorem 1 (Euler's criterion) Let p be an odd prime and let $a \in \mathbf{Z}$. Then

$$
\begin{equation*}
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \quad(\bmod p) \tag{*}
\end{equation*}
$$

Proof If $p \mid a$ then both sides of $(*)$ are zero modulo p. We may thus suppose that $p \nmid a$. Let g be a primitive root modulo p. Then $g^{(p-1) / 2} \not \equiv 1$ $(\bmod p)$ but $\left[g^{(p-1) / 2}\right]^{2}=g^{p-1} \equiv 1(\bmod p)$. It follows that $g^{(p-1) / 2} \equiv-1$ $(\bmod p)$. Now $a \equiv g^{k}(\bmod p)$ for some integer $k \geq 0$ and so

$$
a^{(p-1) / 2} \equiv g^{k(p-1) / 2} \equiv\left[g^{(p-1) / 2}\right]^{k} \equiv(-1)^{k} \equiv\left\{\begin{aligned}
1 & \text { if } k \text { is even } \\
-1 & \text { if } k \text { is odd }
\end{aligned}\right.
$$

Let us attempt to solve the congruence $x^{2} \equiv a \equiv g^{k}(\bmod p)$. The solution must have the form $x \equiv g^{r}(\bmod p)$ and so $g^{2 r} \equiv g^{k}(\bmod p)$. This is equivalent to the congruence $2 r \equiv k(\bmod p-1)$. As $2 \mid(p-1)$ this linear congruence is soluble if and only if k is even. Hence if a is a quadratic residue then k is even and $a^{(p-1) / 2} \equiv 1=\left(\frac{a}{p}\right)(\bmod p)$, while if a is a quadratic nonresidue then k is odd and $a^{(p-1) / 2} \equiv-1=\left(\frac{a}{p}\right)(\bmod p)$.

Corollary 1 Let p be an odd prime, and let $a, b \in \mathbf{Z}$. Then

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) .
$$

In particular if a and b are both quadratic residues modulo p or both quadratic nonresidues modulo p, then $a b$ is a quadratic residue modulo p, while if one of a and b is a quadratic residue modulo p and the other is a quadratic nonresidue modulo p, then $a b$ is a quadratic nonresidue modulo p.

Proof By Euler's criterion

$$
\left(\frac{a b}{p}\right) \equiv(a b)^{(p-1) / 2} \equiv a^{(p-1) / 2} b^{(p-1) / 2} \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \quad(\bmod p) .
$$

Both sides of this congruence lie in the set $\{-1,0,1\}$ and as $p \geq 3$ no two distinct elements of this set are congruent modulo p. Hence we have equality, not just congruence:

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

Corollary 2 Let p be an odd prime. Then

$$
\left(\frac{-1}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1(\bmod 4), \\
-1 & \text { if } p \equiv 3(\bmod 4) .
\end{aligned}\right.
$$

Proof By Euler's criterion

$$
\left(\frac{-1}{p}\right) \equiv(-1)^{(p-1) / 2} \quad(\bmod p)
$$

If $p \equiv 1(\bmod 4)$ then $(p-1) / 2$ is even, and so $\left(\frac{-1}{p}\right) \equiv 1(\bmod p)$; consequently $\left(\frac{-1}{p}\right)=1$, If $p \equiv 3(\bmod 4)$ then $(p-1) / 2$ is odd, and so $\left(\frac{-1}{p}\right) \equiv-1$ $(\bmod p)$; consequently $\left(\frac{-1}{p}\right)=-1$.

We now prove Gauss's lemma, which gives a useful if opaque characterization of the Legendre symbol.

Theorem 2 (Gauss's lemma) Let p be an odd prime and let a be an integer coprime to p. Let $R=\{j \in \mathbf{N}: 0<j<p / 2\}$ and $S=\{j \in \mathbf{N}: p / 2<$ $j<p\}$. Then $\left(\frac{a}{p}\right)=(-1)^{\mu}$ where μ is the number of $j \in R$ for which the least nonnegative residue of aj modulo p lies in S.

Proof It is convenient to introduce some notation. If m is an integer, it is congruent modulo p to exactly one integer between $-p / 2$ and $p / 2$. Let $\langle m\rangle$ denote this integer: that is, $\langle m\rangle \equiv m(\bmod p)$ and $|\langle m\rangle|<p / 2$. Then m is congruent modulo p to an element of S if and only if $\langle m\rangle<0$.

We consider the numbers $\langle a j\rangle$ for $j \in R$. Then μ is the number of $j \in R$ for which $\langle a j\rangle<0$. Let us write $\langle a j\rangle=\varepsilon_{j} b_{j}$ where $\varepsilon_{j}= \pm 1$ and $b_{j}=|\langle a j\rangle|$. Then $(-1)^{r}=\prod_{j=1}^{(p-1) / 2} \varepsilon_{j}$. I claim that the numbers $b_{1}, \ldots, b_{(p-1) / 2}$ are the same as the numbers in R in some order. Certainly $b_{j} \neq 0$ for if $b_{j}=0$ then $p \mid a j$ contrary to Euclid's lemma ($p \nmid a$ and $p \nmid j$). Suppose there were integers j and k with $0<j<k<p / 2$ and $b_{j}=b_{k}$. Then $a k \equiv \varepsilon_{k} b_{k}=$ $\varepsilon_{j} b_{j} \equiv \varepsilon_{j} \varepsilon_{k} a_{j}(\bmod p)$. So $p \mid a(k \pm j)$ and as $p \nmid a$ then $p \mid(k \pm j)$. But $0<k+j<p$ and $0<k-j<p / 2$. Neither $k+j$ nor $k-j$ is a multiple of p. This contradiction shows that all the b_{j} are distinct, and so the b_{j} are the elements of R in some order.

It follows that $\prod_{j=1}^{(p-1) / 2} b_{j}=\left(\frac{1}{2}(p-1)\right)$! and so

$$
a^{(p-1) / 2}\left(\frac{p-1}{2}\right)!=\prod_{j=1}^{(p-1) / 2}(a j) \equiv \prod_{j=1}^{(p-1) / 2}\left(\varepsilon_{j} b_{j}\right)=(-1)^{\mu}\left(\frac{p-1}{2}\right)!\quad(\bmod p) .
$$

As $\left(\frac{1}{2}(p-1)\right)$! is coprime to p, we may cancel it and get $a^{(p-1) / 2} \equiv(-1)^{\mu}$ $(\bmod p)$. Applying Euler's criterion gives $\left(\frac{a}{p}\right)=(-1)^{\mu}$.

In the proof of the following theorem, we adopt the following notation. If $x<y$ then $N(x, y)$ denotes the number of integers n with $x<n<y$. It is useful to note several simple properties of $N(x, y)$.

- $N(x, y)=N(-y,-x)$;
- if a is an integer, then $N(x+a, y+a)=N(x, y)$;
- if a is a positive integer, then $N(x, y+a)=N(x, y)+a$;
- if a is a positive integer, and x is not an integer, then $N(x, x+a)=a$;
- if $x<y<z$ and y is not an integer, then $N(x, z)=N(x, y)+N(y, z)$.

The proofs of all of these are straightforward, and left as exercises.

Theorem 3 Let $a \in \mathbf{N}$, and let p and q be distinct odd primes, each coprime to a. If $q \equiv \pm p(\bmod 4 a)$ then $\left(\frac{a}{q}\right)=\left(\frac{a}{p}\right)$.
Proof By Gauss's lemma, $\left(\frac{a}{p}\right)=(-1)^{\mu}$ where μ is the number of integers $j \in(0, p / 2)$ and with $a j$ having least positive residue modulo p in the interval $(p / 2, p)$. If $0<j<p / 2$ then $0<a j<a p / 2$ and so μ is the number of integers j with

$$
a j \in \bigcup_{k=1}^{b}\left(\left(k-\frac{1}{2}\right) p, k p\right)
$$

where $b=a / 2$ or $b=(a-1) / 2$ according to whether b is even or b is odd. Hence μ is the number of integers in the set

$$
\bigcup_{k=1}^{b}\left(\frac{(2 k-1) p}{2 a}, \frac{k p}{a}\right)
$$

that is

$$
\mu=\sum_{k=1}^{b} N\left(\frac{(2 k-1) p}{2 a}, \frac{k p}{a}\right) .
$$

Similarly $\left(\frac{a}{q}\right)=(-1)^{\nu}$ where

$$
\nu=\sum_{k=1}^{b} N\left(\frac{(2 k-1) q}{2 a}, \frac{k q}{a}\right) .
$$

Suppose first that $q \equiv p(\bmod 4 a)$. Without loss of generality, $q>p$, and we may write $q=p+4 a r$ with $r \in \mathbf{N}$. Then

$$
\begin{aligned}
\nu & =\sum_{k=1}^{b} N\left(\frac{(2 k-1) p}{2 a}+(4 k-2) r, \frac{k p}{a}+4 k r\right) \\
& =\sum_{k=1}^{b} N\left(\frac{(2 k-1) p}{2 a}, \frac{k p}{a}+2 r\right) \\
& =\sum_{k=1}^{b}\left[N\left(\frac{(2 k-1) p}{2 a}, \frac{k p}{a}\right)+2 r\right] \\
& =\mu+2 r b .
\end{aligned}
$$

Consequently

$$
\left(\frac{a}{q}\right)=(-1)^{\nu}=(-1)^{\mu+2 r b}=(-1)^{\mu}=\left(\frac{a}{p}\right) .
$$

Now suppose that $q \equiv-p(\bmod 4 a)$. Then $p+q=4 a s$ with s an integer. Thus

$$
\begin{aligned}
\nu & =\sum_{k=1}^{b} N\left((4 k-2) s-\frac{(2 k-1) p}{2 a}, 4 k s-\frac{k p}{a}\right) \\
& =\sum_{k=1}^{b} N\left(\frac{k p}{a}-4 k s, \frac{(2 k-1) p}{2 a}-(4 k-2) s\right) \\
& =\sum_{k=1}^{b} N\left(\frac{k p}{a}, \frac{(2 k-1) p}{2 a}+2 s\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mu+\nu & =\sum_{k=1}^{b}\left[N\left(\frac{(2 k-1) p}{2 a}, \frac{k p}{a}\right)+N\left(\frac{k p}{a}, \frac{(2 k-1) p}{2 a}+2 s\right)\right] \\
& =\sum_{k=1}^{b} N\left(\frac{(2 k-1) p}{2 a}, \frac{(2 k-1) p}{2 a}+2 s\right) \\
& =2 s b .
\end{aligned}
$$

Consequently

$$
\left(\frac{a}{q}\right)=(-1)^{\nu}=(-1)^{-\mu+2 s b}=(-1)^{\mu}=\left(\frac{a}{p}\right) .
$$

We can now prove the law of quadratic reciprocity
Theorem 4 (Quadratic reciprocity) Let p and q be distinct odd primes. Then

$$
\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)
$$

unless $p \equiv q \equiv 3(\bmod 4)$ in which case

$$
\left(\frac{q}{p}\right)=-\left(\frac{p}{q}\right)
$$

Proof Suppose first that $p \equiv q(\bmod 4)$. Without loss of generality, $q>p$ so that $q=p+4 a$ with $a \in \mathbf{N}$. Then

$$
\left(\frac{q}{p}\right)=\left(\frac{p+4 a}{p}\right)=\left(\frac{4 a}{p}\right)=\left(\frac{a}{p}\right)
$$

and

$$
\left(\frac{p}{q}\right)=\left(\frac{q-4 a}{q}\right)=\left(\frac{-4 a}{q}\right)=\left(\frac{-1}{q}\right)\left(\frac{a}{q}\right) .
$$

By Theorem 3

$$
\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)
$$

then

$$
\left(\frac{q}{p}\right)=\left(\frac{-1}{q}\right)\left(\frac{a}{q}\right) .
$$

Thus if $p \equiv q \equiv 1(\bmod 4)$ then

$$
\left(\frac{q}{p}\right)=\left(\frac{-1}{q}\right)\left(\frac{p}{q}\right)=\left(\frac{p}{q}\right)
$$

while if $p \equiv q \equiv 3(\bmod 4)$ then

$$
\left(\frac{q}{p}\right)=\left(\frac{-1}{q}\right)\left(\frac{p}{q}\right)=-\left(\frac{p}{q}\right) .
$$

Now suppose that $p \equiv-q(\bmod 4)$. Then $p+q=4 a$ with $a \in \mathbf{N}$. Then

$$
\left(\frac{q}{p}\right)=\left(\frac{4 a-p}{p}\right)=\left(\frac{4 a}{p}\right)=\left(\frac{a}{p}\right)
$$

and

$$
\left(\frac{p}{q}\right)=\left(\frac{4 a-q}{q}\right)=\left(\frac{4 a}{q}\right)=\left(\frac{a}{q}\right) .
$$

By Theorem 3

$$
\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)
$$

then

$$
\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right) .
$$

When applying quadratic reciprocity, it is useful to have a version involving the Jacobi symbol. This is denoted by $\left(\frac{a}{n}\right)$, like the Legendre symbol, but in the Legendre symbol the number n must be an odd prime, in the Jacobi symbol n can be any positive odd integer and a any integer at all. We define the Jacobi symbol as follows: if n is a positive odd integer, write $n=p_{1} \ldots p_{k}$ with the p_{j} prime. Then set

$$
\left(\frac{a}{n}\right)=\prod_{j=1}^{k}\left(\frac{a}{p_{j}}\right) .
$$

It is immediate that the Jacobi symbol shares some of the formal properties of the Legendre symbol:

- $\left(\frac{a}{n}\right)= \pm$ if a and n are coprime and $\left(\frac{a}{n}\right)=0$ otherwise,
- $\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right)$ whenever $a \equiv b(\bmod n)$,
- $\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$ and $\left(\frac{a}{m n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)$.

The most convenient property is that quadratic reciprocity is true for the Jacobi symbol too. Let m and n be coprime odd positive integers. Write $m=p_{1} \ldots p_{r}$ and $n=q_{1} \ldots q_{s}$ where the p_{j} and q_{k} are primes. By quadratic reciprocity,

$$
\left(\frac{m}{n}\right)=\prod_{j=1}^{r} \prod_{k=1}^{s}\left(\frac{p_{j}}{q_{k}}\right)=\prod_{j=1}^{r} \prod_{k=1}^{s} \varepsilon_{j, k}\left(\frac{q_{k}}{p_{j}}\right)=(-1)^{\mu}\left(\frac{n}{m}\right)
$$

where $\varepsilon_{j, k}=1$ unless $p_{j} \equiv q_{j} \equiv 3(\bmod 4)$ in which case $\varepsilon_{j, k}=-1$ and μ is the number of pairs (j, k) with $\varepsilon_{j, k}=-1$. But $\mu=a b$ where a is the number of p_{j} which are 3 modulo 4 and b is the number of q_{k} which are 3 modulo 4. Then $m \equiv 3^{a} \equiv(-1)^{a}(\bmod 4)$ and $n \equiv 3^{b} \equiv(-1)^{b}(\bmod 4)$. Then $(-1)^{a b}=1$ unless both a and b are odd when $(-1)^{\mu}=-1$. Thus $(-1)^{\mu}=-1$ if and only if $m \equiv n \equiv 3(\bmod 4)$:

$$
\left(\frac{m}{n}\right)=\left(\frac{n}{m}\right)
$$

unless $m \equiv n \equiv 3(\bmod 4)$ in which case

$$
\left(\frac{m}{n}\right)=-\left(\frac{n}{m}\right) .
$$

(This even holds when m and n are non-coprime positive odd integers, for then both sides are zero.)

