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Abstract

We de�ne a legal placement of Queens to be any placement in which any

two attacking Queens can be separated by a Pawn. The Queens separation

number is de�ned to be equal to the minimum number of Pawns which can

separate some legal placement of m Queens on an order n chess board.

We prove that n+ 1 Queens can be separated by 1 Pawn and conjecture

that n+ k Queens can be separated by k Pawns for large enough n. We

also provide some results on the separation number of other chess pieces.
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1 n-Queens and Queens separation

According to traditional chess rules, a Queen may move any number of squares

horizontally, vertically, or diagonally so long as no other piece lies in its path.

Questions regarding various placements of multiple Queens on chessboards were

�rst posed in the mid 19th century. In 1848, Max Bezzel described the problem

of placing eight Queens on an 8 � 8 board so that no two Queens attack each

other [1]. Studies of this and related problems, such as the fewest number of

Queens needed to attack or occupy every square of n�n rectangular and toroidal

boards, can be found in [3, 5, 6].

The problem and its variants serve as models of backtracking program-

ming techniques and are related to mathematical topics including domination in

graphs, magic squares, and integer programming among others, while solutions

involving neural nets, parallel processing, and genetic algorithms have appeared

in the literature. A collection of some references to the n-Queens problem can

be found in [7]. The question of the number of di�erent solutions to the n-

Queens problem had been considered as well [4]. A fundamental solution is a

class of solutions such that all the members of the class are simply rotations or

reections of one another.
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In January 2004, the Chess Variant Pages [2] proposed a variation of the

traditional 8-Queens problem. The new problem, posed as part of a contest

on the site, was to place nine Queens on an 8 � 8 board by using the least

number of Pawns possible in order to block all Queens that would otherwise

attack each other. An example in which three Pawns were needed to separate

the nine Queens was provided. Our solution for the problem that requires only

one Pawn immediately suggests a generalization to boards of arbitrary order n

with n+ k Queens, where k � 1 is an integer.

We de�ne a legal placement of Queens to be any placement in which any two

attacking Queens can be separated by a Pawn. The Queens separation number
sQ(m;n) is de�ned to be the minimum number of Pawns which can separate

some legal placement of m Queens on an n � n board. If m > �(Kn), the

independence number on the n � n Kings graph, then sQ(m;n) is unde�ned

since any arrangement of m Queens will have at least two Queens on physically

adjacent squares.

Notice that for m � �(Kn), 0 � sQ(m;n) � min(8m;n
2� �(Kn)). Equality

is obtained in the lower bound if m � n and n � 4. To see the upper bound,

either surround each Queen with eight Pawns or choose a set of vertices that

would be maximally independent on the Kings graph, place m Queens in that

set, and place Pawns on every vertex outside that set.

It can be seen that sQ(4; 3) = 5 and sQ(6; 5) = 3 but sQ(5; 4) is unde�ned

since 5 > �(K4). We prove that sQ(n+1; n) = 1 for n > 5 and conjecture that

sQ(n+ k; n) = k for large enough n.

2 An extra Queen

The basic notion for placing an extra Queen and a single Pawn on a board is to

begin with a known n-Queens solution and add extra rows, columns, Queens,

and a Pawn to get a solution to the Queens separation problem on a larger

board.

Begin with an (n + 2) � (n + 2) board, where n � 4. Number the rows

�1; 0; : : : ; n and the columns �2;�1; 0; : : : ; n�1. The known n-Queens solution

will be in the subsquare with rows and columns 0; : : : ; n� 1.

For a board of order 5, a computer search shows that 3 Pawns are necessary

in order to permit the placement of 6 Queens. However, for boards of order

n � 6, it can be seen that 1 Pawn suÆces to allow the placement of n + 1

Queens.

Theorem 1 For n � 6, sQ(n+ 1; n) = 1.

Proof Sketch. There are four patterns and two special cases to consider. The

proof that each pattern holds involves elementary but tedious calculations which

are shown in detail in the appendix. Consider an (n+2)� (n+2) board labeled

as in Figure 1.
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Figure 1: An (n+ 2)� (n+ 2) board.

Pattern I. Let n be even but n 6� 2 mod 6.

Solution: Place the Pawn at (n=2 � 1;�1) and the Queens at (n=2 � 1;�2),

(n;�1), (�1;�1), (2i+ 1; i) for 0 � i < n=2, and (2i� n; i) for n=2 � i < n.

Pattern II. Let n be even but n 6� 0 mod 6.

Solution: If n = 8, let w = 4. If n = 10, let w = 7. If n > 10, let

w = b(n+ 1)=4c. Place the Pawn at (w;�1) and the Queens at (w;�2),

(�1;�1), (n;�1), ((n=2+2i�1) mod n; i) for 0 � i < n=2, and ((n=2+2i+2)

mod n; i) for n=2 � i < n.

Pattern II leaves an empty main diagonal, so it can be used to obtain solu-

tions for some odd order chessboards.

Pattern III. Consider an (n+3)�(n+3) board with n even and n 6� 0 mod 6.

Solution: Number the rows �1; 0; : : : ; n+1 and the columns �2;�1; 0; 1; : : : ; n.

Place Pawn and Queens as in Pattern II, with an additional Queen at (n+1; n).

Pattern IV. Consider an (n+3)�(n+3) board with n � 0 mod 6 and n � 12.

Solution: Number the rows �1; 0; : : : ; n+1 and the columns �3;�2; : : : ; n� 1.

Place the Pawn at (n=2; 2) and the Queens at (n=2;�3), (n+1;�2), (�1;�1),

(n; 2), (2i+ 1; i) for 0 � i < n=2, and (2i� n; i) for n=2 � i < n.

The cases of n = 7 and n = 9 must be considered separately, but Figures 2

and 3 show that sQ(8; 7) = sQ(10; 9) = 1.
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Figure 2: sQ(8; 7) = 1.
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Figure 3: sQ(10; 9) = 1.

A computer search for small order boards provides the results in Table 1.

3 More Queens

Computer searches indicate that it may be possible to increase the number of

Queens and the number of blocking Pawns in a one-to-one fashion as long as

the order of the board is large enough.
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n Solutions Fundamental solutions

5 0 0

6 16 2

7 20 3

8 128 16

9 396 52

10 2288 286

11 11152 1403

12 65172 8214

Table 1: n+ 1 Queens and 1 Pawn on n� n chessboard

n Solutions Fundamental solutions

6 0 0

7 4 1

8 18 5

9 160 32

10 698 147

11 6771 1428

Table 2: n+ 2 Queens and 2 Pawns on n� n chessboard

n Solutions Fundamental solutions

7 0 0

8 8 1

9 44 6

10 528 66

Table 3: n+ 3 Queens and 3 Pawns on n� n chessboard

Conjecture 2 For each positive integer k and large enough n, sQ(n+k; n) = k.

4 Other chess pieces

The separation number can be considered for pieces other than the Queens as

well. While separation is meaningless for the King, Knight, and Pawn, the

Bishop and the Rook can be separated by placing Pawns between attacking

pieces.

It can be easily seen that sR(m;n) � sQ(m;n) when these values are de�ned.

Furthermore, it is known [6] that n independent Rooks or 2n� 2 independent

Bishops can be placed on an n�n board. From this, it follows that sR(m;n) = 0

for m � n and sB(m;n) = 0 for m � 2n� 2.
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Proposition 3 For n � 3, sB(2n� 1; n) = 1.

Proof. Since the independence number �B = 2n� 2, sB(2n� 1; n) 6= 0. Place

Bishops on the top row and bottom row, except for one corner. There are

only two Bishops on opposite corners that attack each other, so place the Pawn

between them.

Proposition 4 For odd n � 3, sB(2n; n) = 1.

Proof. Place Bishops on the top row and the bottom row and the Pawn in the

center square.

Proposition 5 The Rooks separation number sR(n+ k; n) = k for n � k + 2.

Proof. Clearly, sR(n+ k; n) � k. We show by induction a way to place n+ k

Rooks on an n� n board. For n = k +2, place Pawns along the main diagonal

from the upper left to the lower right except at the corners. Place Rooks along

the two adjacent diagonals. This gives k Pawns and n+ k Rooks.

Given a solution for n = i, we can obtain a solution for n = i+ 1 by adding

a column on the left or right and a row on top or bottom and placing the extra

Rook in the newly added corner square.

Non-orthodox pieces are also interesting. An Amazon or Maharaja is a piece
that can move as either a Queen or a Knight. A computer search has shown

that when n < 12 there are no solutions for placing n+1 Amazons on an n�n

board.

n Solutions Fundamental solutions

11 0 0

12 72 9

13 412 53

Table 4: n+ 1 Amazons and 1 Pawn on n� n chessboard

5 Open problems

1. Settle Conjecture 2. If the conjecture is true, what is \large enough"?

2. Describe the idea of using one chess piece to block another in terms of the

e�ect that it has on the corresponding graph.

3. Consider rectangular or other shape boards. For example, on the torus

one Pawn is insuÆcient and as many as eight Pawns may be necessary in

order to safely place n+ 1 queens.

4. Consider the upper Queens separation number SQ(m;n), which is the max-

imum number of Pawns required to separate some legal placement of m

Queens on an n� n board.

Acknowledgement: The authors thank Steve Hedetniemi for many inspiring
discussions.
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Appendix: Proof of Theorem 1

Theorem 1 For n � 6, sQ(n+ 1; n) = 1.

Proof. Clearly, sQ(n + 1; n) > 0. There are four primary patterns and some

special cases to consider. If one Queen is placed at (x; y) and another is placed

at (w; z) with x 6= w and y 6= z, we need only check the Queens do not lie on

the same diagonal. If the two Queens lie on the same negative slope diagonal,

then x + y = w + z. If the two lie on the same positive slope diagonal, then

x � y = w � z. So we need to compare all values of row + column and row �
column for each pattern.

Pattern I. If n � 4 is even but n 6� 2 mod 6, then place the Pawn at (n=2�

1;�1) and the Queens at [a] (n=2�1;�2), [b] (n;�1), [c] (�1;�1), [d] (2i+1; i)

for 0 � i < n=2, and [e] (2i� n; i) for n=2 � i < n.

proof:

row + column row � column

a n=2� 3 a
0

n=2 + 1

b n� 1 b
0

n+ 1

c �2 c
0 0

d 3i+ 1 d
0

i+ 1

e 3i� n e
0

i� n
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Case I: a versus b: n=2� 3 = n� 1) �2 = n=2) n = �4. But n � 4 so these

two Queens are not on the same diagonal.

Case II: a versus c: n=2� 3 = �2) n=2 = 1) n = 2. But n � 4 so these two

Queens are not on the same diagonal.

Case III: a versus d: n=2�3 = 3i+1 for 0 � i < n=2. This yields 3i = n=2�4)

i = n=2� 4=3 = (n� 8)=6. But since n 6� 2 mod 6, (n� 8)=6 is not an integer.

Case IV: a versus e: n=2� 3 = 3i� n for n=2 � i < n. Thus 3n=2� 3 = 3i)

i = n=2� 1. But i � n=2.

Case V: b versus c: n� 1 = �2) n = �1. But n � 4.

Case VI: b versus d: n� 1 = 3i+ 1) n� 2 = 3i) i = (n� 2)=3. Since n 6� 2

mod 6, (n� 2)=6 is not an integer.

Case VII: b versus e: n � 1 = 3i � n ) 2n � 1 = 3i ) i = (2n � 1)=3. If

n = 6k, then i = (12k � 1)=3, which is not an integer. If n = 6k + 4, then

i = (12k + 8� 1)=3 = (12k + 7)=3, which is not an integer.

Case VIII: c versus d: �2 = 3i+ 1) �3 = 3i) �1 = i. But i � 0.

Case IX: c versus e: �2 = 3i� n ) 3i = n� 2 ) i = (n � 2)=3 < n=3 < n=2.

But n=2 � i.

Case X: d versus d: 3i+ 1 = 3j + 1) i = j. There is no diagonal conict.

Case XI: d versus e: 3i+1 = 3j�n) j = (n+1)=3+ i which is not an integer

since n 6� 2 mod 6.

Case XII: e versus e: 3i� n = 3j � n) i = j. There is no diagonal conict.

Case XIII: a0 versus b0: n=2 + 1 = n+ 1) n = 0. But n � 4.

Case XIV: a0 versus c0: n=2 + 1 = 0) n=2 = �1.

Case XV: a0 versus d0: n=2 + 1 = i+ 1) n=2 = i. But i < n=2 for d0.

Case XVI: a0 versus e0: n=2+ 1 = i�n) i = 3n=2+ 1 > n+1 > n. But i < n

for e0.

Case XVII: b0 versus c0: n+ 1 = 0) n = �1.

Case XVIII: b0 versus d0: n+ 1 = i+ 1) n = i. But i < n=2 for d0.
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Case XIX: b0 versus e0: n+ 1 = i� n) 2n+ 1 = i. But i < n for e0.

Case XX: c0 versus d0: 0 = i+ 1) �1 = i. But i � 0 for d0.

Case XXI: c0 versus d0: 0 = i� n) i = n. But i < n.

Case XXII: d0 versus d0: i+ 1 = j + 1) i = j. There is no diagonal conict.

Case XXIII: d0 versus e0: i+ 1 = j � n) j = n+ i+ 1 > n.

Case XXIV: e0 versus e0: i� n = j � n) i = j. There is no diagonal conict.

Pattern II. Suppose n is even but n 6� 0 mod 6. If n = 8, let w = 4. If n = 10,

let w = 7. If n > 10, let w = b(n + 1)=4c. Place the Pawn at (w;�1) and the

Queens at (w;�2), (�1;�1), (n;�1), ((n=2+2i�1) mod n; i) for 0 � i < n=2,

and ((n=2 + 2i+ 2) mod n; i) for n=2 � i < n.

proof:

row + column row � column

a b(n+ 1)=4c � 2 a
0 b(n+ 1)=4c+ 2

b �2 b
0 0

c n� 1 c
0

n+ 1

d (n=2 + 2i� 1) mod n+ i d
0 (n=2 + 2i� 1) mod n� i

e (n=2 + 2i+ 2) mod n+ i e
0 (n=2 + 2i+ 2) mod n� i

Note that b(n+ 1)=4c = (n� 2)=4 for n � 2 mod 4 and b(n+ 1)=4c = n=4

for n � 0 mod 4.

Case I: a versus b: For n � 2 mod 4, we have (n�2)=4�2 = �2) (n�2)=4 =

0) n = 2. But n > 10.

For n � 0 mod 4, we have n=4� 2 = �2) n = 0.

Case II: a versus c: For n � 2 mod 4, we have (n � 2)=4 � 2 = n � 1 )

(n� 2)=4 = n+ 1) n� 2 = 4n+ 4) 3n = �6) n = �2.

For n � 0 mod 4, we have n=4� 2 = n� 1) 3n=4 = �1) n = �4=3.

Case III: a versus d: For n � 2 mod 4, we have n=2 + 2i � 1 � kn + i =

(n� 2)=4� 2) 3i = (�n� 2)=4� i+ kn) i = (�n� 6 + 4kn)=12 For k = 0,

i = (�n� 6)=12 < 0. For k = 1, i = (3n� 6)=12 < n=2.

For n � 0 mod 4, we have n=2 + 2i � 1 � kn + i = n=4 � 2 ) 3i =

n=4�2�n=2+1+kn) i = (�n�4+4kn)=12. For k = 0, i = (�n�4)=12 < 0.

For k = 1, i = (3n� 4)=12 < n=2.

Case IV: a versus e: For n � 2 mod 4, we have n=2 + 2i + 2 � kn + i =

(n � 2)=4� 2 ) 3i = (�n � 2)=4 � 4 + kn ) i = (�n � 18 + 4kn)=12. Since

k = 1, i = (3n� 18)=12 < n=2.
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For n � 0 mod 4, we have n=2 + 2i + 2 � kn + i = n=4 � 2 ) 3i =

�n=4� 4+ kn) i = (�n� 16+4kn)=12. Since k = 1, i = (3n� 16)=12< n=2.

Case V: b versus c: �2 = n� 1) n = �1.

Case VI: b versus d: n=2 + 2i� 1� kn+ i = �2) 3i = �2� n=2 + 1 + kn)

i = (�2�n+2kn)=6. For k = 0, i = (�2�n)=6 < 0. For k = 1, i = (n� 2)=6.

However, n=2 + 2((n� 2)=6� 1 = n=2 + n=3� 5=3 < n for n > �10.

Case VII: b versus e: n=2 + 2i+ 2� kn+ i = �2) 3i = �4� n=2 + kn) i =

(�8� n+ 2kn)=6. For k = 1, i = (n� 8)=6, which is less than n=2 for n > �4.

For k = 2, i = (3n� 8)=6 < n=2.

Case VIII: c versus d: n=2 + 2i� 1 � kn + i = n � 1 ) 3i = kn � n=2 ) i =

(2kn� n)=6. Since k = 0, this implies i = �n=6 < 0.

Case IX: c versus e: n=2 + 2i + 2 � kn + i = n � 1 ) 3i = kn � n=2 � 3 )

i = (2kn�n)=6�1. For k = 1, i = n=6�1 < n=2. For k = 2, i = 3n=6�1< n=2.

Case X: d versus d: n=2+ 2i� 1� kin+ i = n=2+ 2j� 1� kjn+ j. The values

of k are either 0 or 1. If ki = kj , then 3i = 3j so i = j. If ki = 0 and kj = 1,

then 3i = 3j � n ) i = j � n=3 which is not an integer since n 6� 0 mod 6.

Symmetrically, j = i� n=3 is not an integer.

Case XI: d versus e: n=2 + 2i � 1 � kin + i = n=2 + 2j + 2 � kjn + j.

The values of k are either 0 or 1 for d and either 1 or 2 for e. If ki = kj ,

then 3i � 1 = 3j + 2 ) i = j + 1. But j > i. If kj � ki = 1, then

3i � 1 = 3j + 2 � n ) i = j + 1 � n=3 which is not an integer since n 6� 0

mod 6. If ki = 0 and kj = 2, then 3i � 1 = 3j + 2 � 2n ) i = j + 1 � 2n=3

which is also not an integer.

Case XII: e versus e: n=2 + 2i + 2 � kin + i = n=2 + 2j + 2 � kjn + j )

3i � kin = 3j � kjn. If ki = kj , then i = j. If ki = 1 and kj = 2, then

3i� n = 3j � 2n ) 3i = 3j � n ) i = j � n=3 which is not an integer. Sym-

metrically, j = i� n=3 is not an integer.

Case XIII: a0 versus b
0: For n � 2 mod 4, we have (n � 2)=4 + 2 = 0 )

(n� 2)=4 = �2) n� 2 = �8) n = �6.

For n � 0 mod 4, we have n=4 + 2 = 0) n=4 = �2) n = �8.

Case XIV: a0 versus c0: For n � 2 mod 4, we have (n � 2)=4 + 2 = n + 1 )

(n� 2)=4 = n� 1) n� 2 = 4n� 4) 3n = 2) n = 2=3.

For n � 0 mod 4, we have n=4 + 2 = n+ 1) 3n=4 = 1) n = 4=3.

Case XV: a0 versus d0: For n � 2 mod 4, n=2+2i�1�kn� i= (n�2)=4+2)

i = (4kn� n+ 10)=4. For k = 0, i = (�n+ 10)=4 < 0 since n > 10. For k = 1,
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i = (3n+ 10)=4 > n=2.

For n � 0 mod 4, n=2+ 2i� 1� kn� i = n=4+ 2) i = (4kn� n+ 12)=4.

For k = 0, i = (�n+12)=4 < 0 since n > 12. For k = 1, i = (3n+12)=4 > n=2.

Case XVI: a0 versus e0: For n � 2 mod 4, n=2+2i+2�kn�i = (n�2)=4+2)

i = (4kn � n � 2)=4. Since k = 2, i = (7n � 2)=4 which is greater than n for

n > 2=3.

For n � 0 mod 4, n=2+2i+2� kn� i= n=4+2) i = (4kn�n)=4. Since

k = 2, i = 7n=4 > n for n > 0.

Case XVII: b0 versus c0: 0 = n+ 1) n = �1.

Case XVIII: b0 versus d0: n=2 + 2i � 1 � kn � i = 0 ) i = kn � n=2 + 1. For

k = 0, i = �n=2+1 which is less than 0 for n > 2. For k = 1, i = n=2+1 > n=2.

Case XIX: b0 versus e0: n=2+2i+2�kn� i= 0) i = kn�n=2�2. For k = 1,

i = n=2� 2 < n=2. For k � 2, i = 3n=2� 2 which is greater than n for n > 4.

Case XX: c0 versus d0: n=2 + 2i� 1� kn� i = n+ 1) i = n=2 + kn+ 2. For

k = 0, = n=2 + 2 > n=2. For k = 1, i = 3n=2+ 2 > n.

Case XXI: c0 versus e0: n=2+2i+2�kn�i= n+1) i = n=2+kn�1. For k = 1,

this implies i = 3n=2�1. For k = 2, i = 5n=2�1. In both cases, i > n for n > 2.

Pattern II leaves an empty main diagonal, so it can be used to obtain solu-

tions for some odd order chessboards.

Pattern III. Given an (n+3)� (n+3) board with even n 6� 0 mod 6, number

the rows 1; 0; : : : ; n+1 and the columns �2; 0; 1; : : : ; n. Place Pawn and Queens

as in Pattern II, with an additional Queen at (n+ 1; n).

proof:
Add the following row to the table in Pattern II.

row + column row � column

f 2n+ 1 f
0 1

Case I: a versus f : For n � 2 mod 4, we have (n� 2)=4� 2 = 2n+ 1) �3 =

2n� n=4 + 1=2) �7=2 = 7n=8) n = �4. But n is not negative.

For n � 0 mod 4, we have n=4� 2 = 2n+ 1) �3 = 7n=4) n = �12=7.

Case II: b versus f : �2 = 2n+ 1) �3 = 2n) n = �3=2.

Case III: c versus f : n� 1 = 2n+ 1) n = �2.

Case IV: d versus f : n=2+2i�1�kn+ i = 2n+1) 3i = 2n�n=2+2+kn)

i = (3n+ 4 + 2kn)=6 > n=2. But i < n=2.
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Case V: e versus f : n=2+ 2i+2� kn+ i = 2n+1) i = 2n� n=2� 1+ kn)

i = kn+ 3n=2� 1 > n.

Case VI: a0 versus f 0: For n � 2 mod 4, we have (n�2)=4+2 = 1) (n�2)=4 =

�1) n� 2 = �4) n = �2.

For n � 0 mod 4, we have n=4 + 2 = 1) n=4 = �1) n = �4.

Case VII: b0 versus f 0: 0 = 1 does not need to be checked.

Case VIII: c0 versus f 0: n+ 1 = 1) n = 0:

Case IX: d0 versus f 0: n=2+2i�1�kn�i= 1) i = 2+kn�n=2. If k = 0, then

i = 2� n=2 < 0 for n > 4. If k = 1, then i = 2 + n=2 > n=2. But 0 � i � n=2.

Case X: e0 versus f 0: n=2+2i+2� kn� i= 1) i = �1�n=2+ kn. For k = 1,

i = �1� n=2 + n ) i = n=2� 1 < n=2. For k = 2, i = �1� n=2 + 2n ) i =

3n=2� 1 > n for n > 2.

Pattern IV. Given an (n+3)� (n+3) board with n � 0 mod 6 and n � 12,

number the rows �1; 0; : : : ; n + 1 and the columns �3;�2; : : : ; n � 1. Place

the Pawn at (n=2; 2) and the Queens at (n=2;�3), (n+1;�2), (�1;�1), (n; 2),

(2i+ 1; i) for 0 � i < n=2, and (2i� n; i) for n=2 � i < n.

proof:

row + column row � column

a n=2� 3 a
0

n=2 + 3

b n� 1 b
0

n+ 3

c �2 c
0 0

d n+ 2 d
0

n� 2

e 3i+ 1 e
0

i+ 1

f 3i� n f
0

i� n

The cases b versus c, b versus e, b versus f , c versus e, c versus f , e versus

e, e versus f , and f versus f , along with the corresponding prime versions of

each, were checked in Pattern I.

Case I: a versus b: n=2� 3 = n� 1) �2 = n=2) n = �4. But n � 12.

Case II: a versus c: n=2� 3 = �2) n=2 = 1) n = 2.

Case III: a versus d: n=2� 3 = n+ 2) �5 = n=2) n = �10.

Case IV: a versus e: n=2�3 = 3i+1) n=2�4 = 3i) i = n=6�4=3 = (n�8)=6,

which is not an integer since n 6� 2 mod 6.
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Case V: a versus f : n=2� 3 = 3i� n) 3n=2� 3 = 3i) 1 = n=2� 1 < n=2.

Case VI: b versus d: n� 1 = n+ 2 does not result in a diagonal conict.

Case VII: c versus d: �2 = n+ 2) n = �4.

Case VIII: d versus e: n + 2 = 3i+ 1 ) n + 1 = 3i ) i = (n + 1)=3, which is

not an integer since n � 0 mod 6.

Case IX: d versus f : n+ 2 = 3i� n ) 2n+ 2 = 3i) i = 2(n+ 1)=3, which is

not an integer since n � 0 mod 6.

Case X: a0 versus b0: n=2 + 3 = n+ 3) n=2 = n) n = 0.

Case XI: a0 versus c0: n=2 + 3 = 0) n = �6.

Case XII: a0 versus d0: n=2 + 3 = n� 2) n = 10. But n � 12.

Case XIII: a0 versus e0: n=2 + 3 = i+ 1) i > n=2.

Case XIV: a0 versus f 0: n=2 + 3 = i� n) i = 3n=2+ 3) i > n.

Case XV: b0 versus d0: n+ 3 = n� 2 does not result in a diagonal conict.

Case XVI: c0 versus d0: 0 = n� 2) n = 2.

Case XVII: d0 versus e0: n� 2 = i+ 1) i = n� 3) i > n=2 since n > 6.

Case XVIII: d0 versus f 0: n� 2 = i� n) i = 2n� 2 > n for n > 2.

The cases of n = 7 and n = 9 must be considered separately, but Figures 2

and 3 show that both sQ(8; 7) = 1 and sQ(10; 9) = 1.
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