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Introduction

The distribution of squarefree binomial coe�cients�

For many years� Paul Erd�os has asked intriguing questions concerning the prime divi�

sors of binomial coe�cients� and the powers to which they appear� It is evident that� if k

is not too small� then
�
n
k

�
must be highly composite in that it contains many prime factors

and often to high powers� It is therefore of interest to enquire as to how infrequently
�
n
k

�
is squarefree� One well�known conjecture� due to Erd�os� is that

�
�n
n

�
is not squarefree once

n � �� S�ark�ozy 	Sz
 proved this for su�ciently large n but here we return to and solve the

original question�

Theorem ��
�
�n
n

�
is not squarefree for any n � �� y

Our proof is much like S�ark�ozy�s in that we convert the problem into one about

exponential sums� but we must do a lot more work to get explicit upper bounds on these

sums� We shall succeed in proving� via such bounds� that
�
�n
n

�
is divisible by the square

of some prime �
p
n� when n � 
����� Since

�
�n
n

�
is divisible by � if n is not a power of 
�

we need only verify that
�
�k��

�k

�
is not squarefree for each k in the range 
 � k � ���� to

complete the proof of Theorem �� In fact all such binomial coe�cients are divisible by �

except
�
��

��

�
which is divisible by ������ and

�
��

��

�
which is divisible by ������ We discuss

the �easy� computer veri�cation of this in section 
�

Erd�os �B�� in 	Gu
� asked for the largest n for which
�
�n
n

�
is not divisible by the

square of an odd prime� Erd�os and Graham 	EG
 asked whether
�
�n
n

�
is divisible by the

square of arbitrarily large primes once n is su�ciently large� evidently this is answered by

� Both authors have been supported� in part� by the National Science Foundation� The �rst author is

an Alfred P� Sloan Research Fellow�

y Velammal �Ve� has also proved this result recently�
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the argument above for large n� but it is desirable to state such a result for n � 
�����

Applying the primality testing ideas of Brillhart� Lehmer and Selfridge 	BLS
� we shall

indicate in section 
b how the following result is proved �details of the computation will

be given by Cutter 	C
��

Theorem ���
�
�n
n

�
is divisible by the square of some prime �pn��� for all n � 
��
�

This cannot be much improved since
�
����
����

�
is divisible by 
������ but not by the

square of any larger prime� Another surprising one is
�
�	��
���

�
� which is divisible by 
�� but

not by the square of any larger prime� and is� in fact� the largest
�
�n
n

�
that is not divisible

by the square of an odd prime�

Recently Sander 	Sa�
 has proved that
�
n
k

�
is not squarefree if k is �close� to n�
� so

generalizing the idea of Theorem �� With a slightly di�erent approach we show that
�
n
k

�
cannot be squarefree unless k or n� k is very small�

Theorem �� There exists a constant �� � � such that if n is su�ciently large and
�
n
k

�
is

squarefree then k or n� k is � exp
�
���log n�����log log n����

�
�

The primes p in our proof� for which p� divides
�
n
k

�
� are close to either

p
k or

p
n�

In a recent preprint Wirsing �	W
� Theorem �� proved� amongst other things� a strong

quantitative version of our Theorem 
� If n� � k � n�
 then

X
p�j�nk�

log p

p
� ��� log 
� log k�

Wirsing also shows that if we count with pj in place of p�j then we get log 
 in place of
�� log 
 �see also 	Sa�
��

We believe that the squarefree entries in Pascal�s Triangle must be much nearer still

to the edge�

Conjecture �� There exists a constant �� � � such that if n is su�ciently large and
�
n
k

�
is squarefree then k or n� k is � ���log nlog log n���

If true� this is more�or�less best possible since we prove� in the other direction�
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Theorem �� There exists a constant �� � � such that there are in�nitely many pairs of

integers n and k for which
�
n
k

�
is squarefree� with ��log

�n � k � n�
�

There are even some rows of Pascal�s Triangle which begin with lots of squarefree

entries�

Theorem �� There exist in�nitely many integers n such that
�
n
k

�
is squarefree for all

k � �
	 log n�

FromTheorem 
 it is evident that there are only �nitely many rows of Pascal�s Triangle

in which all of the entries are squarefree� In section 
 we show that this occurs only in

rows �� 
� �� �� �� �� and 
� �a result proved by Erd�os long ago��

In the other direction we show that there are no squarefree entries� other than the ���s

on either end� in a positive proportion of the rows of Pascal�s Triangle� Indeed that� on

average there is a constant number of squarefree entries in a row� and even that there is a

�distribution function�� Speci�cally we prove �answering a question in 	EG� p� �

��

Theorem 	� The sequence of integers n� for which the nth row of Pascal�s Triangle has

exactly 
m�
 squarefree entries� has asymptotic density� If we denote this density by �m

then there exists a constant �� � � for which � � �m � exp ����
p
m�log �
m�� for any

m � ��

The key ideas to gaining such a precise understanding of the distribution of the square�

free entries in Pascal�s Triangle are Theorem 
 and the following result� which we prove

using Brun�s method�

Theorem 
� For any positive integer k� the sequence of integers n� for which
�
n
k

�
is

squarefree� has asymptotic density� We denote this density by ck� and prove that � � ck �

e�f�
o���g
p
k�log k where

	 ��
X
j��

�

j

j

�

�j � ��
�

�


�j��

�
��� j

X
i�j

�

i�

�
A � ���
�����
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and 
�s� is the Riemann zeta�function� In fact� if N � exp����	
p
k� then the number of

integers n � N for which
�
n
k

�
is squarefree is� uniformly�

ckN

�
� �O

�
�

klogN

��
�

We see that Theorem � follows immediately from Theorem �� Moreover Theorem �

provides the heuristic basis upon which we make Conjecture ��

In order to arrive at Theorem � �given Theorems 
 and �� we certainly need some

result that gives us an understanding of the distribution of squarefree binomial coe�cients�
n
k

�
when

exp
�
���log n�

����log log n����
	
� k � log �n�

To do this we shall apply the large sieve to prove�

Theorem �� For any given �	 � �� there exists a constant �� � � such that if N is

su�ciently large then there are � N�����log log N pairs of integers n and k satisfying

�	log
�N � k � n� �	log

�N and N�
 � n � N � for which
�
n
k

�
is squarefree�

Applying Theorem � with �	 � ������	��� together with Theorem �� implies

Corollary �� On average� there are approximately ten�and�two�thirds squarefree entries

in a row of Pascal�s triangle� More precisely� there are � ��N squarefree binomial coe��

cients
�
n
k

�
with � � k � n � N � where �� � 


P
k�� ck � ����� � � ��

Most binomial coe�cients are divisible by the squares of many small primes� However

they are also usually divisible by the squares of large primes� indeed one can modify the

proof of Theorem � to ascertain

Corollary ��� For any �xed prime q� there exists a constant �q � � such that there are

� �qN binomial coe�cients
�
n
k

�
� with � � k � n � N � which are not divisible by the

square of any prime p � q�

We give a related application of our methods� Erd�os� Lacampagne and Selfridge 	ELS


recently conjectured that if the least prime factor of
�
n
k

�
is � k then n is bigger than an

arbitrary power of k� This follows from
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Theorem �� If the least prime factor of
�
n
k

�
is � k then there exists an absolute constant

c � � such that

n � exp
�
c
�
log �k�log log k

����	
�

Bounds on exponential sums�

This paper �lls what we believe to be a lacuna in the existing literature concerning

upper bounds on exponential sums� Although it has always been evident that many of

the known estimates can be made explicit� it is a non�trivial problem to actually do so�

In particular so that the constants involved do not render the explicit estimates useless in

practical applications�

We have used the practical bounds that are needed to prove Theorem � as motivation

for our results here� though we hope that this work will be applicable to a variety of other

problems which routinely apply these or related exponential sum estimates� In particular

our results here can be used to say something about the questions of estimating the number

of integers free of large prime factors in short intervals �see 	FL
�� and of the largest prime

factor of an integer in an interval �see 	J
��

Our key result is

Theorem 
� If k is a positive integer and y � �
	x

��	 then






X

y�n�y�
 �n�e�x�n�







 �
��

�
y

�
x

y
k��
�

� �
	
�k���

�log ��y������

for any y � y� � 
y� 	Here� as usual�  �n� is Von Mangoldt�s funtion and e�t� � e�i�t�


The bound in Theorem � is minimized when k is the smallest integer satisfying

��� � �
�



�k � 
�k� � log x

log y
�

For this value of k we deduce that

�

y���k��
�
�

x

y
k��
�

� �

�k���

� �

y���k
�

We can thus deduce
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Corollary �� If y � �
	x

��	 and k is the smallest integer satisfying 	�
 then








X

y�n�y�
 �n�e�x�n�







 �
��

�
y�����

k��

�log ��y������

for any y � y� � 
y�

For larger values of y we have the following result�

Theorem 
�� If x � y � 
x��� then








X

y�n�y�
 �n�e�x�n�







 � �y
�y
x

	 �
	

�log ��y�	���

for any y � y� � 
y�

The contents of this paper�

We begin� in section �� by discussing Kummer�s fundamental Theorem for understand�

ing the prime power divisors of binomial coe�cients� We immediately apply this to show

that Theorem � is true for n � 
���	���� Next we show that the nth row of Pascal�s triangle

contains only squarefree integers for n � �� 
� �� �� �� �� or 
�� and no other n values� We

start section 
 by proving a strong form of Theorem �� We then indicate how Theorem ��

is proved� and discuss the computations necessary for that�

In section � we discuss more detailed ways of applying Kummer�s Theorem� in par�

ticular those that we shall use later in the paper� We also prove a non�uniform version of

Theorem �� and specify the values of the constants ck� In section �� we prove a uniform

version of Theorem � using Brun�s method� This implies Theorem � also�

In section �� we explain how our subject is related to exponential sums and discuss the

relevant results in the literature� We prove Theorems 
 and �� We then prove the estimate

for log ck� given in Theorem �� and show how the value of 	 is determined� We also apply

such methods to prove Theorem �� In section �� we complete the proof of Theorem ��

In section �� we indicate how Theorems � and �� for n � 
���� follow from Theorem

�� Then� in section �� we give explicit upper bounds on exponential sums of the form
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P
e�x�n�� and in section � on exponential sums of the form

P
e�x�p�� where p is prime�

so giving the proof of Theorems � and ���

Details of computations are available by email request from andrew�math�uga�edu
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�� Kummer�s Theorem and some straightforward consequences�

In ���� Kummer observed that the power to which prime p divides the binomial

coe�cient
�
n
m

�
is given by the number of �carries� when one adds m and n�m written in

base p� We shall� henceforth� refer to this asKummer�s Theorem� We leave the entertaining

task of proving this delightful observation to our enthusiastic reader�

A useful alternate way to state Kummer�s Theorem is that the power of prime p

dividing
�
n
m

�
is given by the number of integers j � � for which fm�pjg � fn�pjg� where

ftg denotes the fractional part of t �since this is equivalent to a carry occurring in the pj��
column��

�a� Theorem � for n � ��	�

Any integer n in base 
 is of the form
Pk

i
� 

ai where the ai�s are distinct� Adding n

to itself in base 
 we get exactly k carries� and so 
k divides
�
�n
n

�
by Kummer�s Theorem�

Therefore

Proposition ���� If n � � then 
 divides
�
�n
n

�
� unless n is a power of ��

Thus we need only verify Theorem � where n is a power of 
� and it seems likely that �

will divide
�
�k��

�k

�
once k is su�ciently large� We tested this for k � ���� ��� by examining


k �mod ���� with Kummer�s Theorem� Write


k 	 a	�
 � a	�
 
 �� � a	

 
 �� � � � �� a	��
 
 ��� �mod �����
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If a	i
 � a	j
 � 
 or a	i
 � 
� a	i��
 � � then we shall have two carries when we add 
k to

itself in base �� and so� by Kummer�s theorem� � divides
�
�k��

�k

�
� Here is a Maple program

to test this�

a	�
 �� � � for i from � to �� do a	i
 �� � od �

for k from � to ������ do c �� � � t �� � �

for i from � to �� do a	i
 �� 
 
 a	i
 � c � c �� � �

if a	i
 � 
 then a	i
 �� a	i
 � � � c �� � � t �� t � � � � � od �

if t � 
 then print�k� ��

od �

This program ran in slightly under �� �� minutes cpu time on a Sun ��
��� The print

out was just k � �� �� 
� � and �� In the latter two cases one has ����� divides
�
��

��

�
� and

����� divides
�
��

��

�
� This gives

Corollary ���� Either 
 or � divides
�
�n
n

�
for � � n � 
���	���� except in the following

two cases where �� divides
�
���
��

�
� and �� divides

�
	��
�	�

�
�

Remarks� Goetgheluck 	Go
 proved this for � � n � 
����	��� with an almost identical

algorithm� Sander 	Sa�
 has conjectured that � or � divides
�
�n
n

�
for all n except �� 
� �� ��

and 
���

�b� Rows whose entries are all squarefree�

We shall next return to the problem� raised in the introduction� of �nding all those

rows of Pascal�s triangle whose entries are squarefree� We start by proving

Lemma ���� Suppose that p is a prime for which p� does not divide
�
n
m

�
for all � �m � n�

Then pr�� divides n� �� where pr
� � n � pr�

Proof� Write n in base p so that

n � arp
r � ar��pr�� � � � �� a��
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where � � ai � p � � and ar � �� If pr�� does not divide n � �� then there exists some

integer i � r�
 such that ai �� p��� Let I be the smallest such integer� Takingm � pr��
we get carries in columns pI and pI
� when we add m and n �m in base p� which gives

that p� divides
�
n
m

�
� a contradiction�

Corollary ���� If
�
n
m

�
is squarefree for all � � m � n then n � �� 
� �� �� �� �� or 
��

Proof� If n � 
� then n � �� and 
r� where 
r
� � n� Therefore� by Lemma ���� 
r���

divides n � �� Thus n � � � 
r��� � �n��� which is impossible� If 
� � n � � then

�
 divides n � � by Lemma ���� giving only the possibilities n � �� and n � 
�� By

considering the power of 
 that must divide n�� �because of Lemma ���� when n � �� we
are left with the possibilities n � �� 
� �� �� �� From explicit computations we then get the

result�

�� Further elementary consequences of Kummer�s Theorem�

�a� Lots of successive squarefree binomial coe�cients�

Theorem � follows from

Theorem ���� There exist in�nitely many integers n such that
�
n
k

�
is squarefree for every

positive integer k � ��� � o���
�
log n�

Proof� Fix integer y and letm �
Q

p�y p
	 log ylog p 

�� thenm � ef�
o���gy by the prime number

theorem� We shall consider the powers of primes that divide
�
n
k

�
� where k � y and n 	 ��

�mod m��

If p is a prime � y then n 	 �� �mod p	
log y
log p 

��� �by de�nition�� so that the pjth

digit of n is p� �� for � � j �
h
log y
log p

i
� Therefore there cannot be any carries when we add

k to n� k in base p �since k � y � p	
log y
log p 

��� and so p does not divide

�
n
k

�
by Kummer�s

Theorem�
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If p is a prime � y�� k� then p can divide at most one of the integers n� n��� � � � � n�
�k� ��� So if p� divides �nk� then p� divides n� j for some non�negative integer j � k� ��

Combining the remarks in the two paragraphs immediately above we have that
�
n
k

�
is squarefree for all � � k � y when n 	 �� �mod m�� provided that p� does not divide

any of the integers n� n� �� � � � � n� �y � ��� for any prime y � p � pn�
Now� the number of integers n � x with n 	 �� �mod m�� for which one of n� n �

�� � � � � n � �y � �� is divisible by the square of a prime in �y�px
 is

�
X

y�p�px
y

�
x

mp�
� �

�
� yx

m

X
p�y

�

p�
� y

p
x� x

mlog y
� y

p
x�

This is less than 	�x� ���m
� the number of integers n � x with n 	 �� �mod m�� once

x � m�y�� Therefore there exists n � ef�
o���gy for which
�
n
k

�
is squarefree for every

positive integer k � y�

�b� Theorem �� for n � 
�����

Using Theorem � we shall prove� later in this paper� that
�
�n
n

�
is divisible by the square

of some prime �
p
n� for every n � 
�����

Theorem �� may be veri�ed for n � 
��� by factoring each
�
�n
n

�
� This is most easily

achieved� by induction on n � �� 
� � � �� by multiplying
�
��n���
n��

�
already factored� through

by 
�
n� ���n already factored� The values of n for which p� does not divide ��nn � for any
prime p �

p
n�� are �� 
� �� 
��

� 
����� ������ ������ ��� ��� ���� �������� ���� ��������

�������� 
���
�
� �������� �������� �������� ������
� �����
�� ��
����� �
������ ������
�

�������� �������� ��
� ����� ���������� 
�
��
���� 
����
����

To verify Theorem �� for 
��� � n � 
���� we shall use the following immediate

consequence of Kummer�s Theorem� since it guarantees a carry in the p� and p� digits

when we add n to n in base p�
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Lemma ���� If p is a prime for which fn�pg� fn�p�g � ��
 then p� divides
�
�n
n

�
�

Corollary ���� If p is a prime for which fN�pg� fN�p�g � ��
 then p� divides
�
�n
n

�
for

each integer n in the range N � n � p�� � 	N�p
� � ��

Proof� If N � n � p�� � 	N�p
� � � then fn�pg � �n � N��p � fN�pg � ��
 and

fn�p�g � fN�p�g � ��
� so the result follows from Lemma 
�
�

We veri�ed Theorem �� for 
��
 � n � ���� by directly using Corollary 
��� as follows�

Suppose we have already veri�ed Theorem �� for 
��
 � n � N � �� Let p be the largest
prime �

p

N � We check whether fN�p�g � ��
 and fN�pg � ��
� If so then Corollary


�� implies that Theorem �� holds in a longer interval� If not then we try the next smallest

prime p� We keep checking whether smaller and smaller primes p can satisfy the hypothesis

of Corollary 
��� and in each case we did �nd such a prime p� Once we have found such

a prime� and thus a new �and longer� interval in which Theorem �� holds� we apply the

algorithm to this new interval�

At each step this algorithm gives an interval around N of length � N���� This is

too small to allow us� in practice� to get out as far as 
����� Instead we use the following�

somewhat di�erent� consequence of Lemma 
�
 to do that�

Proposition ���� If m is a positive integer for which p � �m � �� q � �
m � � and

r � �
m � � are all primes then at least one of p�� q� or r� divides
�
�n
n

�
� for each n �

	��m� � 
m� ���m� � �m� 

� with the one exception� namely m � �� n � ����

Proof� We verify this directly for m � �� The next value of m for which p� q and r are

all prime is m � �� so henceforth assume that m � ��
For �� � i � m� �� consider those integers n in the interval

Qi � 	��m� �� i�q � �m� ��m� i�q � �
�

Evidently both fn�qg and fn�q�g � ��
 so that q� divides
�
�n
n

�
by Lemma 
�
�

Similarly� for � � i �m� �� we consider those integers n in the intervals

Ri � 	��m� 
� i�r � �m� �� ��m� �� i�r � �

and Pi � 	���m� �� 
i�p � �m� �� ���m� �� 
i�p� �
�
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Since fn�rg and fn�r�g � ��
 for n � Ri� and fn�pg and fn�p�g � ��
 for n � Pi� we

have that r� and p� divide
�
�n
n

�
� respectively� by Lemma 
�
�

The result then follows since the �consecutive� intervals

Qm��� Rm��� Pm��� Qm��� Rm��� Pm��� � � � � R�� P�� Q�� R�� P�� Q��

cover all of the integers in 	��m� � 
m� ���m� � �m� 

�

Each time we �nd an integerm as in Proposition 
��� it will give us an interval around

N of length � N � Thus� by using Proposition 
��� it is now a practical computational

problem to establish Theorem �� for all n satisfying ���� � n � 
�����

The biggest di�culty in applying Proposition 
�� arises when the integers involved are

large since then it is di�cult to prove that p� q and r are all prime in a reasonable amount

of time �in general� this is a di�cult task for primes larger than 
������ However� there

are relatively quick techniques to verify the primality of prime numbers of certain special

forms� D�H� Lehmer� in ��
�� realized that if p�� � FR� where F � p��� is factored� then

there is� in practice� a quick way to show that p is prime� In ���� Lehmer� with Brillhart

and Selfridge 	BLS
� extended this so that one needs only have the factored F � p��� to get

a quick test� and very recently Konyagin and Pomerance 	KP
 have shown how to extend

this to F � p�����

In order to be able to apply the primality testing method of 	BLS
 to �nding primes

p� q and r as in Proposition 
�� we need only have the factorizations of part of m and

�m � �� To do this we proceed as follows� For given odd integer �� let k be the smallest
integer for which 
k � �
� We select m� to be the least positive integer satisfying the

two congruences m� 	 � �mod 
k� and m� 	 ��
 � ���� �mod �
�� For any m 	 m�

�mod 
k�
� we have that 
k divides m and �
 divides �m � �� If m � ��
�� then the

factored part of p � �� q � � and r � � are � p���� q��� and r���� respectively� and so

we can use the Brillhart�Lehmer�Selfridge test to determine whether each of p� q and r is

prime� These computations� as well as various generalizations� have been performed by

Pam Cutter� and will be described in detail in her paper 	C
�



Explicit bounds on exponential sums ��

Remark� One can prove other results that are similar to Proposition 
��� For ex�

ample� if q� p � q � 
 and r � q � �k are all prime� where k is a positive inte�

ger and q � �
k � 
�� then at least one of p�� q� or r� divides
�
�n
n

�
� for each n �


�
�q

� � ��k � 
�q�
�
�
� �

�
�k

�
q� � ��k � ��q

�
�

�� Further applications of Kummer�s Theorem�

�a� Primes near to
p
n�

Proposition ���� Suppose that
�
n
k

�
is squarefree with � � k � n�
� For any prime p in

the range n� k � p� � n we must have

�����

�
n

p

�
�

�
k

p

�
�

�
n� k

p

�
�

where ftg is the fractional part of t�

Proof� Since k � n� k � p� we have k � ap� b and n� k � cp� d when writing in base

p� However n � p�� and so there must be a carry in the p� column when we add k and

n� k� Since
�
n
k

�
is squarefree� we know� by Kummer�s Theorem that there can be no more

than this one �carry� when we add k and n� k in base p� Thus there is no carry in the p�

column� which implies that ����� holds�

As is usual� we de�ne 
�t� � � if t is an integer� and 
�t� � ftg � �
� otherwise� If p

divides k�n� k�n then it is straightforward to see that




�
n

p

�
� 


�
k

p

�
� 


�
n� k

p

�
�

Otherwise




�
n

p

�
� 


�
k

p

�
� 


�
n� k

p

�

 �



�

depending only on whether there is a carry in the p� column when we add k and n� k in

base p� Speci�cally� from ����� we deduce that

���
� 


�
n

p

�
� 


�
k

p

�
� 


�
n� k

p

�
�
�



�

and so� summing over all primes in this interval we obtain
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Corollary ���� Suppose that
�
n
k

�
is squarefree with � � k � n�
� If P is a set of primes

p in the range n� k � p� � n then

�����








X
p�P




�
n

p

�
log p







�







X
p�P




�
k

p

�
log p







�







X
p�P




�
n� k

p

�
log p







 �
�




X
p�P

p�jnk
n�k�

log p�

�b� Primes near to
p
k�

Proposition ���� Suppose that
�
n
k

�
is squarefree with � � k � n�
� Let P be a set of

primes p in the range
p
k � p � ��

�

p
k� which do not divide k�n � k�n� If fn�p�g � ����

then 	���
 holds� In particular

�����








X
p�P




�
n

p

�
log p







�







X
p�P




�
k

p

�
log p







�







X
p�P




�
n� k

p

�
log p







 �
� �




X
p�P

log p�
X
p�P

fn�p�g����

log p�

Proof� If fn�p�g � ���� � fk�p�g then there is a carry in the p� column when we add k
and n� k in base p� Since

�
n
k

�
is squarefree� we know� by Kummer�s Theorem that there

can be no more than this one �carry� when we add k and n� k in base p� Thus there is no

carry in the p� column� which implies that ����� and consequently ���
� holds� Summing

this result together for all p � P � and taking into account the remarks in section �a� we

deduce ������

�c� How often does p� divide
�
n
k

�
�

First consider primes p � k� Evidently p� divides
�
n
k

�
if and only if p� divides n � j

for some integer j� � � j � k � �� Therefore the proportion of integers n for p� does not
divide

�
n
k

�
is

ck	p �� �� k�p�� for primes p � k�

Now consider primes p � k� Write k in base p� say as k � a� � a�p � � � � � a
p

� If

p� does not divide
�
n
k

�
then there can be no more than one carry when we add k to n� k
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in base p� If n 	 n� � n�p � � � � � n

�p


� �mod p

�� then either each ni � ai� or

there exists nj � aj with nj
� � aj
� � � and otherwise ni � ai� Thus the proportion of

integers n for which p� does not divide
�
n
k

�
is

ck	p ��


Y
i
�

�
�� ai

p

���
�� �


X
j
�

aj�p � �� aj
��

�p� aj��p � aj
��

��
� �

By an application of the combinatorial sieve we deduce the �rst part of Theorem ��

Proposition ���� The number of integers n � N for which
�
n
k

�
is squarefree is � ckN as

N � �� where ck �
Q

p ck	p� and the ck	p are as de�ned above� As examples� c� � ����

and c� �
�
�

Q
p��

�
�� �

p�

	
�

In the next section we shall use some deeper sieve theory� and develop the ideas here�

to prove the �rst part of Theorem ��

The ck may be computed with any desired required accuracy� For k � �� 
� �� � � � � ���

the values of ck are �to three signi�cant digits��

k� � 
 � � � � � � � �

��� ����� ����� �
��� ���� ����� ����� ���
�� ����� �
��� �
��

��� ����
� ���� ������ ��
��� ��
��� ���� ��
�
� ����
� ��
��� �����


�� ����
� ��
��� ������� ������� ������ ������� ��
��� ������ ��

�� ��




��� ������� ������ ������ ��
�
� ������ ������ ������ ������ ������� ��
�

��� ������� ��
��� �����
� ���
��� ���
�� ������� ��������������� ���
�� ����


From our computations
P

��k�	��� ck � ���
��� with an error term bounded by ���
� which

leads to the value of �� given in Corollary �� In section �d we shall prove the asymptotic

formula for log �ck� stated in Theorem ��
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	� Squarefree
�
n
k

�

 with k �xed�

Proof of the last part of Theorem �� We shall use Brun�s method� Let z � k�log x� and

let an be the product of those primes p � z for which p� divides
�
n
k

�
� Let D be the product

of all of the primes � z� From section �b� we know that p does not divide an if and only

if n belongs to one of ck	pp

� residue classes �mod p

��� Thus� letting w�p� � �� ck	p

and W �p� � w�p�p

� be multiplicative functions� we have that the number of n � x for

which an is divisible by d is w�d�x � O�W �d��� for djD� So� by the inclusion�exclusion
principle� we have for any I � ��

X
n�x	 an
�

� �
�I
�X
i
�

����i
X
djD

�
d�
i

X
n�x
djan

�

�
�I
�X
i
�

����i
X
djD

�
d�
i

w�d�x �O

�
B��I
�X

i
�

X
djD

�
d�
i

W �d�

�
CA

� x

�
B�Y
p�z

��� w�p�� �
X

i��I
�

X
djD

�
d�
i

w�d�

�
CA�O

�
B��I
�X

i
�

�

i!

�
�X
p�z

W �p�

�
A
i
�
CA

� x

�
e�C �

X
i��I
�

Ci

i!

�
�O

�
�I
�X
i
�

z�i

i!

�

since W �p� � kp� � z� for all p� and

X
p�z

w�p� � C �� �
X
p�z

log �� �w�p��

so that X
djD

�
d�
i

w�d� � �

i!

�
�X
p�z

w�p�

�
A
i

�

Selecting I � 	log x���log z
 we thus get

X
n�x
an
�

� � xe�C�� �O�e�I ���O�x�����
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An analogous argument gives an upper bound of the same size� so we have proved

X
n�x	 an
�

� � xe�C �� �O�e�I �� �O�x�����

in our range� However we have yet to take account of those primes p bigger than z whose

squares divide
�
n
k

�
� In each case this happens for exactly k residue classes �mod p���

If p � x��� then we split up the values of n according to their residue class �mod p���

and now consider an as above to get an upper bound on the remaining n for which
�
n
k

�
is

divisible by p�� Thus X
n�x	 an
�	 pj�nk�

�� k
x

p�
e�C � x����

If x��� � p � x��� then there are evidently� k x
p� such n� Combining all of these estimates�

we �nd that the number of squarefree
�
n
k

�
with n � x is

xe�C
�
� �O

�
e�I �

k

zlog z

��
�O�kx�����

Finally note that

e�C � ck	p
Y
p�z

��� k�p���� � ck	p

�
� �O

�
k

zlog z

��
�

and the result follows�

�� How exponential sums get involved�

	a� Estimates in the literature�

To estimate exponential sums involving primes one usually writes the characteristic

function of these primes as a linear combination of suitably chosen bilinear forms� In ����

Jutila 	J
 did this for exponential sums involving reciprocals of primes� His results have

since been improved by Sander who used Vaughan�s identity �which was discovered since

Jutila�s paper� instead of the more complicated technique of Vinogradov� Sander has also

shown how to consider reciprocals of powers of prime p� We shall apply� from 	Sa

�
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Lemma 	��� Fix � � � and integer J � �� There exists a constant c � � such that for

any y � x��J � there are

���� � � � �J��y� �O
��

y��c�log y�log x�
�

� yJ��
�
�x����
	
�log x��J

	

primes p � y for which fx�pjg � �j for j � �� 
� � � � � J �

By partial summation one can deduce �with J � �� that

�����







X
p�y




�
x

p

�
log p






�
�
y��c�log y�log x�

�

� y���
�x����
	
log 	x

	b� No squarefree binomial coe�cients near the center of Pascal�s Triangle�

Proof of Theorem �� Fix � � � su�ciently small�

We begin by proving Theorem 
 for n�
 � k � n��� for su�ciently large n� First

note that

X
p�P

log p �
X

n����k��n����p�n���
log p� log �nk�n� k��� k�n���
��

by Hoheisel�s Theorem �where P is as in Corollary ��
�� Inserting this and ����� into �����

we get

k� n�
�
n��c�� � n��� � n���c����log n�log k�

�

� n	���k���
	
�

which is false for k � n��� and n su�ciently large� Thus by Corollary ��
 we know that�
n
k

�
cannot be squarefree�

Next we prove Theorem 
 for n��� � k � exp
�
���log n�����log log n����

�
�

We shall use Proposition ��� assuming that
�
n
k

�
is squarefree� Taking J � 
� �� �

�� �� � ���� x � n and both y �
p
k and y � ��

�

p
k in Lemma ���� we have that the right

side of ����� is

�
��

���
�O

�
�

log k

��p
k �O

��
k�����c����log k�log n�

�

� k�
�n���� � �
	
log �n
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using the prime number theorem� Meanwhile� using Lemma ��� we get the upper bound

�
�
k�����c����log k�log n�

�

� k���
�
	
log 	n

for the left side of ������ Combining these two estimates we have a contradiction in the

range indicated� and so
�
n
k

�
is not squarefree�

By taking � � � we can combine the results above and deduce Theorem 
�

	c� Where there are few squarefree binomial coe�cients�

In this section we look to bound the number of squarefree binomial coe�cients in the

range for k between those given by Theorems 
 and �� that is we assume that

�	log
�n � k � exp

�
���log n�

����log log n����
	
�

Let P now be the set of primes � � in the interval
�p

k� ���
p
k
i
for which fk�pg � 
���

By Lemma ��� we �nd that jPj � �
�
��
p
k�log k� using the prime number theorem� Note

that fk�p�g � ������ for every such prime p�

Let "p denote those residue classes m �mod p�� for which fm�pg � 
�� and

fm�p�g � ������� Thus j"pj � 
�p����� If n 	 m �mod p�� for some m � "p then

fk�pg � fm�pg � fn�pg and fk�p�g � fm�p�g � fn�p�g� so that p� divides �nk� by
Kummer�s Theorem�

We wish to get a good upper bound on the number of n � x for which
�
n
k

�
is squarefree�

From what we have written above this means that n �� "p �mod p�� for all p � P� We
may thus apply sieve methods� For small values of k� that is �	log

�x � k � log ���x� we

shall use the following trivial method�

Fix constant �� � � su�ciently small and let D be the product of ��log x�log log x

distinct primes from P� Evidently �� must be chosen su�ciently small so that this size

subset exists� and also so that D � x���� For m � �� 
� � � � �D� consider those integers

n � x which are 	 m �mod D��� Evidently if m � "p �mod p�� for some p dividing D

then
�
n
k

�
is not squarefree� By the Chinese Remainder Theorem we see that the number
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of m �mod D�� for which m �� "p �mod p�� for all p dividing D is
Q

pjD�p
� � j"pj��

Therefore the number of squarefree
�
n
k

�
with n � x is

�
Y
pjD
�p� � j"pj�

� x

D�
�O���

	
� D�


��log x�log log x
x

D�
� x

e���log x�log log x
�

Therefore we have proved

Lemma 	��� There are � x exp����log x�log log x� squarefree binomial coe�cients
�
n
k

�
with n � x and �	log

�x � k � log ���x� for su�ciently large x�

Now consider k in the range log ���x � k � x��	� We shall use the arithmetic form

of the large sieve� though with squares of primes rather than with primes �the proof of

Th�eor#eme �� given in 	Bo
� can be modi�ed to allow one to sieve with any set of pairwise

coprime integers� rather than with just primes $ see also 	Ga
�� Note that j"pj��p��j"pj� �

��
� and is therefore � � if x is large enough and p � P� Therefore the number of n � x

for which
�
n
k

�
is squarefree is � �x � z���G�z� where

G�z� �
X
d�pz�

pjd�p�P

���d�
Y
pjd

j"pj
p� � j"pj �

X
d�pz�

pjd�p�P

���d��

Now let z �
p
x and v �

h
log �

p
z�

log � ���
p
k�

i
� log x

�log k � Since v � k����� thus

G�z� �
�jPj
v

�
�
� jPj

v
� �
�v

� k�������
o����v � x������
o����

so that the number of n � x for which
�
n
k

�
is squarefree is � x�	�����
o��� � x����	 if x is

large enough� This implies

Lemma 	��� There are � x����	 squarefree binomial coe�cients
�
n
k

�
with n � x and

log ���x � k � x��	� for su�ciently large x�

Combining the last two lemmas with Theorem 
 gives Theorem ��
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	d� An asymptotic formula for log �ck��

We shall study the size of the ck	p as de�ned in section �c� Fix � � �� The �rst

thing to note is that each one is a positive rational number with denominator p

� � kp��

Therefore 






X

p��
p
k�log k

log ck	p







�
�
p
k

log k
�

Suppose that k � p � ���
p
k� so that if k � ap � b then � � a � ��p and � � b � p � ��

Then� taking b � p in the expression for ck	p� we �nd that ck	p � �� � �a � ���p� �

��� 
k�p��� Combining this lower bound with ck	p � �� k�p� when p � k� we have








X

p����
p
k

log ck	p







�
�
p
k

log k
�

So all remaining primes p lie in the interval J � 	���
p
k� �

p
k�log k
� and we can write

k � dp� � ap � b where � � d� log �k� and a � ��p if d � ��

Now� if b�p � �� ���log �k then p divides k� i for some i � p���log �k � �
p
k�log �k�

However as all of the primes in J are � �k � i���� we see that each such k� i can have no

more than two such prime factors� Thus








X

b�p������log �k

log ck	p







�
�
p
k

log k
�

where the sum here is only over primes p � J �

If� for a given d� we have a�p � �� ��log �k then prime p lies in an interval of length

�
p
k��d� ������d � ��log k�� immediately above

p
k��d� ��� Thus








X

a�p�����log �k

log ck	p







�
�
p
k

log k

X
d��

�

�d � �����
� �

p
k

log k
�
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Thus we may also assume henceforth that � � b�p� � � a�p � ���log �k� Inserting

these assumptions on a and b� as well as the range for d� into the de�nition of ck	p we get

that

ck	p �

�
�� a

p

��
�� b

p

��
� �

a

p� a
�

b

p� b

��
� �O

�
���log �k

p

��

�

�
�� ab

p�

��
� �O

�
���log �k

p

��
�

Therefore� collecting the estimates above� we have

���
� log ck �
X

�
p
k�log k�p����

p
k

a�p� b�p������log �k

log

�
�� ab

p�

�
�O

�
�
p
k

log k

�
�

where k 	 ap� b �mod p���

From Lemma ��� we know that the value of b�p is very well equi�distributed on 	�� ���

as p runs through relatively short intervals of primes� By the prime number theorem with

a reasonable error term� we know that a�p is also so distributed� Thus we may estimate

���
� via partial summation� Without going through the straightforward though lengthy

details we simply note that� for �xed integer d � �� the sum in ���
�� restricted to those

primes p with 	k�p�
 � d� is

�

p
k

log k

�Z �

�

�

�d � t����
�
��� t���log ��� t� � ��dt�O���

�
�

We now sum this formula over all integers d � �� taking x � d � t so that t � fxg� and
noting that ��� t���log �� � t� � � � �Pj�� t

j�j�j � ��� to get

ck � e�f�
o���g
p
k�log k�

where

����� 	 ��
X
j��

�

j�j � ��

Z �

�

fxgjx����dx�

Letting �� � gives the asymptotic formula for log �ck� in Theorem �� though we still need

to �nd the value of 	�
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First we split the integral back up� and integrate by parts to get

Z �

�

fxgjx����dx �
X
n��

Z n

n��
fxgjx����dx �

X
n��

�
�X
i��

j!

�j � i�!

�
i�!


�i��i!
fxgj
ix�i����

�
�
n

n��

�
X
i��

j!

�j � i�!

�
i�!


�i��i!

X
n��

n�i���� �
X
i��

j!

�j � i�!

�
i�!


�i��i!

�i� ��
��

Therefore

����� 	 �
X
i��

�
i�!


�i��i!

�i� ��
� �i where �i ��

X
j��

�

j�j � ��

j!

�j � i�!
�

and 
�s� is the Riemann zeta�function� Now

�i � ���i �
X
j��

��j � i� � �j � ��� �

j�j � ��

j!

�j � i�!
� �i�� �

X
j��

j � �!
�j � i�!

Moreover� integrating by parts� we get

ti

i�i!�
�

Z
tit��

i!
dt �

X
j��

j � �!
�j � i�!

ti
jt�j �

so that� above�

�i� ��!�i � �i � 
�!�i�� � �i� 
�!
i�i!�

� �i� 
�!�i�� � �

i��i� ��

� �i � ��!�i�� � �

i��i � �� �
�

�i� ����i� 
� � � � � � �� �
iX

m
�

�

m��m� ��

�
X

m�i
�

�

m��m� �� �
X

m�i
�

�
�

�m � �� �
�

m
� �

m�

�
�
�

i
�

X
m�i
�

�

m�
�

Substituting this into ������ we get the formula for 	 given in the statement of Theorem ��

To compute 	 we insert the third to last expression into ����� to get

����� 	 �
X
i��

�

i

i

�
i


�i��

�i� ��
�

X
m�i
�

�

m��m � �� �
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Of course 
�i� ��
� � � �O�
�i� so we start by investigating

	� �
X
i��

�

i

i

�
i


�i��
X

m�i
�

�

m��m� �� �
X
m��

�

m��m� ��
m��X
i
�

�

i

i

�
i


�i��
�

Now� by the binomial theorem� ����� x���� �
P

i��
�
�i
i

�
xi

��i � Therefore
Pm��

i
�

�
�i
i

�
i

��i�� is

the coe�cient of xm in x����x� times x����x����� that is x�����x�	��� and thus equals
�
�

�
�m
m

�m�m���
��m�� � Therefore

	� �
�

�

X
m��

�

m

�

m

m

�
�


�m
�

We may integrate the above expansion of �����x���� to note that 
log �
���p�� x��x� �P
m��

�
�m
m

�
xm

m��m � Taking x � � we �nd that 	� � ��log 
� 
��� � ������
���� � � ��

Above we saw that ci �
P

m�i
�
�

m��m��� � ��i� Also
�
�i
i

�
�
�
�
�

�
�
Q

��j�i�
j�
j �
���j�j � ��� � 
��i���� so that

�
�i
i

�
ici

��i�� � �� If s � � then 
�s� � � � 
�s �
R
t�� t

�sdt �


�s�s � ����s � ��� so that 
�i� ��
� � � � 
��i��� for any i � �� Now by �����

	� 	� �
X
i�I

�

i

i

�
ici

�i��

�
�i � ��
�� �� � Error�I��

where

Error�I� �
X
i�I

�

i

i

�
ici

�i��

�
�i � ��
�� �� �
X
i�I


��i��� � 
��I����

To facilitate the computation of the ci we note that c� � 
� ���� and ci � ci��� �
i��i��� �

Using Maple we then computed 	 up to an error smaller than ���� by applying the above

with I � 

 and got that 	� 	� � �������� and so 	 � ���
�����

	e� The Erd�os�Lacampagne�Selfridge problem�

The proof of Theorem �� Suppose that the smallest prime factor of �n� ���n� 
� � � � �n�
k��k! is � k� That n � k��log k has been proved in 	ELS
� so we may assume this� Let

p be any prime in the interval k
� � p � k

� �� � �� where � � ���� say� Then p j k! but
p� � jk!� so that p j �n � �� � � � �n � k� but p� � j�n � �� � � � �n � k�� Consider the multiples
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p
�h

n
p

i
� �

	
and p

�h
n
p

i
� 


	
of p� Evidently both are � n� However they can�t both

divide �n� �� � � � �n � k� so

p

��
n

p

�
� 


�
� n� k�

Thus �k � 
p � k � n� p

�
n

p

�
� p

�
n

p

�

so that � �
�
n

p

�
�

�k

p
�

�k

k�

� 
� �

�

�
�

and then








X

k
��p�

k
� ��
��




�
n

p

�
log p







�
�
�



� �

�

�
�k



� k�

This contradicts ����� for our range of n� and thus implies the Theorem�

The reader may care to look at the interesting data collected by Scheidler andWilliams

	SW
 where� for each k � ���� they �nd the smallest n for which all prime factors of
�
n
k

�
are greater than k� Scheidler and Williams inform us that they have been continuing their

computations since then and will soon publish a sequel with many more such n�


� The proof of Theorem ��

Fix integer m � � and select another integerM � much larger than m� By Theorems �

and � we see that the number of integers n � N for which there is some k� M � k � n�


for which
�
n
k

�
is squarefree is � N exp��f	� o���gpM�logM��

Now suppose that the set of integers K �� fk� � k� � � � � � krg and prime p are
given� Just as in section �c� we can compute the proportion� cK	p� of integers n for which

p� does not divide any of
�
n
k�

�
�
�
n
k�

�
� � � �

�
n
kr

�
� For example� if p � kr then cK	p � �� kr�p

��

In general the value of cK	p is well de�ned and is a rather complicated function of the base

p digits of k�� k�� � � � � kr � It is not� however� necessary to compute cK	p� though we do note

that it is � � since p� does not divide any of
�
n
k�

�
�
�
n
k�

�
� � � �

�
n
kr

�
when n 	 �� �mod p
�

where p
 � kr�
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Thus� by the combinatorial sieve� the number of integers n � N for which�
n
k�

�
�
�
n
k�

�
� � � �

�
n
kr

�
are all squarefree is � cKN where cK �

Q
p cK	p�

A rather di�erent application of the inclusion�exclusion formula tells us that the pro�

portion of integers n � N � for which the set of integers k �M such that
�
n
k

�
is squarefree

is exactly a given set K of m integers� is

cK�o��� � �m� ��
X

K�L�f������Mg
jLj
m��

cL �

�
m� 





� X
K�L�f������Mg

jLj
m��

cL

�
�
m� �

�

� X
K�L�f������Mg

jLj
m��

cL � � � � �

which equals c�K	M � o���� for some constant c�K	M � as N � �� Let �m	M be the sum

of c�K	M over all m element subsets K of f�� � � � �Mg� Therefore the number of integers
n � N for which there are exactly 
m integers � � k � n � � with �nk� squarefree is �
N
�
�m	M � o��� �O

�
e�f�
o���g

p
M�logM

		
� Letting M ��� the �rst part of Theorem

� follows with �m � limM	� �m	M �

For the second part of Theorem �� note that if there are m integers k� � � k � n�


for which
�
n
k

�
is squarefree then the largest of them is � m� Thus� from Theorems � and

� we have that

�m �
X
k�m

ck � e�f�
o���g
p
m�log ��m��

Remark� It is perhaps worth noting that the ck are not multiplicatively independent� in

the sense that ci	j �� cicj� For example c�	� � �����c� but c� �� ��� �see Proposition ���

for the values of c� and c��� It is true in general though that if k is the largest element of

K then cK�ck is a rational number between � and ��

�� Proving Theorem � for �explicit� large n�

We shall assume throughout this section that
�
�n
n

�
is squarefree�
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Corollary ��
 holds with �prime� p changed to �prime power� p in the hypothesis �the

changes in the proof are straightforward�� Replacing k and n in Corollary ��
 by n and


n� respectively� we now have

�����







X
d�I


�
n�d� �d�






� 







X
d�I


�n�d� �d�






 � �




X
d�I	 �d	�n�
�

 �d��

where I is the set of integers d in the range
p
n � d � p


n�

Theorem �� and the display following ������ from 	Va
 give the following �also using

Theorem � and ����� from 	Va
��

Lemma ���� For any positive integer R� we have



�t� � �


R� 

�
X
jrj�R
r �
�

a
r e�rt��

where

a
r �
i


��R� ��

�
�

�
�� jrj

R � �

�
cot

�
�r

R� �

�
�
jrj
r

�

 �


R� 


�
�� jrj

R� �

�
�

Therefore we get



X
d�I




�
X

d

�
 �d� � �


R� 


X
d�I

 �d� �
X

��jrj�R
a
r

�X
d�I

e

�
rX

d

�
 �d�

�

� �


R� 


X
d�I

 �d� �

�
� X

��jrj�R
ja
r j

�
A max

X�x�XR







X
d�I

e
�x
d

	
 �d�






 �
Taking R � ��� we deduce from ����� �and the appropriate computations� that

���
�
X
d�I

 �d� � ��

�
max

n�x���n







X
d�I

e
�x
d

	
 �d�






� ��

�
log n�

since
P

d�I	 �d	�n��� �d� � log n�

The entry for b � �� in the table on page ��� of 	Sch
 means that jPd�x �d�� xj �
x��� � ��	� for x � e��� ThereforeX

d�I
 �d�� ��

�
log n � �

p

� ��pn�

p

 � �

� � ��	
p
n� ��

�
log n

� ����

�����
� �
p

� ��pn � ��

���

p
n

for n � e��� Substituting this into ���
� we get
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Lemma ���� Suppose that
�
�n
n

�
is not divisible by the square of any prime �

p
n� If

n � e�� then

max
n�x���n








X

p
n�d�

p
�n

e
�x
d

	
 �d�







 �



��

p
n�

Now� if we take k � 
 in Theorem � we �nd that for n � ��� we have

max
n�x���n








X

p
n�d�p�n

e
�x
d

	
 �d�







 � ���
�n������log 
��n������

Comparing this to Lemma ��
 we �nd that n � �������log 
��n����� which gives a contra�

diction for n � 
�����

�� Explicit bounds on exponential sums over integers�

We now give several lemmas which provide explicit upper bounds for the size of certain

exponential sums� The main results are given in Propositions ��� and ��
� where the reader

may recognize the exponent pair ���k��
k
��
�� ���
k
��
��� �For an historical account�
the reader is referred to chapter V of Titchmarsh�s book 	Ti
 �� It is worth mentioning that

in our work we omit the truncated Poisson summation formula from the usual theory�

Proposition ����

	a
 If A � �
x���� then 






X

A�n�B
e
�x
n

	





 �

B�

�x
�

�b� If k is a positive integer� x a positive real number and ���� � A � B � 
A with

A � �x��	 then

�����








X

A�n�B
e
�x
n

	





 � �


�

x

Ak
�

�����k�����
A
p
logA�
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Remark� Note that Proposition ����b� follows from Proposition ����a� for �
x���� � A �
�x��	� If A � �
x���� the right side of ����� is minimized when k is the largest integer

satisfying

���
� k � 
��k � log �
x��log A

�note that k � ��� Thus Proposition ����b� follows if we just prove it for this one particular
value of k�

Proposition ����b� follows from the more general �and technical��

Proposition ���� Let k � � be an integer� Suppose that� on the interval 	A�B
� f�t� is

�k � 
��times di�erentiable with f �k
���t� monotonic� Let mk and Mk be the minimum

and maximum values of f �k
���t� on 	A�B
� respectively� Let Q � �
Mk��������
�k��� and

suppose that N is an integer such that there are � N integers in 
A�B
� If � � mk �
Mk � ���
 � �k� and Q � N then







�

�N

X
A�n�B

e�
f�n��






 �

�
�

�Q
�

�

�N

Mk

mk

�
logQp

k

�k����k

�

To prove this we shall need various lemmas� First a version of the Weyl�van der

Corput lemma �the following can be proved by making suitable �minor� modi�cations to

the proof of Lemma 
�� in 	GK
 ���

Lemma ���� Suppose that ��� ��� � � � � �N is a sequence of complex numbers� each with

j�ij � �� and de�ne %�m � �m� %r�m � �m
r�m and

%r�	���	rk 	s�m � �%r�	���rk�m
s��%r�	���	rk�m��

Then for any given k � �� and real number Q � 	��N 
�





 ��N

NX
m
�

�m







�k

� �

�Q
�

�

�Q����k��

Q���X
r�
�

Q���X
r�
�

� � �

Q��k��X
rk
�






 �N
N�r������rkX

m
�

%r�	���	rk�m






 �
We also need a version of the Kusmin�Landau lemma �see Theorem 
�� and the notes

at the end of of chapter 
 in 	GK
��

� There is a slight misprint there� One needs to change the �rst q to a Q�
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Lemma ���� Suppose that� on the interval 	A�B
� f�t� is a di�erentiable 	real�valued


function� with f ��t� monotonic and � � m � f ��t� � �
� � Then







X
A�n�B

e�
f�n��






 � cot

�m



� 


�m
�

Proposition ����a� follows by taking f�t� � �x�t in Lemma ��� $ we leave the details
to the reader�

Now de�ne f��t� � f�t�� fr�t� � f�t � r� � f�t�� and fr	s�t� � fr�t � s� � fr�t� in

general� We have

Lemma ��	� If f�t� is �k � h��times di�erentiable in 	t� t� r� � � � �� rk
 then

f �h�r� 	r�	���	rk
�t� � r�r� � � � rk f �h
k��t� ��r� � � � � � �krk�

for some �i� � � �i � ��

Proof � By de�nition fr	d�t� � fr�t � d� � fr�t�� Di�erentiating h times we have

f
�h�
r	d �t� � f �h�

r
�t� d� � f �h�

r
�t�

� df �h
��
r

�t � �d�

for some �� � � � � �� by the Mean�Value Theorem� The Lemma follows from iterating

this k times�

Proposition ��
 follows easily from

Lemma ��
� Let k � � be an integer� Suppose that� on the interval 	A�B
� f�t� is

�k � 
��times di�erentiable with f �k
���t� monotonic and

� � mk � f �k
���t� � ��
Q����k��

for some integer Q � 	
k�N 
� If N is an integer such that there are � N integers in the

interval 
A�B
 then








�

�N

X
A�n�B

e�
f�n��







�k

�
�

�Q
�

�k�
k
�


�mkN
� log kQ

Q����k�� �
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Proof � Let C be the smallest integer in 
A�B
� Let �m � e�f�C���m�� for any integerm
in the range � �m � 	B
�C��� and �m � � otherwise� so that %r�m � e�fr�C���m��

for all m � �� Using Lemma ���� we get that the left side above is

� �

�

�
� �

Q
�

�

Q����k��

Q���X
r�
�

Q���X
r�
�

� � �

Q��k��X
rk
�








�

N

X
A�n�B�r��r������rk

e�
fr�n��







�
A �

In each term of the �nal sum �when r is �xed� we �nd that

f �
r
�t� � r� � � � rkf �k
���y�

for some y � �t� t � r� � � � �� rk� � �A�B�� by Lemma ���� Therefore

� � f �
r
�t� � r� � � � rk�
Q����k�� � Q���Q��� � � � Q��k���
Q����k�� � ��


in the required interval� Moreover f ��
r
�t� has the same sign as f �k
���y� for some y �

�A�B� by Lemma ��� �and the sign of f �k
���y� is �xed in this interval according to the

hypothesis�� and so f �
r
�t� is monotonic in the required interval� Thus the hypotheses of

Lemma ��� are satis�ed for the function fr�t�� and so the last term above is

� �

�
� �

Q����k��

Q���X
r�
�

Q���X
r�
�

� � �

Q��k��X
rk
�

�



�N

�
min

A�t�B�r������rk f
�
r
�t�

�

� �

��N

�

Q����k�� min
A�y�B f

�k
���y�
�
�
�Q���X

r�
�

�

r�

�
A
�
�Q���X

r�
�

�

r�

�
A � � �

�
�Q��k��X

rk
�

�

rk

�
A

� �

��mkNQ����k�� �� � logQ�

�
� �

log Q




�
� � �

�
� �

logQ


k��

�
�

since
PR

r
�
�
r � � � log R� Now Q � 
k and so

�� � logQ� � � �

�
� �

log Q


k��

�
�
�
log Q

klog 


�k
�� � klog 
� � � �

�
� �

klog 



k��

�
�

The result follows by establishing that

�� � klog 
� � � �

�
� �

klog 



k��

�
� �k�

k
� �klog 
�k
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for all integers k � �� This is easily checked for k � �� For k � � we use the upper bounds

� � 
�jklog 
 �
�

�jklog 
 exp�
j��klog 
�� for j � l
exp�
�jklog 
� for j � l

where l is an integer� chosen so that 
l�� � klog 
 � 
l� to get

Y
j��
�� � 
�jklog 
� �

�
� Y

��j�l

�jklog 


�
A exp� 
l

klog 

�

klog 



l

�

�
�

��l�����klog 


	l
e� � 
l�l
����e� � �k� k

� �klog 
�k

for k � ��
Proof of Proposition ���	b
� As noted in the remark following the statement of the result�

we need only prove ����� for A � �
x���� and k the largest integer satisfying ���
��
Take f�t� � ����k
�x�t in Proposition ��
 so that Mk � x�k���!�Ak
�� mk � x�k�

��!�Bk
�� and thus �Mk�mk� � �B�A�k
� � � � 
k� Also let N � 	A
 � �� we easily deduce

that Q � N from ���
�� We may assume that Mk � ��
 � �k else x�Ak
� � ��
 � �k�k���!
and the bound given in ����� is worse than that given by trivially bounding every term in

the sum by ��

Using the fact that Q � N � A � �� the upper bound given by Proposition ��
 is

� �N

�
�

�Q
�
�


�Q

�

logNp

k

�k� �

�k

� �N

�

x�k � ��!

Ak
�

� �
�k����

�logN�k�
�k
�

�

��logN�k
�
�


�

�

p
k

�k� �
�k

�

� ��k � ��!
�

�k����

�
�

��log �����k
�
�


�

�

p
k

�k� �

�k ����
p
log ����

����
p
log ����

�

�
�


x

Ak
�

� �
�k����

A
p
log A

since ���� � A � N � A��� The maximum value of the constant two lines above is �����

which is attained when k � �� the result follows�
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�� Explicit bounds on exponential sums over primes�

One can deduce bounds for exponential sums over primes from bounds for exponential

sums over integers� using the celebrated idea of writing  as a linear combination of bilinear

forms� We do so by using Vaughan�s identity� and get non�trivial results for a wide range

of values of y �see Theorems � and �� and Corollary 
 above��


a� The general principle�

We apply Vaughan�s identity �see section 
� in 	Da
� to get the following�

Lemma 
�� �Vaughan�s identity�� Let f be any function� and N�K�M � � real num�

bers satisying 
K � N � ThenX
N���n�N

 �n�f�n� �
X

N���lm�N
m�M

��m�log lf�lm� �
X

N���lr�N
r�MK

brf�lr� �
X

N���kl�N
k�K� l�M

al �k�f�kl��

where

al �
X
mr
l
m�M

��m� and br �
X
mk
r

m�M�k�K

��m� �k��

We shall take N � y� and K � M � y�
�
� later on� but for now we keep the more

general notation�

By Vaughan�s identity �Lemma ���� we have� for K � y � y� � 
y � x�
� thatX
y�n�y�

 �n�e
�x
n

	
� &y� � &y�	� �&y�	� �&y�

where

&y� �
X
m�M

��m�
X

y
m�l� y�

m

log l e
� x

lm

	
�

&y�	� �
X
r�M

br
X

y
r�l� y�

r

e
� x
lr

	
�

&y�	� �
X

M�r�MK

br
X

y
r�l�

y�
r

e
� x
lr

	
�

&y� �
X

M�l� y�
K

al
X

K	 y
l�k�

y�
l

 �k�e
� x
kl

	
�
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We shall need the following straightforward lemma�

Lemma 
���



PB

n
A e
�
x
n

�
log n




 � log �B�

A

	
max A�t�B




PA�n�t e
�
x
n

�


�
Proof� By partial summation we obtain

BX
n
A

e
�x
n

	
log n � log B

X
A�n�B

e
�x
n

	
�
Z B

A

�
� X
A�n�t

e
�x
n

	�A dt

t

and the result follows�

By Lemma ��
 we have

j&y�j �
X
m�M









X

y
m�l� y�

m

e
� x

lm

	
log l








 �
X
m�M

log

�
y��

my

�
max
y�z�y�








X

y
m�n� z

m

e
� x

mn

	





 �

Also� since jbr j � log r� we have

j&y�	�j �









X
r�M

br
X

y
r�l� y�

r

e
� x
lr

	






 �
X
r�M

log r









X

y
r�l� y�

r

e
� x
lr

	






 �

Adding these two expressions together we get

����� j&y�j�


&y�	�

 � log

�
y��

y

� X
m�M

max
y�z�y�








X

y
m�n� z

m

e
� x

mn

	





 �

Lemma 
��� If M � y��
x then

j&y�j� j&y�	�j �
�

�

y�

x
log ���y��

Otherwise� for any positive integer k�

j&y�j� j&y�	�j � ��

�

k � �
k � �

�
y

�

xMk
�

yk
�

� �

�k����
log �����y�
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provided y � ����M and y � �x��	�

Proof� If M � y��
x then �y�m� � �
x�m���� for all m �M and so by Proposition ����a�

we have X
m�M

max
y�z�y�








X

y
m�n� z

m

e
� x

mn

	





 �
X
m�M


y��

�mx
� 
y��

�x
�� � logM�

� �y�

�x
log

�
ey�


x

�
�

since M � y��
x� The �rst estimate of the Lemma follows once we insert this bound into

������ and note that ey��
x � �y�

If M � y��
x then� using Proposition ����b�� we get

X
m�M

max
y
m� z

m� y�
m








X

y
m�n� z

m

e
� x

mn

	





 �

� �

X
m�M

� y
m

	�� k��

�k����
�

x

m

� �
�k���� p

log y

� �
y
�� k��

�k����x
�

�k����
p
log y

X
m�M

�

m
�� k��

�k����

� ��

�

k � �
k � �

�
y
�� k��

�k����x
�

�k����M
k��

�k����
p
log y�

The second estimate in the Lemma now follows from inserting this bound into ������

In order to get an upper bound for j&y�	�j� we split the range of summation for r into
ranges R � r � min�
R�MK� with R �M� 
M� 
�M� � � �� we also split the relevant range

for l into two parts y�
R � l � y��
R and y��
R � l � y��R� Thus we get



&y�	�

 � 


�
logK

log 

� �

�
max

M�R�MK
y��R�L�y���R









X

R�r�R�

X
L�l�L�
y�lr�y�

bre
� x
lr

	







� 
log ��y��

log �

max
y�

�
��R�y� ��

y��R�L�y�R









X

R�r�R�

X
L�l�L�
y�lr�y�

bre
� x
lr

	






���
a�
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when we take M � K � y�
�
� � where R� and L� denote real numbers such that R � R� �

min �
R� y�
�
� � and L � L� � min �
L� y� �� �� Similarly

j&y�j � 

�
� log

�
y�

MK

	
log 


� �

�
A max

M�L�y��K
y��L�R�y���L









X

R�r�R�

X
L�l�L�
y�lr�y�

al �r�e
� x
lr

	







� 
log ��y��

log �

max
y�

�
��L�y� ��

y��L�R�y�L









X

R�r�R�

X
L�l�L�
y�lr�y�

al �r�e
� x
lr

	






 ����
b�

In order to bound such exponential sums we prove the following result�

Proposition 
��� Suppose that we are given sequences of complex numbers� 	u� sup�

ported on 
U� 
U 
� and �v� supported on 
V� 
V 
� where U� V � �� are integers�
	a
 If U�V � 
x then� for any interval I�

�����







X
uv�I

	u�ve
� x

uv

	





�

� 
 k	k��k�k��
�
U � �

�
�UV ��

�x

����
�
�

�b� If U � ���� and if k is a positive integer for which

V
� x

V Uk
�

	 �
�k���� � � and V

� x

V Uk
�

	 �
�k���� � �U�
�	��V �

x

then� for any interval I�

�����







X
uv�I

	u�ve
� x

uv

	





�

� �� k	k��k�k��UV
� x

V Uk
�

	 �
�k���� p

log 
U�

Remarks� The Cauchy�Schwarz inequality gives the �trivial� upper bound k	k��k�k��UV �
Corollary ��� will provide an easy way to apply Proposition ��� to the equations ���
��

To prove Proposition ��� we shall use the following lemma� which is easily deduced

from Theorem �� of 	Va
� Let �u	v be the characteristic function of 	u� v
 � Z� that is�

�u	v�t� � � if there exists an integer in the interval 	u� t� v� t
� and �u	v�t� � � otherwise�



Explicit bounds on exponential sums ��

Lemma 
�	� Fix u and v� For any positive integer L� there exist complex numbers

fc

 �L�gj
j�L� such that

X
j
j�L

c�
 �L�e��t� � �u	v�t� �
X
j
j�L

c

 �L�e��t��

where� for c � c
 or c��

jc
�L�j � jc��L�j � v � u�
�

L� �
�

Corollary 
�
� We have

X
jv��� �v��� j���V �

j�v��v� j � ��% � 
�k�k���

Proof� Since �v is only supported on 
V� 
V 
� we have

X
jv��� �v��� j���V �

j�v��v� j �
X

jv��v�j���
j�v��v� j �

X
�jv��v�j�������

j�v��v� j�

where � � � is a parameter to be chosen later� We apply Lemma ��� to ���	�� for some

positive integer L� so that

X
�jv��v�j�������

j�v��v� j �
X
v�	 v�

j�v��v� j
X
j
j�L

c

 �L�e

�
���v� � v��

�%

�

�
X
j
j�L

jc

 �L�j






X
v

j�vje
�
v��

�%

�





�

�
�

� �

�

L� �

� X
j
j�L







X
v

j�vje
�
v��

�%

�





�

�
�

� �

�

L� �

�
k�k��

�
V �

�%

�

�
�

by the large sieve inequality �as in Th�eor#eme � of 	Bo
� provided �
L � ��� � �%� Now

choose � � �%��
L� ��� while letting L�� �running through integer values only�� and

the result follows�
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Proof of Proposition ��
 � In �a� we shall let % � �UV ���x����� in �b� we shall let

% � V �x�V Uk
��
�

�k���� � which is � � by the hypothesis� Applying the Cauchy�Schwarz

inequality to our exponential sum we get the upper bound

�
�X

u

j	uj�
��B�X

v�	v�

j�v��v� j









X

u��U	�U �� �
v�
I� �

v�
I

e

�
x

u

�
�

v�
� �

v�

��







�
CA

� k	k��

�
���%� 
�k�k��U � V k�k��

max
U�U��U���U
x
V �x	� �

V � x








X

U��u�U�
e

�
x�

u

�






�
A

where x� � x���v� � ��v��� and the �rst term is obtained by bounding the exponential

sum by U if x� � %x�V �� then applying Corollary ���� and the second term is obtained

from the remaining terms by applying the Cauchy�Schwarz inequality to
P j�v��v� j�

For �a� we apply Proposition ����a� to the remaining exponential sum� and the result

follows�

For �b� we apply Proposition ����b� to the remaining exponential sum and� since

U � ���� and 
U � ��%x�V ����	 by hypothesis� we deduce that the above is

� k	k��k�k��UV
p
log 
U

� x

V Uk
�

	 �
�k����

�
��p

log 
���
� �
 � 


�
�

and the result follows�

Corollary 
��� Suppose that we are given sequences of complex numbers� 	u� supported

on 
U� 
U 
� and �v� supported on 
V� 
V 
� where U and V are integers satisying �
y���� �
U � V � �� with y�
 � UV � y�

	a
 Suppose that x � y � x��	�� are given real numbers� If U�V � 
x then� for any

interval I�

�����







X
uv�I

	u�ve
� x

uv

	




 � ���� k	k�k�k�
�
y�

x

����

�

�b� Suppose that x��	�� � y � ���� are given real numbers� and k is a given positive

integer� If U � ���� then� for any interval I�
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�����







X
uv�I

	u�ve
� x

uv

	




 � ����� k	k�k�k�y���
�

x

y
k��
�

� �
	
�k���

log �����y��

Proof � To prove �a� we apply Proposition ����a� and note� by hypothesis� that the upper

bound there is � 
k	k��k�k���

�
y���� � ��y���x���� � �y��x���� � f���x��y	���� � ������g�

and the result follows since x��y	 � �	�

To prove Corollary ����b� we shall apply Proposition ����b�� so we must verify the

hypotheses there� The �rst inequality is V �k����x � V Uk
�� This may be re�arranged

as �UV ��
k����x � U�k��
k��� Now since UV � y�
� x � ��y�	�� and U � �
y�����

the above follows since �y�
��
k������y�	�� � �
y�

�
� ��

k��
k��� for y � ����� The second

inequality there is �xV ��
k����x � ��U�
�	��V ���

k����V Uk
�� This may be re�arranged

as �x�UV ��
k���� � �U���
�

�
� ��

k�����Uk� Using the inequalities above� and the fact that

UV � y� this follows since �
 � �	���
y������k���� � 
	���
y��k�������

To deduce ����� from ����� we use the inequalities in our hypothesis� as well as

V Uk
� � �UV �
k��
� � �y�
�

k��
� since U � V � The upper bound that we get contains

the main term above times the constant ��������
������
�k
������
k��� � ������


b� Putting everything together� the proof of Theorem 
�

We now assume that k is a given integer � � and
�

�
x��	 � y � 
 � ����

By Lemma ��� we have

����� j&y�j� j&y�	�j � ��

�

k � �
k � �

�
y

�

xMk
�

yk
�

� �

�k����
log �����y��

To estimate the exponential sums in ���
� we can apply Corollary ��� with U � V equal

to the numbers R and L� it is easy to check that the hypotheses of Corollary ����b� are
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satis�ed for each sum� Note that V � y�
�
y���� � ��� We also need bounds on k	k�k�k�
for each sum�

For


&y�	�

� we have the bound

k	k��k�k�� �
�
� X
L�l��L

��

�
A
�
� X
R�r��R

b�r

�
A � UV log ��
U�

� ylog ��
�
y����� � ����
��ylog ����y��

since each jbrj � log r� and y � 
� ����
For j&y�j we have� using Proposition ���� �see section ����

k	k��k�k�� �
�
� X
L�l��L

a�l

�
A
�
� X
R�r��R

 �r��

�
A � �

�
L�logM � ���

�
� X
R�r��R

 �r��

�
A �

Now� by ������ and ������ of 	RS
 for R � �
�� and by direct computation for �
� � R � ���
we obtain X

R�r��R
 �r�� � log �
R��
�
R� � 
�R�� � ��
��Rlog �
R��

Therefore� since y � 
� ����

k	k��k�k�� �
�

�
��
��y�logM � ���log �
R� � ����
�ylog ����y��

Inserting these bounds into Corollary ����b�� we deduce from ���
� that



&y�	�

� j&y�j � �������



�log 

f����
����� � ����
����gy

�
x

y
k��
�

� �
	
�k���

log �������y�

� ����
�y

�
x

y
k��
�

� �
	
�k���

log �������y�������

If x � y
k��
� and y � 
�

k

then we can combine ����� and ����� to deduce the bound in

Theorem �� The bound






X

y�n�y�
 �n�e�x�n�







 �







X

y�n��y
 �n�







 � log
�
	
y


	y


�
�

X
p�p�y

log p

� log �
�y� �
p

ylog �

p

y� � 
ylog 
 �

p
y�
 log �
y�������
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is evidently better than that given in Theorem � when x � y
k��
� � It is also better when

� � x � y
k��
� and y � maxf
�k � 
 � ���g� as may be shown from just taking x � � and

performing the pertinent computations�


c� Applying Corollary 
���a��

If we try to apply Corollary ����a� we �nd that it is only for large y that the hypotheses

are satis�ed� in order that U�V � 
x we need that y � 
x���� If we assume this then

Lemma ��� gives

j&y�j� j&y�	�j �
�

�
y
�y
x

	
log ���y��

Proceeding as in section �b� we deduce from Corollary ����a� and ���
� that



&y�	�

� j&y�j � ������



�log 

f����
����� � ����
����gy

�y
x

	 �
	

log 	�����y�

� ���� y
�y
x

	 �
	

log 	�����y��

These bounds combine to give Theorem �� for y � 
 � ����
In the remaining range y � 
 � ���� the upper bound given is �as before� bigger than

that in ����� since x � �y�
���� � ����

��� Some explicit estimates�

In this section we shall prove

Proposition ����� For any N� z � � we have

X
N�n��N

�
B�X

djn
d�z

��d�

�
CA

�

� �

�
N�log z � ����

Remark � This sum was also investigated in 	DIT
�

Before starting on the proof we need some preparatory lemmas�
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Lemma ����� For any integer d and any N � � we have







X
n�N


n�d�
�

��n�

n








 � ��

Proof� We may assume that N is an integer� Let d� be the product of all of the primes up

to N which do not divide d� Then

X
m�N


m�d��
�

� �
X
m�N

X
njm


n�d�
�

��n� �
X
n�N


n�d�
�

��n�

�
N

n

�

� N
X
n�N


n�d�
�

��n�

n
�

X
n�N


n�d�
�

��n�

�
N

n

�
�

Now� since fN��g � � thus









X
n�N


n�d�
�

��n�

n








 �
�

N

�
B� X

n�N

n�d�
� or 
n�d��
�

�

�
CA � ��

Lemma ����� For any N � � we have

X
n�N

���n�

n
� 


�
�logN � �� and

X
n�N

���n�

n
� �n� � �

�
�log N � ����

where � �n� denotes the number of divisors of n�

Proof� We can put an upper bound on the number of squarefree integers up to N by just

counting those that are not divisible by either � or �� this gives us � ��������������N �


��� � �
���N �
� If N � �� then we can remove the numbers 
� and �� from our count�

leaving � �
���N � By explicit computations up to N � �� we thus get

X
n�N

���n� � �
����N � 
��
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equality being attained when N � �� The �rst result above is then deduced through partial

summation� The second result from writing out each factorization n � ab to get

X
n�N

���n�

n
� �n� �

X
ab�N

���a����b�

ab
�
�
�X
a�N

���a�

a

�
A

�

�

and then substituting in the previous estimate�

We now complete the proof of Proposition �����

Proof � The left side above is

� N









X

d��d��z
�d��d����N

��d����d��

	d�� d�









�
X

d��d��z
�d��d����N

���d���
��d���

Let d � �d�� d�� and d� � da� d� � db� Then �b� ad� � �� b � z�d and b � 
N�da so that

the �rst sum is

� N
X
d��z

���d��

d�

X
djd�









X

b�min 
z�d��N�d� �

b�d��
�

��b�

b








 � N
X
d��z

���d��

d�
� �d�� � �

�
N�log z � ����

using Lemma ���� and then the second part of Lemma ���
�

The second sum above is

�
X
a�b�z

a�b�
�

���a����b�
X

d��N�ab
���d� � 
N

�
�X
a�z

���a�

a

�
A
�
�X
b�z

���b�

b

�
A � �

�
N�log z � ���

using the �rst part of Lemma ���
� The result follows from adding the two bounds above

together�
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