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Problem: Consider

0 01 01011 0101101011011 0101101011011010110101101101011011 . . .

where each string is formed from the previous string by substituting 01 for 0
and 011 for 1 simultaneously at each occurance. Notice that each string is an
initial substring of the previous string so that we may consider them all as
initial substrings of an infinite string. The puzzle then is, given n, determine
if the nth digit is 0 or 1 without having to construct all the previous digits.
That is, give a non-recursive formula for the nth digit.

Solution: Let G equal the limit string generated by the above process and
define the string F by

F [0] = 0,

F [n] =

{
1 if n = bφmc for some positive integer m;

0 if n = bφ2mc for some positive integer m.

where bxc is the greatest integer ≤ x and φ = (1 +
√

5)/2; I claim that
F = G.

I will try to motivate my solution. Let g(0) = 0 and define g(n + 1) to
be the string that results from replacing 0 in g(n) with 01 and 1 with 011;
furthermore, let s(n) and t(n) be the number of 0s and 1s in g(n), respectively.
Note that we have the following recursive formulas:

s(n+ 1) = s(n) + t(n);

t(n+ 1) = s(n) + 2t(n).



I claim that s(n) = Fib(2n − 1) and t(n) = Fib(2n), where Fib(m) is the
mth Fibonacci number (defined by Fib(−1) = 1, Fib(0) = 0, Fib(n + 1) =
Fib(n) + Fib(n− 1) for n ≥ 0); this is easily established by induction. Now
noting that limn→∞ Fib(2n)/Fib(2n − 1) = φ, we see that if the density of
the 0s and 1s exists, they must be be 1/φ2 and 1/φ, respectively. What is
the simplest generating sequence which has this property? Answer: the one
given above.

Proof: We start with Beatty’s Theorem: If a and b are positive irra-
tional numbers such that 1/a + 1/b = 1, then every positive integer has a
representation of the form bamc or bbmc (m a positive integer), and this
representation is unique.

This shows that F is well-defined. I now claim that

Lemma: If S(n) and T (n) represent the number of 0s and 1s in the initial
string of F of length n, then S(n) = dn/φ2e and T (n) = bn/φc (where dxe
is the smallest integer ≥ x).

Proof: Using the identity φ2 = φ+ 1 we see that S(n) +T (n) = n, hence for
a given n either S(n) = S(n− 1) + 1 or T (n) = T (n− 1) + 1. Now note that
if F [n− 1] = 1 =⇒ n− 1 = bφmc for some positive integer m and since

φm− 1 < bφmc < φm

=⇒ m− 1/φ < (n− 1)/φ < m

=⇒ T (n) = T (n− 1) + 1.

To finish, note that if F [n − 1] = 0 =⇒ n − 1 = bφ2mc for some positive
integer m, and since

φ2m− 1 <
⌊
φ2m

⌋
< φ2m

=⇒ m− 1/φ2 < (n− 1)/φ2 < m

=⇒ S(n) = S(n− 1) + 1.
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I will now show that F is invariant under the operation of replacing 0 with 01
and 1 with 011; it will then follow that F = G. Note that this is equivalent
to showing that F [2S(n) + 3T (n)] = 0, F [2S(n) + 3T (n) + 1] = 1, and that
if n = [φm] for some positive integer m, then F [2S(n) + 3T (n) + 2] = 1.
One could waste hours trying to prove some fiendish identities; watch how I
sidestep this trap. For the first part, note that by the above lemma

F [2S(n) + 3T (n)] = F [2
⌈
n/φ2

⌉
+ 3 bn/φc]

= F [2n+ bn/φc] = F [2n+ bnφ− nc]
= F [bφn+ nc] = F [

⌊
φ2n
⌋
]



=⇒ F [2S(n) + 3T (n)] = 0.

For the second, it is easy to see that since φ2 > 2, if F [m] = 0 =⇒ F [m] = 1
hence the first part implies the second part. Finally, note that if n = bφmc
for some positive integer m, then

F [2S(n) + 3T (n) + 3] = F [2S(n+ 1) + 3T (n+ 1)] = 0,

hence by the same reasoning as above F [2S(n) + 3T (n) + 2] = 1. 2


