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A SURVEY ON INTEGRAL GRAPHS

K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, D. Stevanović

A graph whose spectrum consists entirely of integers is called an integral

graph. We present a survey of results on integral graphs and on the corre-

sponding proof techniques.

Throughout this paper a graph G is assumed to be simple, i.e. a finite undi-
rected graph without loops or multiple edges. Therefore, the characteristic polyno-
mial of (the adjacency matrix of) G, denoted by PG(λ), has only real zeroes and this
family of eigenvalues (the spectrum of G) will be represented as (λ1, λ2, . . . , λn),
where λ1 ≥ λ2 ≥ · · · ≥ λn or in the form µk1

1 , µk2
2 , . . . , µkm

m , where µ1, µ2, . . . , µm

are distinct eigenvalues of G in decreasing order and k1, k2, . . . , km are the corre-
sponding multiplicities. The sum

∑n
i=1 λk

i is called the k-th spectral moment and
is equal to the number of closed walks of length k of G.

The characteristic polynomial of a graph is monic (i.e. its leading coefficient
is 1), and hence the rational eigenvalues are integers. A graph whose spectrum
consists entirely of integers is called an integral graph. Since there is no general
characterization (besides the definition) of these graphs, the problem of finding (or
characterizing) integral graphs has to be treated in some special classes of graphs.

This text gives a survey of former investigations and main results concerning
this topic. The paper is based on a chapter on the same subject of the book [54].
For all notation and terminology see [20, 54].

1. OPENING THE PROBLEM

Which graphs have integral spectra ? This question was posed in 1973 by
F. Harary and A.J. Schwenk (see [34]), with the immediate remark that the
general problem appears intractable. Indeed, the number of integral graphs is not
only infinite, but one can find them in all classes of graphs and among graphs of
all orders. However, they are very rare and difficult to be found.
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Also, there are comparatively huge (possibly infinite) classes of graphs con-
taining a very restricted (finite) number of integral graphs. For example, if we
regard only graphs with a given maximum vertex degree, we get that the number
of such integral graphs is finite ([15]; see also Theorem 2 and its consequences).

Since the spectrum of a disconnected graph is the union of the spectra of
its components, in any investigation of integral graphs it is sufficient to consider
connected graphs only.

An immediate example of a set consisting entirely of integral graphs is the
set of complete graphs Kn, whose eigenvalues are: n − 1, (−1)n−1. The like oc-
curs with cocktail-party graph CP (n) (= nK2); the eigenvalues of CP (n) are:
2n − 2, 0n, (−2)n−1. Also, the complete multipartite graph Kn/k,n/k,...,n/k, on n
vertices and k colour classes of sizes n/k, is always integral; the eigenvalues are:
n − n/k, 0n−k, (−n/k)k−1. But all these graphs are in fact the complements of
some disconnected regular graphs: in particular, n ·K1, n ·K2 and k ·Kn/k, respec-
tively. Now, since the characteristic polynomial P G (λ) of the complement G of a
regular graph G on n vertices of degree r can be expressed as

PG (λ) = (−1)n λ− n + r + 1
λ + r + 1

PG(−λ− 1),

we see that the complement of an integral regular graph must be integral, too.
There are many other simple examples of integral graphs (some of them are

given in [34]). Thus, in the set of graphs Pn (the path with n vertices, i.e. of the
length n − 1) the only integral path is P2 because the spectrum of Pn consists of
the numbers 2 cos (πi/(n + 1)) (i = 1, . . . , n). Similarly, the eigenvalues of Cn (the
circuit on n vertices) are determined by the expression 2 cos (2πi/n) (i = 1, . . . , n),
and therefore the only integral circuits are C3, C4 and C6. Also, since the complete
bipartite graph Km,n has

√
mn, 0m+n−2, −√mn as its eigenvalues, it is integral

if and only if mn is a perfect square. Thus, if we take all stars K1,n with n = p2

(p = 1, 2, 3, . . .) we get an infinite series of integral graphs.
A regular graph of degree r > 0 which is not the complete graph is called

strongly regular if there exist non-negative integers e and f such that any two
adjacent vertices have exactly e common neighbours, while any two non-adjacent
vertices have exactly f such neighbours (see [20], p. 103 and 194). It is known that
if a strongly regular graph G with parameters r, e, f exists, a sufficient condition
for G to be integral is that (e− f)2 − 4(f − r) = s2 for some positive integer s.

Some of the well known graph operations, when applied to integral graphs,
result in new integral graphs and thus can be used in generating an arbitrary
number of them. Let us look at some operations based on the Cartesian product
of the sets of vertices. If λ1i1 (i1 = 1, 2, . . . , n1) and λ2i2 (i2 = 1, 2, . . . , n2) are the
eigenvalues of the graphs G1 and G2, respectively, then

1◦ the sum G1 + G2 has eigenvalues λ1i1 + λ2i2 ;

2◦ the product G1 ×G2 has eigenvalues λ1i1 · λ2i2 ;
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3◦ the strong product of G1 and G2 has eigenvalues λ1i1 · λ2i2 + λ1i1 + λ2i2 ,

(in all these cases i1 = 1, . . . , n1, i2 = 1, . . . , n2). (For the definitions of the sum,
the product and the strong product of graphs see, e.g. [20] pp. 65–66.) Thus,
these three operations preserve the integrality. For example, the so called bipartite
product G×K2 has eigenvalues ±λi, where λi (i = 1, . . . , n) are the eigenvalues of
G (the fact to be used later).

Also, in the case of the non-complete extended p-sum of graphs (shortly NEPS,
see [20] p. 66), whose spectrum is determined as all possible values

Λi1,...,in
=

∑

β∈B

λβ1
1i1
· · ·λβn

nin
,

(ik = 1, . . . , nk; k = 1, . . . , n; 00 = 1), where B is the basis of NEPS of graphs
G1, . . . , Gn, we see that if Gi (i = 1, . . . , n) are all integral, their NEPS also gives
an integral graph. (In fact, the sum and the product of two graphs are the NEPSs
for the basis {(0, 1), (1, 0)} and {(1, 1)}, respectively). It is interesting that for some
graphs the converse statement holds as well (see [65]).

Theorem 1. Suppose G = NEPS(G1, . . . , Gn; B), and let G1, . . . , Gn be connected
graphs. Then G is regular integral graph if and only if Gi (i = 1, . . . , n) are regular
integral graphs.

If Gi are regular graphs on ni vertices and of the degree ri (i = 1, 2), the cha-
racteristic polynomial of their complete product (join) G1∇G2 (the graph obtained
by joining each vertex of G1 to all vertices of G2) is given by the expression

PG1∇G2(λ) =
PG1(λ)PG2(λ)

(λ− r1)(λ− r2)
(
(λ− r1)(λ− r2)− n1n2

)
,

implying that the complete product of two regular graphs is integral if and only if
both G1 and G2 are integral and (r1 − r2)2 + 4n1n2 is a perfect square.

The line graph L(G) of a regular integral graph G is also integral because
the characteristic polynomial of the line graph of a regular graph of degree r with
n vertices and m = nr/2 edges can be expressed as

PL(G)(λ) = (λ + 2)m−nPG(λ− r + 2).

Thus, in all previously mentioned cases of integral regular graphs we can obtain
new classes of integral graphs by taking their line graphs. It was shown in [16] that
L2(G) = L(S(G)) is integral if and only if G is the (disjoint) union of complete
graphs all having a fixed number s (≥ 2) of vertices (here S denotes the subdivision
of some graph obtained by inserting only a single vertex into each edge).

In [57] one can find an interesting construction of an infinite family of integral
graphs in the class of complete tripartite graphs Kn1,n2,n3 .

One of the first more general results on integral graphs is given in [15] and it
considers the question of the finiteness of the number of integral graphs inside an
infinite set of graphs.
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Theorem 2. The set Ir of all regular, connected, integral graphs of a fixed degree
r is finite.

To see this, notice that besides the maximum vertex degree, the diameter of
any graph of Ir is bounded (namely, since the spectrum of a regular graph of degree
r lies in the segment [−r, r], the number of distinct integral eigenvalues is at most
2r + 1, and hence the diameter is at most 2r – see, for example, [20] p. 88). In the
same way one can prove that the set of all non-regular, connected, integral graphs
with a given maximum vertex degree 4 is finite. Some further generalizations of
Theorem 2 can be found in [67] and [68] (see also [69]).

One of the first results on integral graphs is obtained in [23] and is given in
the following theorem.

Theorem 3. The only connected, integral graphs which are not 3-regular and whose
maximum vertex degrees are at most three are:

K1, K2, K3, C4, C6, K2 ◦ 2K1, S(K1,3),

where ◦ denotes the corona of two graphs.
(For the definition of corona see [33], p. 167.)

2. TREES

In the initial paper of F. Harary and A.J. Schwenk integral trees were
mentioned as well, while first considerable results on this topic were published by M.
Watanabe and A.J. Schwenk in [75] and [76]. Then, after a several years pause
and having started by the article [44] of X.L. Li and G.N. Lin, a group of Chinese
mathematicians began to present their results. Unfortunately the majority of these
papers were written in Chinese, as well as their authors were not always aware of
the results of their colleagues of other countries, which led to some overlapping of
results of Chinese and other authors. In any case, the problem of integral trees
appeared to be not at all an easy one and that is why, besides some general results,
in several papers the authors have been engaged in constructing various necessary
or sufficient conditions or particular cases and examples. (The authors of this paper
were not able to have insight into all papers concerning integral trees that are cited
in our references; these items were given in the form in which they have been quoted
in other papers.)

One of the first and very general results is the following theorem of M.
Watanabe [75].

Theorem 4. No integral tree except K2 has a perfect matching.
Among the results on integral trees an important position is held by so called

balanced trees, i.e. trees which are symmetric with respect to a vertex (the root)
or an edge. Starting with the notion of the eccentricity ecc(v) of a vertex v in a
connected graph G, defined as ecc(v) = max d(v, w) for all vertices w of G, we can
define a central vertex (of G) as a vertex of minimal eccentricity; the centre of G is
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a set of its central vertices. But if G is a tree, according to a well-known theorem
of D. König, its center consists of either one vertex or two adjacent vertices. Now,
a tree T is called balanced if all the vertices at the same distance from the centre
Z(T ) are of the same degree.

A balanced tree is uniquely determined by the parity of its diameter and the
sequence (nk, nk−1, . . . , n1), where k is the radius of T and nj(1 ≤ j ≤ k) are
the numbers of successors of a vertex at distance k − j from the centre Z(T ). If
diam(G) is odd, this sequence may be modified to the form (1;nk, nk−1, . . . , n1).
These sequences are called integral if the corresponding balanced trees are integral.

The following three theorems of [38] contain important general results on
balanced integral trees.

Theorem 5. A sequence (nk, nk−1, . . . , n1) of positive integers is integral if and
only if for every q ∈ N the sequence (q2nk, q2nk−1, . . . , q

2n1) is integral.

Theorem 6. If a sequence (nk, nk−1, . . . , n1) is integral, then (nj , nj−1, . . . , n1) is
integral for every 1 ≤ j ≤ k − 1.

A branch of a tree T is a subtree T ′ of T such that every end-vertex of T ′ is
an end-vertex of T .

Theorem 7. Let T be an integral tree. If the balanced tree defined by the sequence
(2, nk, . . . , n1) is a branch of T , then the sequence (nk, nk−1, . . . , n1) is integral.

We say that a tree T is star-like if it is homeomorphic to a star K1,m, which
means that T has a unique vertex v of degree m ≥ 3 such that T−v is the (disjoint)
union of m paths.

Theorem 8. [76] A star-like tree T is integral if and only if T is one of these
trees:

1◦ T = K1;

2◦ T − v = k2P1 (k ∈ N);

3◦ T − v = (k2 + 2k)P2 (k ∈ N).

In the cases 2o and 3o the corresponding characteristic polynomials are
PT (λ) = (λ2 − k2)λk2−1 and PT (λ) = (λ2 − k2)λ(λ2 − 1)k2+2k−1, respectively.

The next result concerns the trees homeomorphic to a double star, i.e. a tree
obtained by joining the centres of two stars with an edge. Let a tree T have exactly
two vertices u and v of degree greater than two, let them be adjacent and let T
have mi paths of length i at u and nj paths of length j at v (then the number of
vertices is clearly n = 2 +

∑
imi +

∑
jnj).

Theorem 9. [76] If T is an integral tree having exactly two vertices u and v of
degree exceeding two, and if u and v are adjacent, then T is either

1◦ a double star such that T − u− v = (m1 + n1)P1 where the polynomial x4 −
(m1 + n1 + 1)x2 + m1n1 has only integral roots, or
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2◦ a tree determined by T − u − v = m1P1 + n2P2 where the polynomial x4 −
(m1 + n2 + 2)x2 + m1n2 + m1 + 1 has only integral roots.

For example, if m1 = r1 = a(a + 1) (a ∈ N), we get a whole family of
solutions. The problem of finding all solutions was solved by R. L. Graham in
1978 (see also [76]).

Another family of integral trees of diameter four can be constructed as follows.
Let us join the centres of r copies of K1,m to a new vertex v (i.e. T − v = rK1,m)
and let such a tree with n = mr + r + 1 vertices (mr of them being end-vertices)
be denoted by T (r,m), or, according to the previous notation of balanced trees,
simply by (r,m).

Theorem 10. [76] T (r,m) is integral if and only if both m and r + m are perfect
squares.

For m = 1 we get just what we have had in Theorem 8 (3◦), while m = 4,
r = 5 is the smallest case for m > 1. Since these trees are balanced, in accordance
with Theorem 5 the set of the solutions is infinite.

As a generalization of this case, suppose that, instead of r copies of K1,m,
we take r stars K1,m1 ,K1,m2 , . . .K1,mr and form the tree T (r,m1, m2, . . . , mr) by
joining their centres with a new vertex v.

Theorem 11. [45] A tree T (r,mi) is integral if and only if the equation

(x2 −m1 − 1)(x2 −m2) · · · (x2 −mr)−
r∑

j=2

r∏

i=1, i 6=j

(x2 −mi) = 0

has only integral roots.
One more family of integral trees of diameter four can be formed by joining

the centres of r copies of K1 and s copies of K1,t to a new vertex v and let us
denote it by R(r, s, t).

Theorem 12. [75] R(r, s, t) is integral if and only if s is a perfect square and the
polynomial x4 − (r + s + t)x2 + rt has only integral roots.

For r = t = 4, s = 9, we have the smallest member of this family provided r >
0 (case r = 0 equals to that in Theorem 10). The general problem of determining
r, s, t is equivalent to turning the polynomial of Theorem 12 into the form (x2 −
a2)(x2 − b2) (a, b ∈ N). It has been proved that r and t can be expressed as

r =
1
4

(A2 + B2 − 2s) +
1
2

C, t =
1
4

(A2 + B2 − 2s)− 1
2

C,

where integers A, B, C satisfy (A2− s)(B2− s) = C2, and that there are infinitely
many solutions. The authors of [45] showed by construction that even in case r = t
the number of solutions is infinite. Some sufficient conditions for R(r, s, t) to be
integral can also be found in [70]. Also, the following theorem holds [74].

Theorem 13. If R(r, s, t) is integral, then for every n ∈ N R(rn2, sn2, tn2) is
integral, too.
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A generalization of the case R(r, s, t) (instead of taking s copies of K1,t we
take s stars K1,ti

i = 1, . . . , s) can be found in [74] (and some other papers).
Among others, it contains the results analogous to Theorem 12, and some results
which generalize Theorem 13.

A lot of other more or less particular results, in the form of necessry or
sufficient conditions, on integral trees of diameter four can be found in [13, 38, 45,
47, 48, 49, 56, 70, 73, 74, 77, 78, 80, 81, 82].

Integral trees with diameter five were mentioned for the first time in [45],
where the authors observed the graph obtained by joining the centres of T (r,mi)
and T (s, ni) and got a theorem in the form of a necessary and sufficient condition
that such a tree be integral, but were not able to find any example. The first
integral tree with diameter five was constructed in [14], while in [46] it was proved
that there are infinitely many such trees. It is interesting that none of them is
balanced.

Theorem 14. [38] There is no balanced integral tree of diameter 4k + 1 (k ∈ N).
As for diameter 4k − 1, we have so far the following result.

Theorem 15. [38] There is no balanced integral tree of diameter seven.
The question of finding an integral tree of diameter six was touched for the

first time in [76]: it was the observation of C. Godsil that one can construct
integral trees of diameter six by attaching t new end-vertices to each vertex of the
tree T (r,m). The parameters t, r, m must be chosen so that m, m + r, t, m + 4t
and m + r + 4t are perfect squares, and it can be made by taking

m = (a2 − b2)2, r = (c2 − d2)2 − (a2 − b2)2, t = a2b2 = c2d2.

For example, a = 3, b = 2, c = 6, d = 1 gives an integral tree of diameter six with
1 123 236 vertices.

Balanced trees of diameter six can be imagined as to have been constructed
by joining the centres of n3 copies of T (n2, n1).

Theorem 16. [45] The sequence (n3, n2, n1) is integral if and only if n1 and n1+n2

are perfect squares and the polynomial

x4 − (n1 + n2 + n3)x2 + n1n3

has only integral roots, that is, can be factorized as (x2 − a2)(x2 − b2).
For example, let p, q ∈ N, p > q, and put n1 = 4p2q2, n2 = (p2 − q2)2,

n3 = (p2 + q2)2. Then if 2 (p2 + q2) is a perfect square, the sequence (n3, n2, n1) is
integral. Thus, for p = 7, q = 1 we have one such example and by Theorem 5 the
number of integral sequences (n3, n2, n1) is infinite.

A somewhat different form of the same result can be found in [38].

Theorem 17. A sequence (n3, n2, n1) is integral if and only if n1 = k2, n2 =
m2 + 2mk, n3 = a2b2/k2, where a, b, k, m are positive integers satisfying

(1) (k2 − b2)(a2 − k2) = k2(m2 + 2mk), b < k < a.
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A generalization of previous cases of diameter six is given in [70].

Theorem 18. Let T be a tree obtained by identifying the centre of K1,s and the
centre (root) of a balanced tree defined by the sequence (n3, n2, n1), which for this
occasion will be denoted by T (r,m, t). Then T is integral if and only if t and m + t
are perfect squares and

x4 − (r + m + t + s)x2 + rt + s(m + t)

can be factorized as (x2 − a2)(x2 − b2).
Particularly, if s = t we have the following.

Corollary. For s = t the tree T is integral if and only if t, m + t and m + t + r
are perfect squares.

The authors of [70] produced also a list of examples of such integral trees.
A theorem equivalent to the previous one is given in [74].

Theorem 19. Let T be a tree obtained by identifying the centre of K1,s and
the centre of balanced tree T (r,m, t). Such a tree of diameter six is integral if

and only if t = k2, m = n2 + 2nk, s = k2 +
(a2 − k2)(b2 − k2)

n2 + 2nk
(≥ 1) and r =

a2 + b2 − (n + k)2 − k2 − (a2 − k2)(b2 − k2)
n2 + 2nk

(≥ 1), where a, b, k, n are positive

integers.
An interesting result (analogous to a previous one) on such a type of trees is

the following theorem.

Theorem 20. [74] For any positive integer n, if the tree of the previous theorem
(let it be denoted by K1,s · T (r,m, t)) is integral, then K1,sn2 · T (rn2,mn2, tn2) is
integral, too.

Besides these general facts, there are also many particular results which all
together make up an exhaustive discussion about trees of diameter six described in
previous theorems. In the majority of such cases we have a construction of a set
of sufficient conditions for such a tree to be integral, combined with a computer
search which provides examples. Various results on integral trees of diameter six
can be found in [13, 14, 36, 38, 45, 46, 47, 48, 71, 72, 73, 74].

Finally, there is a characterization of balanced integral trees of diameter eight
analogous with the case of diameter six expressed by Theorem 17 [38].

Theorem 21. A sequence (n4, n3, n2, n1) is integral if and only if n1 = k2, n2 =

m2 + 2mk, n3 =
a2b2

k2
, n4 =

c2d2 − a2b2

(m + k)2
, where a, b, c, d, k, m are positive

integers satisfying the equality (1) and

(2) (c2 + d2)(m + k)2k2 = (m + k)4k2 + a2b2(m2 + 2mk) + c2d2k2,

where a2b2 < c2d2.
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The authors of [38] have managed to find 182 “small” solutions of (1) and
(2). Some examples and sufficient conditions for integral trees of diameter eight
have been given in [71, 74], too.

In fact, for every k a system (Sk) of diophantine equations can be found such
that every solution of (Sk) gives an integral sequence (nk, nk−1, . . . , n1) and vice
versa, but at the moment no solution of (Sk) is known for k ≥ 5. Moreover, no
integral tree of diameter seven and greater than eight has been found so far and
these problems remain open.

Recently some results have appeared which treat interrelations among integral
trees of various diameters. Let us give an example (for details see [74].

Theorem 22. For any positive integer n, if a balanced tree of diameter eight
determined by the sequence (s, r,m, t) is integral, then K1,sn2 · T (rn2,mn2, tn2) of
diameter six, is integral, too.

In the last several years the topic of integral trees resulted in many new
papers which contain a lot of particular or somewhat more general results. At
present, these problems seem to come in a more mature stage, when some extent
of systematization of results and open problems becomes possible (see [74].

3. CUBIC GRAPHS

A cubic graph is a 3-regular graph.
“There are exactly 13 connected, cubic, integral graphs.”
It was the title of the paper of F.C. Bussemaker and D.M. Cvetković

[8] published in 1976, which announced the first significant result in the quest for
integral graphs (in fact, the first part of this investigation was presented in [15],
while the rest was given in [8]). At the same time and independently, the same
result was reported (and published a bit later) by A.J. Schwenk [60 ]. It is inter-
esting that the research techniques used by different authors were also somewhat
different; among others, F.C. Bussemaker and D. Cvetković combined the aid
of a computer with theoretical reasoning, while A.J. Schwenk achieved the result
completely “by hand and pencil”.

The initial idea in the first case was to list the all possible sets of distinct
eigenvalues, then to find the possible multiplicities of them (subject to several re-
strictions resulting from the connections between spectral moments and the num-
bers of vertices, edges and triangles, and also from the Hoffman polynomial, see
[20] p. 95), and, finally, to deduce whether a graph (possibly more than one) with a
considered spectrum exists. The result, attained through a discussion of numerous
particular cases and by combining theoretical reasoning with the aid of a computer,
is as follows ([15, 8, 60]):

Theorem 23. There are exactly thirteen connected cubic integral graphs. They
are:
K4, K3,3, C3 + K2, C4 + K2, C6 + K2, the Petersen graph, L(S(K4)), the Tutte’s
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8-cage, the graph on 10 vertices obtained from K3,3 by specifying a pair of non-
adjacent vertices and replacing each of them by a triangle, Desargues’ graph and
its cospectral-mate, the graph obtained from two (disjoint) copies of K2,3 by adding
three edges between vertices of degree two in different copies of K2,3, and a bipartite
graphs on 24 vertices (with girth 6).

These graphs are displayed in original articles in another order (see also Fig.
5.2 in [54]).

As we have already pointed out, the product of two integral graphs G1 and G2

is integral itself. Particularly, if one of these two graphs is K2 (whose eigenvalues are
±1), the product, whose eigenvalues are all possible products of the eigenvalues of
G1 and G2, has a symmetric spectrum, which means that it is bipartite. Moreover,
the product G1 ×K2 is connected if and only if G1 is non-bipartite (in the case of
bipartite G1, its spectrum is being duplicated by multiplying by K2, which results
in two disjoint copies of G1). Finally, if G1 is cubic, it is obvious that G1 ×K2 is
also a cubic graph. These were the starting facts on which A.J. Schwenk leaned
his approach to finding all connected, cubic, integral graphs. His idea was to begin
with identifying all resulting bipartite graphs, and then to see which of them can
be decomposed as G×K2. Using a similar set of restrictions as F.C. Bussemaker
and D. Cvetković, he found eight bipartite connected cubic integral graphs and
then, by decomposing all of them in the form G×K2, managed to obtain the rest.

4. NON-REGULAR GRAPHS WITH MAXIMUM VERTEX
DEGREE FOUR

If G is a non-regular integral graph with maximum vertex degree four, then
λ1 ≤ 3 (since 1 < d < λ1 < 4 = 4). Therefore the spectrum of G lies in the
segment [−3, 3]. If λ1 = 2, G is one of Smith graphs (connected graphs with the
largest eigenvalue equal to 2, see [20], pp. 78-79), and hence G = K1,4. So we
have λ1 = 3, while −3 may or may not be the eigenvalue of G. Obviously, if −3 is
contained in the spectrum, G is bipartite; otherwise the graph is non-bipartite, and
it has −2 as its least eigenvalue (if it were −1 (or 0), G would be a complete graph),
and since its eigenvalues are in the set {−2,−1, 0, 1, 2, 3}, we have diam(G) ≤ 5.

“There are just thirteen connected, non-regular, non-bipartite, integral
graphs having maximum vertex degree four” - it was the title of the report pub-
lished in 1986 by Z. Radosavljević and S. Simić ([55], the full version in [62]).
These graphs are displayed in Fig. 1.

A graph whose spectrum is bounded from below by −2 is either a generalized
line graph (a graph representable in the root system Dn for some n) or an excep-
tional graph (a graph representable in the exceptional root system E8); see, e.g.,
[19], p. 4). Recall, a generalized line graph, denoted by L(H; a1, a2, . . . , an), is a
graph obtained from some labelled graph H having labels (i.e. non-negative inte-
gers) a1, a2, . . . , an assigned to its vertices v1, v2, . . . , vn, respectively. It is obtained
in the following way: we take the disjoint union of L(H) (the line graph of H) and
n copies of CP (ai) (the cocktail party graph on 2ai vertices), and then (for each
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i) we add edges between vertices of L(G) that correspond to edges in G incident
with vi and vertices of CP (ai) (for each i). An exceptional graph is a connected
graph whose least eigenvalue is smaller than or equal to −2, but which is not a
generalized line graph.
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Fig. 1

Let S ′ be the subset of S which contains all generalized line graphs. If G ∈ S ′,
then G = L(H; a1, a2, . . . , an) for some graph H and some labels a1, a2, . . . , an of
its vertices. Notice that any subgraph of H, together with the induced labelling,
produces an induced subgraph of G. Therefore, a possibility appears of finding all
so-called root graphs H (together with the labellings) of the graphs of S ′, which is
a significant advantage since a root graph H has a simpler structure than G. (For
instance, the root graph has the maximum degree three, all vertices are labelled by
0 or 1, etc. – for more details see [62].) By considering the cyclic structure of the
root graph and some spectral restrictions on G, the following result was proved in
[62]:

Theorem 24. All graphs of S ′ are the first five graphs of Fig. 1.

Let now S ′′ be the set of non-regular, non-bipartite, connected, integral
graphs with maximum vertex degree four which are exceptional graphs. Since
the graphs of S ′′ have the average degree smaller than three, this bound can be
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significantly decreased by virtue of the inequality (see [20], p. 115)

n1(d− λn)
n

+ λn ≤ d1,

n and n1 being the number of vertices of a regular graph G and its induced subgraph
G1 (not necessarily regular), respectively, d the degree of G, λn its least eigenvalue
and d1 the average degree of G1. Putting n = 120, d = 56, λn = −4 and d1 < 3,
we get n1 ≤ 13. Thus, we know that the graphs of S ′′ have at most 13 vertices.
In [62] these graphs were produced starting from the 31 graphs that are forbidden
for generalized line graphs [22], and by extending them in accordance with the
mentioned structural and spectral restrictions. These graphs can now be found in
the lists of all (connected) integral graphs up to 13 vertices (recently found by K.
T. Balińska et. al.). Anyhow we have:

Theorem 25. All graphs of S ′′ are the last eight graphs of Fig. 1.

The problem of finding all bipartite graphs G in the set of non-regular integral
graphs with maximum degree four appears to be much more difficult than in the
non-bipartite case. So far only some partial results concerning these graphs are
known (some serious investigations are in progress). Basic results are contained in
[5, 6, 7].

In [5] many structural restrictions have been proved on graphs G (e.g., the
eccentricity of each vertex of degree four is at most five; the vertices at distance
at least three from the fixed vertex of degree four have Smith graphs (or their
subgraphs) as components, etc.). Based on these results the following bound on n,
the order of G, is deduced:

n ≤





36 if s(r) = 3,
52 if s(r) = 2,
68 if s(r) = 1,
84 if s(r) = 0.

Here r is a vertex (of G) of degree four, while s(r) denotes the number of
the Smith graphs in the graph obtained from G by deleting r and all vertices at
distance at most two from r. It is also proved that these bounds can be slightly
improved (for example, the largest one less than 80). On the other hand, the largest
graph G constructed so far is of order 29.

In [6, 7] bipartite non-regular graphs with maximum degree four with ±2
(resp. ±1) excluded from the spectra were investigated. In [6] all (integral) graphs
from the above set with ±2 excluded were found (two in total, with 12 and 15
vertices). Other results of [6] are related to graphs with small cyclomatic number
(trees, unicyclic and bicyclic graphs). They refer to all bipartite graphs considered
in [5] (so, without above restrictions). More complicated situation appears with
the observed graphs if ±1 is excluded from their spectra [7]. In this case it was
proved that the corresponding graphs have at most 29 vertices (besides, their least
degree, as also pointed out in [6], is two; some potentially feasible degree sequences
of these graphs were found).
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5. 4-REGULAR GRAPHS

As in Section 3, we shall first consider bipartite graphs G, and later find
non-bipartite graphs H from the decompositions of bipartite ones in the form G =
H ×K2.

A regular bipartite graph has the same number of vertices in each part so
that we may assume that G has p = 2n vertices. As usual, we write its spec-
trum as 4, 3x, 2y, 1z, 02w,−1z,−2y,−3x,−4. Let q and h denote the numbers of
quadrilaterals and hexagons in G, respectively. Since the sum of the k-th powers
of the eigenvalues is just the number of closed walks of length k, the parameters
n, x, y, z, w, q, h satisfy the following Diophantine equations:

1
2

∑
λ0

i = 1 + x + y + z + w = n,

1
2

∑
λ2

i = 16 + 9x + 4y + z = 4n,

1
2

∑
λ4

i = 256 + 81x + 16y + z = 28n + 4q,

1
2

∑
λ6

i = 4096 + 729x + 64y + z = 232n + 72q + 6h.

Based on these facts and dividing the search for possible spectra in cases depending
on the greatest integer less than 4 avoided in spectrum, D. Cvetković, S. Simić
and D. Stevanović [28] found 1888 possible spectra of 4-regular bipartite integral
graphs. (Due to the space limit, spectra with 9 distinct eigenvalues and more than
20 vertices are not shown in [28]; for the complete list see [65]).

The above equations may be generalized by using graph angles (cf. [17], [18]
and [26]). The matrix of graph angles is indexed by the set of distinct eigenvalues
and the vertex set of G. Let αµ,j be the angle which corresponds to the eigenvalue µ
and vertex j. In [26] it is proved that ws

j =
∑

µ α2
µ,jµ

s is the number of closed walks
of length s starting at vertex j. It is also proved there that in regular graphs all
angles corresponding to the index are equal to 1/

√
2n, while in bipartite graphs for

each eigenvalue µ and each vertex j it holds that α−µ,j = αµ,j . Further and more
comprehensive information on graph angles may also be found in the monograph
[27].

Let qj and hj denote the number of quadrilaterals and hexagons to which j

belongs, respectively. If the neighbors of j are u1, . . . , u4, then let Qj =
∑4

i=1 qui .
Identifying ws

j for s = 0, 2, 4, 6 with the expression obtained by using qj , hj and
Qj , we get the following system of equations

α2
0,j + 2α2

1,j + 2α2
2,j + 2α2

3,j + 2α2
4,j = 1,

2α2
1,j + 4 · 2α2

2,j + 9 · 2α2
3,j + 16 · 2α2

4,j = 4,

2α2
1,j + 16 · 2α2

2,j + 81 · 2α2
3,j + 256 · 2α2

4,j = 28 + 2qj ,

2α2
1,j + 64 · 2α2

2,j + 729 · 2α2
3,j + 4096 · 2α2

4,j = 232 + 28qj + 2Qj + 2hj .
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Using these equations, Stevanović [64] has shown the non-existence of
graphs with more than 500 of the spectra from [28]. The technique of obtaining
the non-existence results is an extension of the technique with spectral moments
used in previous work (cf. [15], [28]).

Since there are only five possible spectra with n > 630 and q = h = 0, we
have the following theorem.

Theorem 26. ([64, 65] ) A connected 4-regular bipartite integral graph has at
most 1260 vertices, unless it has (if exists) one of the following spectra:

1◦ [4, 3208, 2172, 1304, 070,−1304,−2172,−3208,−4] and 1440 vertices;

2◦ [4, 3244, 2196, 1364, 070,−1364,−2196,−3244,−4] and 1680 vertices;

3◦ [4, 3370, 2280, 1574, 070,−1574,−2280,−3370,−4] and 2520 vertices;

4◦ [4, 3496, 2364, 1784, 070,−1784,−2364,−3496,−4] and 3360 vertices;

5◦ [4, 3748, 2532, 11204, 070,−11204,−2532,−3748,−4] and 5040 vertices.

If G is a connected non-bipartite 4-regular integral graph, then G ×K2 is a
connected bipartite 4-regular integral graph, and we obtain the following corollary.

Corollary. A connected 4-regular non-bipartite integral graph G has at most 630
vertices, unless G×K2 has one of the spectra 1◦ – 5◦ of Theorem 26.

4-regular integral graphs avoiding ±3 in the spectrum have been considered
in [65]. The possible spectra of 4-regular bipartite integral graphs with x = 0 have
been found in [65] by D. Stevanović and they are shown in Table 5.1. while these
graphs are depicted in Figs. 5.7. and 5.8. of [54].

There are 16 bipartite 4-regular integral graphs avoiding ±3 in the spectrum
and they are shown in Fig. 5.7 of [54]. The smallest one is D1 = K4,4, while
D11 and D16 with 32 and 30 vertices, respectively, are the largest such graphs.
There are two triples of cospectral nonisomorphic graphs: (D13, D14, D15) with 20
vertices and (D10, D11, D12) with 18 vertices. There are also two pairs of cospectral
nonisomorphic graphs: (D7, D8) with 24 vertices and (D5, D6) with 16 vertices.

Non-bipartite 4-regular integral graphs avoiding ±3 in the spectrum were
found from the decompositions of graphs D1–D16 in the form H ×K2.

n x y z w q h

4 0 2 0 3 36 96
6 0 2 0 3 30 112
8 0 4 0 3 24 128

12 0 8 0 3 12 120
16 0 12 0 3 0 192

n x y z w q h

5 0 0 4 0 30 130
6 0 1 4 0 27 138
9 0 4 4 0 18 162

10 0 5 4 0 15 170
12 0 7 4 0 9 186
15 0 10 4 0 0 210

Table 1: Possible integral graph spectra with x = 0

There are 8 non-bipartite 4-regular integral graphs avoiding ±3 in the spec-
trum and they are shown in Fig. 5.8 of [54]. The smallest such graph is E1 = K5,
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while the largest one is E8 having 15 vertices. Among these graphs there is one pair
of cospectral nonisomorphic graphs with 12 vertices (E4, E5). Graphs E2 and E7

are strongly regular, while E7 is also self-complementary. Graphs E1, . . . , E8 have
the least eigenvalue equal to −2 and they are either line graphs or cocktail-party
graphs, except E4 (which is one of the graphs found in [9]).

We have already seen (Theorem 1) that NEPS of graphs is regular and integral
if and only if each of its factors is regular and integral. Further, D. Stevanović
[65] proved that NEPS of graphs which are themselves representable as NEPS
is isomorphic to NEPS of their factors with suitable basis, so that when looking
for factors of 4-regular integral NEPS, we can consider only those which are not
representable as NEPS of graphs.

Let G = NEPS(G1, . . . , Gn;B), where G1, . . . , Gn are connected regular inte-
gral graphs which are not representable as NEPS of graphs. Let ri be the degree
of Gi, i = 1, . . . , n and suppose that r1 ≥ · · · ≥ rn. G is regular with degree∑

β∈B
∏n

i=1 rβi

i from which we see that r1 ≤ 4.
If r1 ≤ 2, the possible factors of NEPS are C3 and K2. There are fourteen

non-isomorphic 4-regular NEPS with these factors:

N1 = NEPS(K2,K2, K2; {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}) = D1

N2 = NEPS(K2,K2, K2; {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}) = E3

N3 = K2 + K2 + K2 + K2 = D5

N4 = C3 × C3

N5 = C3 × C3 ×K2

N6 = K2 ⊕ C3

N7 = NEPS(C3,K2, K2; {(1, 0, 1), (1, 1, 0)})
N8 = NEPS(C3, C3, K2; {(1, 0, 0), (0, 1, 1)})
N9 = NEPS(C3, C3, K2; {(1, 0, 1), (0, 1, 1)})

N10 = NEPS(C3, C3, K2,K2; {(1, 0, 0, 1), (0, 1, 1, 0)})
N11 = C3 + K2 + K2

N12 = NEPS(C3,K2, K2; {(1, 0, 1), (0, 1, 0), (0, 0, 1)})
N13 = NEPS(C3,K2, K2; {(1, 0, 1), (0, 1, 0), (0, 1, 1)})
N14 = NEPS(C3,K2, K2,K2; {(1, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0)})

Here, ⊕ denotes NEPS with basis {(1, 1), (0, 1)}.
If 3 ≤ r1, one of the factors is an r1-regular integral graph and remaining

factors are isomorphic to K2.

Theorem 27. ([65]) Let G be 4-regular integral NEPS of graphs. Then one of the
following holds :

1◦ G is isomorphic to one of the graphs N1–N14;
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2◦ G = H + K2, where H is a 3-regular integral graph;

3◦ G = H ⊕K2, where H is a 3-regular non-bipartite integral graph;

4◦ G = H ×K2, where H is a 4-regular non-bipartite integral graph.

6. GRAPHS UP TO TWELVE VERTICES

“There are exactly 150 connected integral graphs up to ten vertices”. The
paper [1] under this title by K. Balińska, D. Cvetković, M. Lepović and
S. Simić has appeared recently, finalizing the research whose partial results had
already been obtained formerly (see [4]). The aid of a computer was essential for
the completing of this list: namely, while integral graphs up to 7 vertices can easily
be identified in the already published tables of graph spectra, finding the rest was
enabled by the fact that the files of all graphs on 8, 9 and 10 vertices have recently
been generated by a computer.

The numbers in of connected integral graphs on n leq10 vertices are given in
the following table, along with those on 11 and 12 vertices (see below).

n 1 2 3 4 5 6 7 8 9 10 11 12
in 1 1 1 2 3 6 7 22 24 83 236 325

Cases n ≤ 5 are obtained easily from the tables of graph spectra of [20], the
six graphs on 6 vertices can be extracted from the table of [25], while the seven
graphs on 7 vertices are selected form the Table of [19].

Besides these graphs, [1] contains a complete list of connected integral graphs
on 8, 9 and 10 vertices, together with their spectra (in the sets of cospectral graphs
such graphs are ordered by their angles).

Completing the list of connected integral graphs up to ten vertices enabled
also some interesting observations and conclusions concerning cospectral connected
integral graphs, integral complementary pairs, self-complementary graphs, cospec-
tral complements of cospectral integral graphs, etc.

Let us also note that, among the other results in [4], one can find the auto-
morphism groups of all integral graphs up to nine vertices and a part of the graphs
on ten vertices. A fact that may be interesting is that all those graphs have at least
one non-trivial automorphism.

These results have been recently extended to integral graphs up to 12 ver-
tices [2, 3]. The evolutionary algorithm was deviced for that purpose, and the
obtained results were verified by the brute force method (on a supercomputer).
The generation of integral (connected) graphs on 13 vertices is still in progress.
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7. THE LAPLACIAN SPECTRUM

Let us consider now the Laplacian matrix C = D −A, D being the diagonal
matrix of the vertex degrees and A the adjacency matrix. The matrix C is positive
semidefinite and its rank is n−w(G), where w(G) is the number of connected com-
ponents of a graph G. For the corresponding Laplacian spectrum (λ1, λ2, . . . , λn)
we shall assume λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = 0. Of course, λn = 0 always holds
because of the rank of C.

Graphs with integral Laplacian eigenvalues will be called Laplacian integral.
When considering integral and Laplacian integral graphs, one can see great

differences. A good example is the set of all 112 connected graphs on six vertices.
As we saw in Section 6, there are six of them which are integral, five of them being
regular. These five regular graphs are also Laplacian integral, while the only non-
regular one is not, and, on the other hand, there are 37 other connected graphs on
six vertices which are Laplacian integral.

As for regular graphs, since in that case C + A = rI, λ is an eigenvalue of
C if and only if r − λ is an eigenvalue of A. That means that a regular graph is
Laplacian integral if and only if it is integral.

However, the situation with trees is quite different. In Section 2 we saw the
state of matter with integral trees. But if we consider Laplacian spectrum of a
tree, it turns out that λn−1 < 1 unless we have a star K1,n−1 (whose spectrum is
(n, 1, 1, . . . , 1, 0)). Thus, a tree is Laplacian integral if and only if it is a star.

Another great difference concerns complements. Since C(G)+C(G) = nI−J
(J consisting entirely of 1’s), the eigenvalues of C(G) are λi(G) = n−λn−i(G) (1 ≤
i ≤ n− 1), and 0, which means that G and G can only together be Laplacian inte-
gral. For example, if we make the graph Gn by subdividing an edge of Kn−1(n > 2),
we immediately know it is Laplacian integral, since Gn consists of one copy of K2

and one copy of K1,n−3.
Some graph operations, when applied to integral graphs, can also in the

Laplacian case give rise to integral graphs. Thus, G1 5 G2 = (G1 ∪G2), i.e. the
complete product of graphs, being the complement of the disjoint union (direct
sum) of their complements, is one of such operations. In particular, if n1 and n2

are the respective numbers of vertices of G1 and G2, the eigenvalues of C(G15G2)
are: 0, n1 + n2, n2 + λi(G1) (1 ≤ i < n1) and n1 + λi(G2) (1 ≤ i < n2). Another
such example is the sum of graphs, having as the eigenvalues all possible sums
λi(G1) + λj(G2) (1 ≤ i ≤ n1, 1 ≤ j ≤ n2).

Some interesting additional results can be found in [31] and [53].

Theorem 28. [31] Let G be a connected, r-regular, Laplacian integral graph on
n vertices. Then its subdivision graph S(G) is Laplacian integral if and only if
G = Kn.

Theorem 29. [53] Let G be a connected, (r, s)-semiregular, Laplacian integral
graph. Then its line graph L(G) is Laplacian integral.

The most interesting and remarkable result concerning Laplacian integral
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spectra is expressed by a theorem about the so called maximal graphs.
Let d(G) = (d1, d2, . . . , dn), where d1 ≥ d2 ≥ · · · ≥ dn are the degrees of the

vertices of a graph G. Conversely, an arbitrary partition of 2m is said to be graphic
if there exists a graph (on m edges) with such vertex degrees.

Given an arbitrary partition (a) = (a1, a2, . . . , an), where a1 ≥ a2 ≥ · · · ≥ an,
let f(a) = |{i : ai ≥ i}| be the trace of (a). Let (a∗) = (a∗1, a

∗
2, . . .), where

a∗i = |{j : aj ≥ i}|, be the conjugate of (a). It is known that a partition (a) of 2m
is graphic if and only if the following condition holds:

k∑

i=1

(ai + 1) ≤
k∑

i=1

a∗i .

If (d) is a graphic partition and (d) majorizes (a) (see, e.g. [54]), it follows
that (a) is graphic, too.

A graph G is said to be maximal if there is no other graphic partition that
majorizes d(G). According to the above condition, G is maximal if and only if d(G)
satisfies di + 1 = d∗i

(
i = 1, 2, . . . , f(d(G))

)
.

Apart from isolated vertices, maximal graphs are characterized by their Lapla-
cian spectra in a really impressive way.

Theorem 30. [51] Let G be a graph with no isolated vertices. Then G is maximal if
and only if the conjugate of its degree sequence is identical to its nonzero Laplacian
spectrum.

Some conditions under which a Laplacian integral graph preserves this prop-
erty when adding an edge are studied in [79].

8. OTHER TOPICS

In this section we shall consider problems with integral eigenvalues in two-
graphs and digraphs.

A two-graph (X,4) is a pair of a vertex set X and a set 4 of 3-subsets of X
such that each 4-subset of X contains an even number of triples of 4.

The Seidel spectrum or the S-spectrum of a graph is the spectrum of its
(−1, 1, 0) adjacency matrix (having −1 as its (i, j)-entry if vertices i and j are
adjacent, 1 if they are not adjacent and 0 if i = j).

If A is the usual adjacency matrix, then S = J − I − 2A, J being a square
matrix whose all entries are equal to 1. Suppose now U is a diagonal matrix
whose diagonal entries are only 1 or −1, which means that U is self-inverse. Then
USU is similar and cospectral with S. Let V1 be the set of vertices of a graph G
corresponding to those diagonal entries which are equal to −1 and V2 the rest of
vertices, and we see that now USU is the (−1, 1, 0) adjacency matrix of the graph
in which two vertices in V1 or in V2 are adjacent if and only if they were adjacent
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in G, while now two vertices of different subsets are adjacent if and only if they
were not adjacent in G. This way of forming a graph cospectral with G is called
Seidel switching. It generates an equivalence relation in the set of graphs. Given
n, there is a one-to-one correspondence between the two-graphs and the switching
classes of graphs on n vertices (for the proof see e.g. [20], p. 200).

Therefore, the spectrum of a two-graph is naturally defined as the S-spectrum
of its corresponding switching class of graphs.

The report [12] contains a lot of facts on two-graphs (obtained mainly by
a computer) and some of them concern integral two-graphs (there are 22 integral
two-graphs up to nine vertices).

Next we consider digraphs.
Contrary to (non-oriented) graphs, whose spectra are real, the eigenvalues of

digraphs are complex numbers. A complex number λ = α+ iβ is called a Gaussian
integer if α and β are integers. A digraph is called Gaussian if its spectrum consists
only of Gaussian integers. Of course, if it comes about that all of them are real
integers, such digraph will be called integral. Some results on Gaussian and integral
digraphs one can find in [30].

As in the case of integral graphs, once having two Gaussian digraphs (e.g.
C4 and its complement) we can produce arbitrarily large families of Gaussian di-
graphs by means of well known graph operations (for the definition of the NEPS
for digraphs see [24]).

As for integral digraphs, we note that there is an interesting example of two
cospectral integral digraphs with four vertices (Fig. 5.11. of [54]), which are the
smallest such digraphs.

Also, the following theorem holds.

Theorem 31. [30] For any positive integer n we can find n cospectral strongly
connected non-symmetric digraphs which are integral.

Added in proof: P. H́ic and S. Pokorný have announced that they have found an

infinite family of integral trees of diameter ten.
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3. Balińska K. T., Kupczyk M., Simić S. K., Zwierzyński K. T.: On generating all
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1–68.
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54. Petrović M., Radosavljević Z.: Spectrally constrained graphs. Faculty of Science,

Kragujevac, 2001.

55. Radosavljević Z., Simić S.: There are just thirteen connected nonregular nonbipartite

integral graphs having maximum vertex degree four. Proc. Sixth Yugoslav Seminar on

Graph Theory (Dubrovnik 1985), Univ. Novi Sad, (1986), 183–187.

56. Ren H. Z.: On integral trees with diameter 4. J. Qinghai Normal Univ., 1 (2000), 8–11.

57. Roitman M.: An infinite family of integral graphs. Discrete Math., 52 (1984), 313–

315.

58. Sachs H.: Beziehumgen zwischen den in einem Graphen enthaltenen Kreisen und

seinem charakteristischen Polynom. Publ. Math. (Debrecen), 11 (1963), 119–134.

59. Schwenk A. J.: Computing the characteristic polynomial of a graph. Graphs and Com-

binatorics (Lecture Notes in Mathematics 406, ed. R. Bari and F. Harary), Springer-

Verlag, Berlin-Heidelberg-New York, 1974, 153–172.

60. Schwenk A. J.: Exactly thirteen connected cubic graphs have integral spectra. Pro-

ceedings of the International Graph Theory Conference at Kalamazoo, May 1976, (Y.

Alavi and D. Lick, eds.) Springer-Verlag.
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Krystyna T. Balińska, (Received June 4, 2001)
Technical University of Poznań, (Revised July 8, 2002)
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Faculty of Sciences, University of Nǐs,
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