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10 Applications of Theta
Functions

The problem of the representation of an integer n as
the sum of a given number k of integral squares is one
of the most celebrated in the theory of numbers. Its
history may be traced back to Diophantus, but begins
effectively with Girard’s (or Fermat’s) theorem that a
prime 4m + 1 is the sum of two squares. Almost every
arithmetician of note since Fermat has contributed to
the solution of the problem, and it has its puzzles for
us still.

G. H. Hardy, 1940

This chapter is devoted to a closer look at the theory of theta functions
and some of its applications to combinatorics and number theory.

The theta function is given by the series

Θ(z|τ) =

∞∑

n=−∞
eπin2τe2πinz,

which converges for all z ∈ C, and τ in the upper half-plane.
A remarkable feature of the theta function is its dual nature. When

viewed as a function of z, we see it in the arena of elliptic functions, since
Θ is periodic with period 1 and “quasi-period” τ . When considered as
a function of τ , Θ reveals its modular nature and close connection with
the partition function and the problem of representation of integers as
sums of squares.

The two main tools allowing us to exploit these links are the triple-
product for Θ and its transformation law. Once we have proved these
theorems, we give a brief introduction to the connection with partitions,
and then pass to proofs of the celebrated theorems about representation
of integers as sums of two or four squares.
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1 Product formula for the Jacobi theta function

In its most elaborate form, Jacobi’s theta function is defined for z ∈ C

and τ ∈ H by

(1) Θ(z|τ) =

∞∑

n=−∞
eπin2τe2πinz.

Two significant special cases (or variants) are θ(τ) and ϑ(t), which are
defined by

θ(τ)=

∞∑

n=−∞
eπin2τ , τ ∈ H,

ϑ(t)=

∞∑

n=−∞
e−πn2t, t > 0.

In fact, the relation between these various functions is given by
θ(τ) = Θ(0|τ) and ϑ(t) = θ(it), with of course, t > 0.

We have already encountered these functions several times. For exam-
ple, in the study of the heat diffusion equation for the circle, in Chapter 4
of Book I, we found that the heat kernel was given by

Ht(x) =

∞∑

n=−∞
e−4π2n2te2πinx,

and therefore Ht(x) = Θ(x|4πit).
Another instance was the occurence of ϑ in the study of the zeta func-

tion. In fact, we proved in Chapter 6 that the functional equation of ϑ
implied that of ζ, which then led to the analytic continuation of the zeta
function.

We begin our closer look at Θ as a function of z, with τ fixed, by
recording its basic structural properties, which to a large extent charac-
terize it.

Proposition 1.1 The function Θ satisfies the following properties:

(i) Θ is entire in z ∈ C and holomorphic in τ ∈ H.

(ii) Θ(z + 1|τ) = Θ(z|τ).

(iii) Θ(z + τ |τ) = Θ(z|τ)e−πiτe−2πiz.

(iv) Θ(z|τ) = 0 whenever z = 1/2 + τ/2 + n+mτ and n,m ∈ Z.
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Proof. Suppose that Im(τ) = t ≥ t0 > 0 and z = x+ iy belongs to a
bounded set in C, say |z| ≤M . Then, the series defining Θ is absolutely
and uniformly convergent, since

∞∑

n=−∞
|eπin2τe2πinz| ≤ C

∑

n≥0

e−πn2t0e2πnM <∞.

Therefore, for each fixed τ ∈ H the function Θ(·|τ) is entire, and for each
fixed z ∈ C the function Θ(z|·) is holomorphic in the upper half-plane.

Since the exponential e2πinz is periodic of period 1, property (ii) is
immediate from the definition of Θ.

To show the third property we may complete the squares in the ex-
pression for Θ(z + τ |τ). In detail, we have

Θ(z + τ |τ) =

∞∑

n=−∞
eπin2τe2πin(z+τ)

=

∞∑

n=−∞
eπi(n2+2n)τe2πinz

=

∞∑

n=−∞
eπi(n+1)2τe−πiτe2πinz

=

∞∑

n=−∞
eπi(n+1)2τe−πiτe2πi(n+1)ze−2πiz

= Θ(z|τ)e−πiτe−2πiz.

Thus we see that Θ(z|τ), as a function of z, is periodic with period 1 and
“quasi-periodic” with period τ .

To establish the last property it suffices, by what was just shown, to
prove that Θ(1/2 + τ/2|τ) = 0. Again, we use the interplay between n
and n2 to get

Θ(1/2 + τ/2|τ) =

∞∑

n=−∞
eπin2τe2πin(1/2+τ/2)

=

∞∑

n=−∞
(−1)neπi(n2+n)τ .

To see that this last sum is identically zero, it suffices to match n ≥ 0
with −n− 1, and to observe that they have opposite parity, and that
(−n− 1)2 + (−n− 1) = n2 + n. This completes the proof of the propo-
sition.
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We consider next a product Π(z|τ) that enjoys the same structural
properties as Θ(z|τ) as a function of z. This product is defined for z ∈ C

and τ ∈ H by

Π(z|τ) =

∞∏

n=1

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz),

where we have used the notation that is standard in the subject, namely
q = eπiτ . The function Π(z|τ) is sometimes referred to as the triple-
product.

Proposition 1.2 The function Π(z|τ) satisfies the following properties:

(i) Π(z, τ) is entire in z ∈ C and holomorphic for τ ∈ H.

(ii) Π(z + 1|τ) = Π(z|τ).
(iii) Π(z + τ |τ) = Π(z|τ)e−πiτe−2πiz.

(iv) Π(z|τ) = 0 whenever z = 1/2 + τ/2 + n+mτ and n,m ∈ Z. More-
over, these points are simple zeros of Π(·|τ), and Π(·|τ) has no
other zeros.

Proof. If Im(τ) = t ≥ t0 > 0 and z = x+ iy, then |q| ≤ e−πt0 < 1 and

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz) = 1 +O
(
|q|2n−1e2π|z|) .

Since the series
∑ |q|2n−1 converges, the results for infinite products in

Chapter 5 guarantee that Π(z|τ) defines an entire function of z with
τ ∈ H fixed, and a holomorphic function for τ ∈ H with z ∈ C fixed.

Also, it is clear from the definition that Π(z|τ) is periodic of period 1
in the z variable.

To prove the third property, we first observe that since q2 = e2πiτ we
have

Π(z + τ |τ) =

∞∏

n=1

(1 − q2n)(1 + q2n−1e2πi(z+τ))(1 + q2n−1e−2πi(z+τ))

=

∞∏

n=1

(1 − q2n)(1 + q2n+1e2πiz)(1 + q2n−3e−2πiz).

Comparing this last product with Π(z|τ), and isolating the factors that
are either missing or extra leads to

Π(z + τ |τ) = Π(z|τ)
(

1 + q−1e−2πiz

1 + qe2πiz

)
.
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Hence (iii) follows because (1 + x)/(1 + x−1) = x, whenever x 6= −1.
Finally, to find the zeros of Π(z|τ) we recall that a product that con-

verges vanishes only if at least one of its factors is zero. Clearly, the factor
(1 − qn) never vanishes since |q| < 1. The second factor
(1 + q2n−1e2πiz) vanishes when q2n−1e2πiz = −1 = eπi. Since q = eπiτ ,
we then have1

(2n− 1)τ + 2z = 1 (mod 2).

Hence,

z = 1/2 + τ/2− nτ (mod 1),

and this takes care of the zeros of the type 1/2 + τ/2− nτ +m with
n ≥ 1 and m ∈ Z. Similarly, the third factor vanishes if

(2n− 1)τ − 2z = 1 (mod 2)

which implies that

z = −1/2− τ/2 + nτ (mod 1)

= 1/2 + τ/2 + n′τ (mod 1),

where n′ ≥ 0. This exhausts the zeros of Π(·|τ). Finally, these zeros are
simple, since the function ew − 1 vanishes at the origin to order 1 (a fact
obvious from a power series expansion or a simple differentiation).

The importance of the product Π comes from the following theorem,
called the product formula for the theta function. The fact that Θ(z|τ)
and Π(z|τ) satisfy similar properties hints at a close connection between
the two. This is indeed the case.

Theorem 1.3 (Product formula) For all z ∈ C and τ ∈ H we have
the identity Θ(z|τ) = Π(z|τ).

Proof. Fix τ ∈ H. We claim first that there exists a constant c(τ)
such that

(2) Θ(z|τ) = c(τ)Π(z|τ).

In fact, consider the quotient F (z) = Θ(z|τ)/Π(z|τ), and note that by the
previous two propositions, the function F is entire and doubly periodic
with periods 1 and τ . This implies that F is constant as claimed.

1We use the standard short-hand, a = b (mod c), to mean that a− b is an integral
multiple of c.
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We must now prove that c(τ) = 1 for all τ , and the main point is to
establish that c(τ) = c(4τ). If we put z = 1/2 in (2), so that e2iπz =
e−2iπz = −1, we obtain

∞∑

n=−∞
(−1)nqn2

= c(τ)

∞∏

n=1

(1 − q2n)(1 − q2n−1)(1− q2n−1)

= c(τ)

∞∏

n=1

[
(1 − q2n−1)(1 − q2n)

]
(1 − q2n−1)

= c(τ)

∞∏

n=1

(1 − qn)(1− q2n−1).

Hence

(3) c(τ) =

∑∞
n=−∞(−1)nqn2

∏∞
n=1(1 − qn)(1− q2n−1)

.

Next, we put z = 1/4 in (2), so that e2iπz = i. On the one hand, we have

Θ(1/4|τ) =

∞∑

n=−∞
qn2

in,

and due to the fact that 1/i = −i, only the terms corresponding to n =
even = 2m are not cancelled; thus

Θ(1/4|τ) =

∞∑

m=−∞
q4m2

(−1)m.

On the other hand,

Π(1/4|τ) =

∞∏

m=1

(1 − q2m)(1 + iq2m−1)(1 − iq2m−1)

=

∞∏

m=1

(1 − q2m)(1 + q4m−2)

=

∞∏

n=1

(1 − q4n)(1 − q8n−4),

where the last line is obtained by considering separately the two cases
2m = 4n− 4 and 2m = 4n− 2 in the first factor. Hence

(4) c(τ) =

∑∞
n=−∞(−1)nq4n2

∏∞
n=1(1 − q4n)(1 − q8n−4)

,
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and combining (3) and (4) establishes our claim that c(τ) = c(4τ). Suc-

cessive applications of this identity give c(τ) = c(4kτ), and since q4
k

=

eiπ4kτ → 0 as k → ∞, we conclude from (2) that c(τ) = 1. This proves
the theorem.

The product formula for the function Θ specializes to its variant θ(τ) =
Θ(0|τ), and this provides a proof that θ is non-vanishing in the upper
half-plane.

Corollary 1.4 If Im(τ) > 0 and q = eπiτ , then

θ(τ) =

∞∏

n=1

(1 − q2n)(1 + q2n−1)2.

Thus θ(τ) 6= 0 for τ ∈ H.

The next corollary shows that the properties of the function Θ now
yield the construction of an elliptic function (which is in fact closely
related to the Weierstrass ℘ function).

Corollary 1.5 For each fixed τ ∈ H, the quotient

(log Θ(z|τ))′′ =
Θ(z|τ)Θ′′(z|τ) − (Θ′(z|τ))2

Θ(z|τ)2

is an elliptic function of order 2 with periods 1 and τ , and with a double
pole at z = 1/2 + τ/2.

In the above, the primes ′ denote differentiation with respect to the z
variable.

Proof. Let F (z) = (log Θ(z|τ))′ = Θ(z|τ)′/Θ(z|τ). Differentiating
the identities (ii) and (iii) of Proposition 1.1 gives F (z + 1) = F (z),
F (z + τ) = F (z) − 2πi, and differentiating again shows that F ′(z) is dou-
bly periodic. Since Θ(z|τ) vanishes only at z = 1/2 + τ/2 in the funda-
mental parallelogram, the function F (z) has only a single pole, and thus
F ′(z) has only a double pole there.

The precise connection between (log Θ(z|τ))′′ and ℘τ (z) is stated in
Exercise 1.

For an analogy between Θ and the Weierstrass σ function, see Exer-
cise 5 of the previous chapter.

1.1 Further transformation laws

We now come to the study of the transformation relations in the τ -
variable, that is, to the modular character of Θ.
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Recall that in the previous chapter, the modular character of the
Weierstrass ℘ function and Eisenstein series Ek was reflected by the
two transformations

τ 7→ τ + 1 and τ 7→ −1/τ,

which preserve the upper half-plane. In what follows, we shall denote
these two transformations by T1 and S, respectively.

When looking at the Θ function, however, it will be natural to consider
instead the transformations

T2 : τ 7→ τ + 2 and S : τ 7→ −1/τ,

since Θ(z|τ + 2) = Θ(z|τ), but Θ(z|τ + 1) 6= Θ(z|τ).
Our first task is to study the transformation of Θ(z|τ) under the map-

ping τ 7→ −1/τ .

Theorem 1.6 If τ ∈ H, then

(5) Θ(z| − 1/τ) =

√
τ

i
eπiτz2

Θ(zτ |τ) for all z ∈ C.

Here
√
τ/i denotes the branch of the square root defined on the upper

half-plane, that is positive when τ = it, t > 0.

Proof. It suffices to prove this formula for z = x real and τ = it
with t > 0, since for each fixed x ∈ R, the two sides of equation (5) are
holomorphic functions in the upper half-plane which then agree on the
positive imaginary axis, and hence must be equal everywhere. Also, for
a fixed τ ∈ H the two sides define holomorphic functions in z that agree
on the real axis, and hence must be equal everywhere.

With x real and τ = it the formula becomes

∞∑

n=−∞
e−πn2/te2πinx = t1/2e−πtx2

∞∑

n=−∞
e−πn2te−2πnxt.

Replacing x by a, we find that we must prove

∞∑

n=−∞
e−πt(n+a)2 =

∞∑

n=−∞
t−1/2e−πn2/te2πina.

However, this is precisely equation (3) in Chapter 4, which was derived
from the Poisson summation formula.

In particular, by setting z = 0 in the theorem, we find the following.
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Corollary 1.7 If Im(τ) > 0, then θ(−1/τ) =
√
τ/i θ(τ).

Note that if τ = it, then θ(τ) = ϑ(t), and the above relation is precisely
the functional equation for ϑ which appeared in Chapter 4.

The transformation law θ(−1/τ) = (τ/i)1/2θ(τ) gives us very precise
information about the behavior when τ → 0. The next corollary will be
used later, when we need to analyze the behavior of θ(τ) as τ → 1.

Corollary 1.8 If τ ∈ H, then

θ(1 − 1/τ) =

√
τ

i

∞∑

n=−∞
eπi(n+1/2)2τ

=

√
τ

i

(
2eπiτ/4 + · · ·

)
.

The second identity means that θ(1 − 1/τ) ∼
√
τ/i2eiπτ/4 as

Im(τ) → ∞.

Proof. First, we note that n and n2 have the same parity, so

θ(1 + τ) =

∞∑

n=−∞
(−1)neiπn2τ = Θ(1/2|τ),

hence θ(1 − 1/τ) = Θ(1/2| − 1/τ). Next, we use Theorem 1.6 with z =
1/2, and the result is

θ(1 − 1/τ) =

√
τ

i
eπiτ/4Θ(τ/2|τ)

=

√
τ

i
eπiτ/4

∞∑

n=−∞
eπin2τeπinτ

=

√
τ

i

∞∑

n=−∞
eπi(n+1/2)2τ .

The terms corresponding to n = 0 and n = −1 contribute 2eπiτ/4, which
has absolute value 2e−πt/4 where τ = σ + it. Finally, the sum of the
other terms n 6= 0,−1 is of order

O

( ∞∑

k=1

e−(k+1/2)2πt

)
= O

(
e−9πt/4

)
.
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Our final corollary of the transformation law pertains to the Dedekind
eta function, which is defined for Im(τ) > 0 by

η(τ) = e
πiτ
12

∞∏

n=1

(1 − e2πinτ ).

The functional equation for η given below will be relevant to our discus-
sion of the four-square theorem, and in the theory of partitions.

Proposition 1.9 If Im(τ) > 0, then η(−1/τ) =
√
τ/i η(τ).

This identity is deduced by differentiating the relation in Theorem 1.6
and evaluating it at z0 = 1/2 + τ/2. The details are as follows.

Proof. From the product formula for the theta function, we may write
with q = eπiτ ,

Θ(z|τ) = (1 + qe−2πiz)

∞∏

n=1

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n+1e−2πiz),

and since the first factor vanishes at z0 = 1/2 + τ/2, we see that

Θ′(z0|τ) = 2πiH(τ), where H(τ) =
∏∞

n=1(1 − e2πinτ )3.

Next, we observe that with −1/τ replaced by τ in (5), we obtain

Θ(z|τ) =
√
i/τe−πiz2/τΘ(−z/τ | − 1/τ).

If we differentiate this expression and then evaluate it at the point z0 =
1/2 + τ/2, we find

2πiH(τ) =
√
i/τe−

πi
4τ e−

πi
2 e−

πiτ
4

(
−2πi

τ

)
H(−1/τ).

Hence

e
πiτ
4 H(τ) =

(
i

τ

)3/2

e−
πi
4τ H(−1/τ).

We note that when τ = it, with t > 0, the function η(τ) is positive, and
thus taking the cube root of the above gives η(τ) =

√
i/τ η(−1/τ); there-

fore this identity holds for all τ ∈ H by analytic continuation.

A connection between the function η and the theory of elliptic func-
tions is given in Problem 5.
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2 Generating functions

Given a sequence {Fn}∞n=0, which may arise either combinatorially, re-
cursively, or in terms of some number-theoretic law, an important tool
in its study is the passage to its generating function, defined by

F (x) =

∞∑

n=0

Fnx
n.

Often times, the defining properties of the sequence {Fn} imply interest-
ing algebraic or analytic properties of the function F (x), and exploiting
these can eventually lead us back to new insights about the sequence
{Fn}. A very simple-minded example is given by the Fibonacci sequence.
(See Exercise 2). Here we want to study less elementary examples of this
idea, related to the Θ function.

We shall first discuss very briefly the theory of partitions.
The partition function is defined as follows: if n is a positive integer,

we let p(n) denote the numbers of ways n can be written as a sum of
positive integers. For instance, p(1) = 1, and p(2) = 2 since 2 = 2 + 0 =
1 + 1. Also, p(3) = 3 since 3 = 3 + 0 = 2 + 1 = 1 + 1 + 1. We set p(0) =
1 and collect some further values of p(n) in the following table.

n 0 1 2 3 4 5 6 7 8 · · · 12

p(n) 1 1 2 3 5 7 11 15 22 · · · 77

The first theorem is Euler’s identity for the generating function of the
partition sequence {p(n)}, which is reminiscent of the product formula
for the zeta function.

Theorem 2.1 If |x| < 1, then

∞∑

n=0

p(n)xn =

∞∏

k=1

1

1− xk
.

Formally, we can write each fraction as

1

1 − xk
=

∞∑

m=0

xkm,

and multiply these out together to obtain p(n) as the coefficient of xn.
Indeed, when we group together equal integers in a partition of n, this
partition can be written as

n = m1k1 + · · · +mrkr,
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where k1, . . . , kr are distinct positive integers. This partition corresponds
to the term

(xk1)m1 · · · (xkr)mr

that arises in the product.
The justification of this formal argument proceeds as in the proof of

the product formula for the zeta function (Section 1, Chapter 7); this is
based on the convergence of the product

∏
1/(1− xk). This convergence

in turn follows from the fact that for each fixed |x| < 1 one has

1

1 − xk
= 1 +O(xk).

A similar argument shows that the product
∏

1/(1− x2n−1) is equal to
the generating function for po(n), the number of partitions of n into odd
parts. Also,

∏
(1 + xn) is the generating function for pu(n), the number

of partitions of n into unequal parts. Remarkably, po(n) = pu(n) for all
n, and this translates into the identity

∞∏

n=1

(
1

1 − x2n−1

)
=

∞∏

n=1

(1 + xn).

To prove this note that (1 + xn)(1 − xn) = 1 − x2n, and therefore

∞∏

n=1

(1 + xn)

∞∏

n=1

(1 − xn) =

∞∏

n=1

(1 − x2n).

Moreover, taking into account the parity of integers, we have

∞∏

n=1

(1 − x2n)

∞∏

n=1

(1 − x2n−1) =

∞∏

n=1

(1 − xn),

which combined with the above proves the desired identity.

The proposition that follows is deeper, and in fact involves the Θ func-
tion directly. Let pe,u(n) denote the number of partitions of n into an
even number of unequal parts, and po,u(n) the number of partitions of n
into an odd number of unequal parts. Then, Euler proved that, unless n is
a pentagonal number, one has pe,u(n) = po,u(n). By definition, pentag-
onal numbers2 are integers n of the form k(3k + 1)/2, with k ∈ Z. For

2The traditional definition is as follows. Integers of the form n = k(k − 1)/2, k ∈ Z,
are “triangular numbers”; those of the form n = k2 are “squares”; and those of the form
k(3k + 1)/2 are “pentagonal numbers.” In general, numbers of the form (k/2)((` − 2)k +
`− 4) are associated with an `-sided polygon.
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example, the first few pentagonal numbers are 1, 2, 5, 7, 12, 15, 22, 26, . . ..
In fact, if n is pentagonal, then

pe,u(n) − po,u(n) = (−1)k, if n = k(3k + 1)/2.

To prove this result, we first observe that

∞∏

n=1

(1 − xn) =

∞∑

n=1

[pe,u(n) − po,u(n)]xn.

This follows since multiplying the terms in the product, we obtain terms
of the form (−1)rxn1+···+nr where the integers n1, . . . , nr are distinct.
Hence in the coefficient of xn, each partition n1 + · · · + nr of n into an
even number of unequal parts contributes for +1 (r is even), and each
partition into an odd number of unequal parts contributes −1 (r is odd).
This gives precisely the coefficient pe,u(n) − po,u(n).

With the above identity, we see that Euler’s theorem is a consequence
of the following proposition.

Proposition 2.2

∞∏

n=1

(1 − xn) =

∞∑

k=−∞
(−1)kx

k(3k+1)
2 .

Proof. If we set x = e2πiu, then we can write

∞∏

n=1

(1 − xn) =

∞∏

n=1

(1− e2πinu)

in terms of the triple product

∞∏

n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz)

by letting q = e3πiu and z = 1/2 + u/2. This is because

∞∏

n=1

(1 − e2πi3nu)(1− e2πi(3n−1)u)(1 − e2πi(3n−2)u) =

∞∏

n=1

(1 − e2πinu).

By Theorem 1.3 the product equals

∞∑

n=−∞
e3πin2u(−1)ne2πinu/2 =

∞∑

n=−∞
(−1)neπin(3n+1)u
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=

∞∑

n=−∞
(−1)nxn(3n+1)/2,

which was to be proved.

We make a final comment about the partition function p(n). The
nature of its growth as n→ ∞ can be analyzed in terms of the behavior
of 1/

∏∞
n=1(1 − x)n as |x| → 1. In fact, by elementary considerations, we

can get a rough order of growth of p(n) from the growth of the generating
function as x→ 1; see Exercises 5 and 6. A more refined analysis requires
the transformation properties of the generating function which goes back
to the corresponding Proposition 1.9 about η. This leads to a very good
asymptotic formula for p(n). It may be found in Appendix A.

3 The theorems about sums of squares

The ancient Greeks were fascinated by triples of integers (a, b, c) that
occurred as sides of right triangles. These are the “Pythagorean triples,”
which satisfy a2 + b2 = c2. According to Diophantus of Alexandria
(ca. 250 AD), if c is an integer of the above kind, and a and b have
no common factors (a case to which one may easily reduce), then c is the
sum of two squares, that is, c = m2 + n2 with m,n ∈ Z; and conversely,
any such c arises as the hypotenuse of a triangle whose sides are given by
a Pythagorean triple (a, b, c). (See Exercise 8.) Therefore, it is natural
to ask the following question: which integers can be written as the sum
of two squares? It is easy to see that no number of the form 4k + 3 can
be so written, but to determine which integers can be expressed in this
way is not obvious.

Let us pose the question in a more quantitative form. We define r2(n)
to be the number of ways n can be written as the sum of two squares,
counting obvious repetitions; that is, r2(n) is the number of pairs (x, y),
x, y ∈ Z, so that

n = x2 + y2.

For example, r2(3) = 0, but r2(5) = 8 because 5 = (±2)2 + (±1)2, and
also 5 = (±1)2 + (±2)2. Hence, our first problem can be posed as follows:

Sum of two squares: Which integers can be written as a
sum of two squares? More precisely, can one determine an
expression for r2(n)?

Next, since not every positive integer can be expressed as the sum of
two squares, we may ask if three squares, or possibly four squares suffice.
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However, the fact is that there are infinitely many integers that cannot
be written as the sum of three squares, since it is easy to check that no
integer of the form 8k + 7 can be so written. So we turn to the question
of four squares and define, in analogy with r2(n), the function r4(n) to be
the number of ways of expressing n as a sum of four squares. Therefore,
a second problem that arises is:

Sum of four squares: Can every positive integer be written
as a sum of four squares? More precisely, determine a formula
for r4(n).

It turns out that the problems of two squares and four squares, which
go back to the third century, were not resolved until about 1500 years
later, and their full solution was first given by the use of Jacobi’s theory
of theta functions!

3.1 The two-squares theorem

The problem of representing an integer as the sum of two squares, while
obviously additive in nature, has a nice multiplicative aspect: if n and
m are two integers that can be written as the sum of two squares, then
so can their product nm. Indeed, suppose n = a2 + b2, m = c2 + d2, and
consider the complex number

x+ iy = (a+ ib)(c+ id).

Clearly, x and y are integers since a, b, c, d ∈ Z, and by taking absolute
values on both sides we see that

x2 + y2 = (a2 + b2)(c2 + d2),

and it follows that nm = x2 + y2.
For these reasons the divisibility properties of n play a crucial role in

determining r2(n). To state the basic result we define two new divisor
functions: we let d1(n) denote the number of divisors of n of the form
4k + 1, and d3(n) the number of divisors of n of the form 4k + 3. The
main result of this section provides a complete answer to the two-squares
problem:

Theorem 3.1 If n ≥ 1, then r2(n) = 4(d1(n) − d3(n)).

A direct consequence of the above formula for r2(n) may be stated as
follows. If n = pa1

1 · · · par
r is the prime factorization of n where p1, . . . , pr

are distinct, then:
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The positive integer n can be represented as the sum of two
squares if and only if every prime pj of the form 4k + 3 that
occurs in the factorization of n has an even exponent aj.

The proof of this deduction is outlined in Exercise 9.

To prove the theorem, we first establish a crucial relationship that
identifies the generating function of the sequence {r2(n)}∞n=1 with the
square of the θ function, namely

(6) θ(τ)2 =

∞∑

n=0

r2(n)qn,

whenever q = eπiτ with τ ∈ H. The proof of this identity relies simply on
the definition of r2 and θ. Indeed, if we first recall that θ(τ) =

∑∞
−∞ qn2

,
then we obtain

θ(τ)2 =

( ∞∑

n1=−∞
qn2

1

)( ∞∑

n2=−∞
qn2

2

)

=
∑

(n1,n2)∈Z×Z

qn2
1+n2

2

=

∞∑

n=0

r2(n)qn,

since r2(n) counts the number of pairs (n1, n2) with n2
1 + n2

2 = n.

Proposition 3.2 The identity r2(n) = 4(d1(n) − d3(n)), n ≥ 1, is equiv-
alent to the identities

(7) θ(τ)2 = 2

∞∑

n=−∞

1

qn + q−n
= 1 + 4

∞∑

n=1

qn

1 + q2n
,

whenever q = eπiτ and τ ∈ H.

Proof. We note first that both series converge absolutely since |q| < 1,
and the first equals the second, because 1/(qn + q−n) = q|n|/(1 + q2|n|).

Since (1 + q2n)−1 = (1 − q2n)/(1− q4n), the right-hand side of (7) equals

1 + 4

∞∑

n=1

(
qn

1 − q4n
− q3n

1 − q4n

)
.
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However, since 1/(1− q4n) =
∑∞

m=0 q
4nm, we have

∞∑

n=1

qn

1 − q4n
=

∞∑

n=1

∞∑

m=0

qn(4m+1) =

∞∑

k=1

d1(k)q
k,

because d1(k) counts the number of divisors of k that are of the form
4m+ 1. Observe that the series

∑
d1(k)q

k converges since d1(k) ≤ k.
A similar argument shows that

∞∑

n=1

q3n

1 − q4n
=

∞∑

k=1

d3(k)q
k,

and the proof of the proposition is complete.

In effect, we see that the identity (6) links the original problem in
arithmetic with the problem in complex analysis of establishing the re-
lation (7).

We shall now find it convenient to use C(τ) to denote3

(8) C(τ) = 2

∞∑

n=−∞

1

qn + q−n
=

∞∑

n=−∞

1

cos(nπτ)
,

where q = eπiτ and τ ∈ H. Our work then becomes to prove the identity
θ(τ)2 = C(τ).

What is truly remarkable are the different yet parallel ways that the
functions θ and C arise. The genesis of the function θ may be thought
to be the heat diffusion equation on the real line; the corresponding
heat kernel is given in terms of the Gaussian e−πx2

which is its own
Fourier transform; and finally the transformation rule for θ results from
the Poisson summation formula.

The parallel with C is that it arises from another differential equation:
the steady-state heat equation in a strip; there, the corresponding kernel
is 1/ coshπx (Section 1.3, Chapter 8), which again is its own Fourier
transform (Example 3, Chapter 3). The transformation rule for C results,
once again, from the Poisson summation formula.

To prove the identity θ2 = C we will first show that these two functions
satisfy the same structural properties. For θ2 we had the transformation
law θ(τ)2 = (i/τ)θ(−1/τ)2 (Corollary 1.7).

3We denote the function by C because we are summing a series of cosines.




