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ABSTRACT

A survey of self�dual codes� written for the Handbook of Coding Theory�

Self�dual codes are important because many of the best codes known are of this type and
they have a rich mathematical theory� Topics covered in this chapter include codes over F�� F��
F�� Fq � Z�� Zm� shadow codes� weight enumerators� Gleason�Pierce theorem� invariant theory�
Gleason theorems� bounds� mass formulae� enumeration� extremal codes� open problems� There
is a comprehensive bibliography�





Contents

� Self�dual codes over rings and �elds �

��� Inner products � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Families of self�dual codes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��
 The dual code � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

��
 Self�dual codes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


� Equivalence of codes �

��� Equivalent codes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

��� Automorphism groups � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��
 Codes over Z� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Weight enumerators and MacWilliams theorem �


�� Weight enumerators � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

�� Examples of self�dual codes and their weight enumerators � � � � � � � � � � � � ��

�
 MacWilliams Theorems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
 Isodual and formally self�dual codes � � � � � � � � � � � � � � � � � � � � � � � � ��

� Restrictions on weights ��


�� Gleason�Pierce Theorem � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Type I and Type II codes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


	 Shadows �	


 Invariant theory ��
��� An introduction to invariant theory � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The basic theorems of invariant theory � � � � � � � � � � � � � � � � � � � � � � � 
�

� Gleason
s theorem and generalizations �

��� Family �I� Binary self�dual codes � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� Family �II� Doubly�even binary self�dual codes � � � � � � � � � � � � � � � � � � 
�
��
 Family 
� Ternary codes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
	
��
 Family 
H� Self�dual codes over F� with Hermitian inner product � � � � � � � � ��
��� Family 
E� Self�dual codes over F� with Euclidean inner product � � � � � � � � ��
��� Family 
H�I � Additive self�dual codes over F� using trace inner product � � � � � �

��� Family 
H�II � Additive even self�dual codes over F� using trace inner product � � ��
��� Family qH� Codes over Fq � q a square� with Hermitian inner product � � � � � � ��
��	 Family qE� Codes over Fq with Euclidean inner product � � � � � � � � � � � � � ��
���� Family 
ZI � Self�dual codes over Z� � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Family 
ZII� Type II self�dual codes over Z� � � � � � � � � � � � � � � � � � � � � � ��
���� Family mZ� Self�dual codes over Zm � � � � � � � � � � � � � � � � � � � � � � � � ��

� Weight enumerators of maximally self�orthogonal codes 
�

� Upper bounds 
�

�� Lower bounds �	

i



�� Enumeration of self�dual codes ��

���� Gluing theory � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Automorphism groups of glued codes � � � � � � � � � � � � � � � � � � � � � � � � ��
���
 Family �� Enumeration of binary self�dual codes � � � � � � � � � � � � � � � � � ��
���
 Family 
� Enumeration of ternary self�dual codes � � � � � � � � � � � � � � � � � ��
���� Family 
H� Enumeration of Hermitian self�dual codes over F� � � � � � � � � � � ��
���� Family 
E� Enumeration of Euclidean self�dual codes over F� � � � � � � � � � � ��
���� Family 
H�� Enumeration of trace self�dual additive codes over F� � � � � � � � ��
���� Family 
Z� Enumeration of self�dual codes over Z� � � � � � � � � � � � � � � � � ��

�� Extremal and optimal self�dual codes ��
���� Family �� Binary codes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
���� Family 
� Ternary codes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

���
 Family 
H� Hermitian self�dual codes over F� � � � � � � � � � � � � � � � � � � � 	�
���
 Family 
H�� Additive self�dual codes over F� � � � � � � � � � � � � � � � � � � � 	�
���� Family 
Z� Self�dual codes over Z� � � � � � � � � � � � � � � � � � � � � � � � � � 	�

�� Further topics ��

�
�� Decoding self�dual codes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�
�� Applications to projective planes � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�
�
 Automorphism groups of self�dual codes � � � � � � � � � � � � � � � � � � � � � � 	�
�
�
 Open problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

�� Self�dual codes and lattices ��

Acknowledgements ���

Bibliography ���

Index ��


ii



�� Self�dual codes over rings and �elds

���� Inner products

There are several di�erent kinds of self�dual codes� Let F be a �nite set called the alphabet

�e�g� F � f�� �g for binary codes�� A code C over F of length n is any subset of Fn � If F has the

structure of an additive group then C is additive if it is an additive subgroup of Fn � If F has a

ring structure then C is linear over F if it is additive and also closed under multiplication by

elements of F� �We will always assume that multiplication in F is commutative��

In order to de�ne dual codes we must equip F with an inner product �cf� ������ ������� We

denote this by � � � and require that it satisfy the following conditions�

�x� y� z� � �x� z� � �y� z� �
�x� y � z� � �x� y� � �x� z� �
if �x� y� � � for all x then y � � �
if �x� y� � � for all y then x � � �

To de�ne the dual of a linear code we impose the further condition that F has a conjugacy

operation� or �involutory anti�automorphism� �which may be the identity�� denoted by a bar�

which satis�es

x � x� x� y � x� y� xy � x y �

The inner product must then satisfy

�x� y� � �y� x�� �ax� y� � �x� ay� �

The inner product of vectors x � �x�� � � � � xn�� y � �y�� � � � � yn� in F
n is de�ned by

�x� y� �
nX
i��

�xi� yi� �

���� Families of self�dual codes

Families ��� through �mZ� include the most important families of codes we will consider in

this chapter�

��� Binary linear codes� F � F� � f�� �g� with inner product �x� y� � xy� C � subspace of Fn� �

�
� Ternary linear codes� F � F� � f�� �� �g� �x� y� � xy� C � subspace of Fn� �



�
H� Quaternary linear codes� F � F� � f�� �� �� ��g� where �� � � � � � �� �� � �� x � x�

for x � F�� with the Hermitian inner product �x� y� � xy� C � subspace of Fn� � Note that for

x� y � F�� �x� y�� � x� � y�� x� � x�

�
E� Quaternary linear codes� F � F�� but with the Euclidean inner product �x� y� � xy�

�
H�� Quaternary additive codes� F � F�� with �x� y� � xy�� x�y � trace�xy� �the trace from

F� to F��� C � additive subgroup of F
n
� �

For completeness we should also mention family 
E�� quaternary additive codes with the

Euclidean trace inner product� F � F� � with �x� y� � xy � �xy�� � trace�xy� �the trace from

F� to F��� C � additive subgroup of F
n
� � However� the map

x � �x� � �x� � Fn� � x�x� � F �n�

shows that these codes are equivalent to binary codes from family � with a particular pairing

of the coordinates� Since we don�t know any interesting examples of this family other than

linear codes� we shall say no more about them�

�qH� Linear codes over Fq �or q�ary linear codes�� where q is an even power of an arbitrary

prime p� with x � x
p
q for x � Fq � �x� y� � xy� C � subspace of Fnq � Note that for x� y � Fq �

�x� y�
p
q � x

p
q � y

p
q� xq � x�

�qE� Linear codes over Fq � but with �x� y� � xy� If q is a square� family qH is generally preferred

to qE�

�
Z� Z��linear codes� F � Z� � f�� �� �� 
g� with �x� y� � xy �mod 
�� C � linear subspace� of

Zn��

�mZ� F � Zm � Z�mZ� where m is an integer � �� with �x� y� � xy �mod m�� C � linear

subspace� of Znm�

Note that for the families �� 
� 
Z� mZ� an additive code is automatically linear�

The following families are less important for our present purposes�

�F�� Linear codes over Fq �u���u��� where u is an indeterminate� with u � �u� �x� y� � xy�

�References ��� and ����� consider such codes� as well as a noncommutative variant��

�F�� Additive codes over F�� with �x� y� � xy�

If we relax the requirement that F be commutative and �nite� we can add�

�F
� Linear codes over the p�adic integers�

�F
� Codes over Frobenius rings�

�Strictly speaking� a Z��submodule�
�Strictly speaking� a Zm�submodule�

�



�F�� Lattices in Rn �see Section �
��

���� The dual code

Once we have speci�ed a family of codes by giving F and an inner product we can de�ne

the dual of a code C to be

C� � fu � Fn � �u� v� � � for all v � Cg �

The dual of a binary linear code �family �� is again a binary linear code� Similarly� the dual of

a code in any of families 
 through mZis again a code of the same family� For family 
H�� the

dual of an additive code is additive� if C is also linear so is C�� and then C� coincides with

the dual in family 
H� The dual in family 
E is the conjugate of the dual in family 
H�

For families � through mZit is easily checked that we have

jCj jC�j � jFjn � ���

which implies

�C��� � C � ���

In general� however� we can say only that

C � �C��� �

In particular� ��� does not necessarily hold for family F� �consider� for example� the code

f��� ��g which has dual f��� ��� ��� ��g� containing only 
 words��

���� Self�dual codes

If C � C� then C is said to be self�dual� If C � C�� C is self�orthogonal� �In the past� some

authors have used �self�orthogonal� and �weakly self�orthogonal� for these two concepts��

In families � through mZ� if C is self�dual then

jCj � jFjn�� � �
�

and if jFj is not a square then n must be even� In particular� if C is linear over a �eld� then

n is even and C is a subspace of dimension n��� The only families from � through mZthat

contain self�dual codes of odd length are 
H�� 
Zand mZwith m a square�






Remarks about the �nal three families� �F
�� Let C be a code of length n over the

p�adic integers Zp� �such codes have been studied in �
��� ������ In general it is not clear how

one should de�ne C�� However� if when we reduce C mod p it has the same dimension over

Fp as C had over Fp� � then there is a natural way to de�ne the dual so that it satis�es

�C��� � C� dim C � dim C� � n �

Namely� let D � Qp� �C be the code over the p�adic rationals Qp� generated by C� Since D

is a linear code over a �eld� D� exists and satis�es �D��� � D� dim D � dimD� � n� Now

set C� � D� �Znp��
�F
�� J� A� Wood ��

��� see also �
���� has investigated codes over noncommutative �nite

rings F� and has shown that the two fundamental MacWilliams theorems �Theorem 
 below

and Theorems ���
 and ���� of Chapter �� hold precisely when F is a Frobenius ring� At present

however no interesting examples of self�dual codes over noncommutative rings are known�

�F��� Unimodular lattices are analogues of self�dual codes in Rn � see Section �
�

�� Equivalence of codes

���� Equivalent codes

Codes that di�er only in minor ways� such as in the order in which the coordinates are

arranged� are said to be equivalent� The transformations that we allow in de�ning equivalence

for the above families of codes are as follows �these are precisely the transformations that

commute with the process of forming the dual��

��� Permutations of the coordinates�

�
� Monomial transformations of the coordinates �that is� a permutation of the coordinates

followed by multiplication of the coordinates by nonzero �eld elements��

�
H� Monomials� global conjugation�

�
E� Permutations� global conjugation�

�
H�� Monomials� conjugation of individual coordinates�

�qH� Monomials over the subgroup

fx � Fq � xx � �g 	� F�q�F�pq �






where the star denotes the set of nonzero �eld elements� global multiplication by elements of

F�q � global action of Galois group Gal�Fq�Fp�

�qE� Monomials over f
�g� global multiplication by units� global action of Galois group�
�
Z� Monomials over f
�g�
�mZ� Monomials over square roots of unity� global multiplication by units of Zm�

���� Automorphism groups

In each case� the subset of such transformations that preserves the code forms the auto�

morphism group Aut�C� of the code�

Let G denote the full group of all transformations listed� The order of G in the above cases

is�

��� n�

�
� �nn�

�
H� ��
nn�

�
E� ��n�

�
H�� �nn�

�qH� logp�q��
p
q � ���pq � ��nn�

�qE� logp�q�
q��
� �

nn�

�
Z� �nn�

�mZ� For m � �� �� �� �� 	 the orders are

�� �
�
�nn�� �nn��

�� �
�
�nn�� 
nn�� 
��nn�

respectively�

The number of codes that are equivalent to a given code C is then

jGj
jAut�C�j �

In most cases it is possible to determine the total number Tn �say� of distinct self�dual codes

of length n in one of our families� Then

Tn �
X

inequivalent
C

jGj
jAut�C�j

where the sum is over all inequivalent codes� In other words

X
inequivalent

C

�

jAut�C�j �
Tn
jGj � �
�

�



Equation �
� is called a mass formula� The appropriate values of Tn are�

���
�
�
n��Y
i��

��i � �� �n � � �mod ��� ���

��II� �weights divisible by 
��

�

�
�
n��Y
i��

��i � �� �n � � �mod ��� ���

�
�

�

�
�
n��Y
i��

�
i � �� �n � � �mod 
�� ���

�
H�
�
�
n��Y
i��

���i�� � �� �n � � �mod ��� ���

�
E�
�
�
n��Y
i��

�
i � �� �n � � �mod ��� �	�

�
H��
nY
i��

��i � �� ����

�
H�II � �all weights even��

�
n��Y
i��

��i � �� �n � � �mod ��� ����

�qH�
�
�
n��Y
i��

�qi�
�
� � �� �n � � �mod ��� ����

�qE�

b

�
�
n��Y
i��

�qi � �� �n � � �mod ��� ��
�

where b � � if q is even� � if q is odd

�
Z�
n��X
k��

��n� k��k�k��	�� � ��
�

where ��n� k�� the number of binary self�orthogonal �n� k� codes with all weights divisible by


� is equal to � if k � �� and otherwise is given by

k��Y
i��

�n��i�� � ��
n
� ��i�� � �

�i�� � � � if n � 
� �mod �� �

�



k��Y
i��

�n��i�� � �
�i�� � � � if n � 
� �mod �� �

k��Y
i��

�n��i�� � ��n� ��i�� � �
�i�� � � � if n � 

 �mod �� �

�
k��Y
i��

�n��i�� � �
n
�
�i�� � �

�i�� � �

�
�
�
�

�k��
�
�n��k � �

n
�
�k � �

�k � �

�
� if n � � �mod �� �

�
k��Y
i��

�n��i�� � �n��i�� � �
�i�� � �

�
�
�
�

�k��
�
�n��k � �n��k � �

�k � �

�
� if n � 
 �mod �� �

There is a similar but even more complicated formula for Tn for self�dual codes over Z� with

Euclidean norms divisible by �� see ������

Formulae ������
� are based on various sources including ��

�� ��	��� ������ ���	� Chap� �	��

Equation ��
� is due to Gaborit ������

Here are two proofs of ���� �i� Let �n�k denote the number of �n� k� self�orthogonal codes C

containing �� Any such C can be extended to an �n� k��� self�orthogonal code D by adjoining

any vector of C� nC� and any D will arise �k�� times from di�erent C�s� So we have �n�� � ��
�n�k��
�n�k

�
�n��k � �
�k � � �

and �n�n�� gives ���� �ii� A more sophisticated proof can be obtained by observing that the

Euclidean inner product induces a symplectic geometry structure on the space of even weight

vectors modulo �� A self�dual code is then a maximally isotropic subspace� The number of

maximally isotropic subspaces of a symplectic geometry of dimension �k is  k
i����

i � �� �

�

x	�
�� and we obtain ��� by noting that our symplectic geometry has dimension n� ��
Similarly� a binary self�dual code with weights divisible by 
 is a maximally totally singular

subspace of the orthogonal geometry of dimension n�� induced by �
�wt�v�� which leads to ����

Equations ���� �	�� ����� ��
� are also obtained via orthogonal geometry� ���� via symplectic

geometry� and ��� and ���� via unitary geometry�

These mass formulae are useful when one is attempting to �nd all inequivalent codes of

a given length �compare Section ���� For example� suppose we are trying to �nd all binary

self�dual codes of length �� We immediately �nd two codes� i�
i�
i�
i�� where i� � ����� and
the Hamming code e
� and then it appears that there are no others� To prove this� we compute

the automorphism groups of these two codes� they have orders ��
� � 
�
 and ������
 � �


�

respectively� We also calculate T
�jGj � 
���	��� � 
��	� from ���� and see that indeed

�


�

�

�

�



�




�	�
�

�



verifying that this enumeration is complete� We will return to this in Section ���

There are also formulae that give the total number of self�dual codes containing a �xed

self�orthogonal vector or code � see ���	� Chapter �	��

���� Codes over Z�

Codes over rings are probably less familiar to the reader than codes over �elds� and so we

will add some remarks here about the �rst such case� codes over Z�� family 

Z�

Any code over Z� is equivalent to one with generator matrix of the form�
Ik� X Y� � �Y�
� �Ik� �Z

�
����

where X � Y�� Y�� Z are binary matrices� Then C is an elementary abelian group of type 

k��k� �

containing ��k��k� words� We indicate this by writing jCj � 
k��k� � The dual code C� has

generator matrix �
��Y� � �Y��tr � ZtrX tr Ztr In�k��k�

�X tr �Ik� �

�

and jC�j � 
n�k��k��k� �
There are two binary codes C��	 and C��	 associated with C� having generator matrices

�Ik� X Y�� and

�
Ik� X Y�
� Ik� Z

�
����

and parameters �n� k�� and �n� k��k�� respectively� If C is self�orthogonal then C
��	 is doubly�

even and C��	 � C��	 � C��	�� If C is self�dual then C��	 � C��	�� The next two theorems

give the converse assertions�

Theorem �� If A� B are binary codes with A � B then there is a code C over Z� with

C��	 � A� C��	 � B� If in addition A is doubly�even and B � A� then C can be made

self�orthogonal� If B � A� then C is self�dual�

Proof� Suppose A� B have generator matrices as shown in ����� Then�
I X Y
� �I �Z

�
����

is a generator matrix for a code C with C��	 � A� C��	 � B� To establish the second assertion

we must modify ���� to make C self�orthogonal� This is accomplished by replacing the �j� i�th

entry of ���� by the inner product modulo 
 of rows i and j� for � � i � k�� � � j � k� � k��

i � j�

�



In this way every self�orthogonal doubly�even binary code corresponds to one or more self�

dual codes over Z��

Theorem �� ����� A code C over Z� with generator matrix ���� is self�dual if and only if

C��	 is doubly�even� C��	 � C��	�� and Y� is chosen so that if M � Y�Y
tr
� � then Mij �Mji �

�
�wt�vi � vj�� where v�� � � � � vk� are the generators of C��	�

In contrast to self�dual codes over �elds� self�dual codes over Z� exist for all lengths� even

or odd� Furthermore� a self�dual code C over Z� of length n can be shortened to a self�dual

code of length n� � by deleting any one of its coordinates� This is accomplished as follows� If
the projection of C onto the ith coordinate contains all of Z�� the shortened code is obtained

by taking those words of C that are � or � in the ith coordinate and omitting that coordinate�

If the projection of C onto the ith coordinate contains only � and �� we take the words of C

that are � on the ith coordinate and omit that coordinate�

In this way all self�dual codes over Z� belong to a common �family tree�� with i� � f�� �g
at the root� The beginning of this tree� showing all self�dual codes of lengths n � �� is given
in Fig� � of �����

�� Weight enumerators and MacWilliams theorem

���� Weight enumerators

The Hamming weight of a vector u � �u�� � � � � un� � Fn � denoted by wt�u�� is the number
of nonzero components ui�

Two other types of �weight� are useful for studying nonbinary codes� For the codes in

families 
Z� mZ�and hence for �� 
� and� if q is a prime� qE� we de�ne the Lee weight and

Euclidean norm of u � F by

Lee�u� � minfjuj� jFj � jujg �
Norm�u� � �Lee�u��� �

For a vector u � �u�� � � � � un� � Fn � we set

Lee�u� �
nX
i��

Lee�ui� �

Norm�u� �
nX
i��

Norm�ui� �

	



Of course� if u is a binary vector� wt�u� � Lee�u� � Norm�u��

It is customary to use the symbol Ai to denote the number of vectors in a code C having

Hamming weight �or Lee weight� or Euclidean norm� depending on context� equal to i� Then

fA�� A�� A�� � � �g is called the weight distribution of the code� The Hamming weight enumerator

�abbreviated hwe� of C is de�ned to be

WC�x� y� �
X
u�C

xn�wt�u	ywt�u	 �
nX
i��

Aix
n�iyi � ����

�The adjective �Hamming� is often omitted�� There are good reasons for taking the Hamming

weight enumerator to be a homogeneous polynomial of degree n �see below�� However� no

information is lost if we set x � �� and write it as a polynomial in the single variable y�

There is an analogous de�nition for nonlinear codes� for v � Fn � let Ai�v� be the number

of codewords at Hamming distance i from v� The average Hamming weight distribution for a

nonlinear or nonadditive code is then

Ai �
�

jCj
X
c�C

Ai�c� �

with associated Hamming weight enumerator

WC�x� y� �
nX
i��

Aix
n�iyi �

Much more information about a code C is supplied by its complete weight enumerator

�abbreviated cwe� and de�ned as follows� Let the elements of the alphabet F be ��� ��� � � � � �a�

and introduce corresponding indeterminates x�� x�� � � � � xa� Then

cweC�x�� � � � � xa� �
X
u�C

x
n��u	
� x

n��u	
� � � �xna�u	a � ��	�

where n��u� is the number of components of u that take the value �� �

If there is a natural way to pair up some of the symbols in F then we can often reduce

the number of variables in the cwe without losing any essential information� by identifying

indeterminates corresponding to paired symbols� The result is a symmetrized weight enumer�

ator �abbreviated swe�� Some examples will make this clear� For linear codes over F� the

symmetrized weight enumerator is

sweC�x� y� z� �
X
u�C

xn��u	yn��u	zNw�u	 � cweC�x� y� z� z� � ����

��



where n��u�� n��u� are as above and Nw�u� is the number of components in u that are equal

to either � or �� For linear codes over Z�� the appropriate symmetrized weight enumerator is

sweC�x� y� z� �
X
u�C

xn��u	yn��u	zn��z	 � cweC�x� y� z� y� � ����

where n��u� is the number of components of u that are equal to either �� or ��� There is an
obvious generalization of ���� to linear codes over Zm�

The swe contains only about half as many variables as the complete weight enumerator�

and yet still contains enough information to determine the Lee weight or norm distribution of

a code�

All the weight enumerators mentioned so far can be obtained from the �full weight enu�

merator� of the code� This is a generating function� or formal sum �not a polynomial�� listing

all the codewords� X
u�C

zu�� zu�� � � �zunn �

where we use a di�erent indeterminate zi for each coordinate position� To obtain the sym�

metrized weight enumerator of a code over F�� for example� we replace each occurrence of z
�
i

by x� each z�i by y� and each z
�
i or z

�
i by z�

Still further weight enumerators that have proved useful can also be obtained from the full

weight enumerator� For example� the split Hamming weight enumerator of a code of length

n � �m is

splitC�x� y�X� Y � �
X
y�C

xm�l�u	yl�u	Xm�r�u	Y r�u	 �

where l�u� �resp� r�u�� is the Hamming weight of the left half �resp� right half� of u� Split

weight enumerators have been investigated in ��	��� for example� Of course� the split need not

be into equal parts� Multiply�split weight enumerators have been extensively used in ������

One may also de�ne weight enumerators for translates of codes� if C is a translate of a

linear or additive code� its weight enumerator is

WC�x� y� �
X
c�C

xn�wt�c	ywt�c	�

We will use such weight enumerators later in this chapter when studying the �shadow� of a

self�dual code�

The biweight enumerator of a code generalizes the weight enumerator to consider the over�

laps of pairs of codewords� and the joint weight enumerator of two codes C and D considers

��



the overlaps of pairs of codewords u � C and v � D� More generally� the k�fold multiple weight

enumerator of a code considers the composition of k codewords chosen simultaneously from

the code� Again there are generalizations of the MacWilliams and Gleason theorems �������

���	� Chap� ��� ���	��� The connections between multiple weight enumerators of self�dual codes

and Siegel modular forms have been investigated by Duke �	��� Ozeki ������ ������ ����� and

Runge ������������

Ozeki ����� has recently introduced another generalization of the weight enumerator of a

code C� namely its Jacobi polynomial� For a �xed vector v � Fn � this is de�ned by

JacC�v�x� z� �
X
u�C

xwt�u	zwt�u�v	 �

which is essentially a split weight enumerator� These polynomials have been studied in �����

����� ��
�� They have the same relationship to Jacobi forms �	
� as weight enumerators do to

modular forms �cf� the remarks in Section �
��

For future reference we note the following relations between inner products and weights or

norms for four of our families�

����

�u� v� �
�

�
fwt�u� v�� wt�u�� wt�v�g ����

�
H���

�u� v� � wt�u� v�� wt�u�� wt�v� ��
�

�
Z�� �mZ��

�u� v� �
�

�
fNorm�u� v��Norm�u�� Norm�v�g � ��
�

���� Examples of self�dual codes and their weight enumerators

The following are some key examples of self�dual codes of the di�erent families mentioned

in Section �� together with their weight enumerators� Some of these weight enumerators will

be labeled for later reference� Unless indicated otherwise� all the codes mentioned are self�dual

codes of the appropriate kind�

We write �n� k� d�q to indicate a linear code of length n� dimension k and minimal distance

d over the �eld Fq � omitting q when it is equal to �� �n� k� d��� indicates an additive code

over F� containing 

k vectors �so k � �

�Z�� Usually the subscript on the symbol for a code

�e�g� e
� gives its length� We adopt the convention that parentheses in a vector mean that all

��



permutations indicated by the parentheses are to be applied to that vector� For example� in the

de�nition of e
 below� ���������� stands for the seven vectors ��������� ��������� ���������

etc� The generators for the hexacode in �

� could have been abbreviated as �����������

The following codes are all self�dual�

��� The �rst example of a binary self�dual code is the ��� �� �� repetition code i� � f��� ��g�
with weight enumerator

Wi��x� y� � x� � y� � 	� �say� � ����

and jAut�i��j � ��
The ��� 
� 
� Hamming code e
 �see Section �� of Chapter �� ����� p� ��� generated by

����������� is self�dual with weight enumerator

We��x� y� � x
 � �
x�y� � y
 � 	
 � ����

and group GA���� of order ������
 � �


�

The ��
� ��� �� binary Golay code g�� �Section �� of Chapter �� ����� Chaps� 
� ���� generated

by

�������������������������� � ����

or equivalently by the idempotent generator

�������������������������� � ����

has weight enumerator

Wg���x� y� � x�� � ��	x��y
 � ����x��y�� � ��	x
y�� � y�� � 	�� � ��	�

Aut�g��� is the Mathieu group M��� of order �
��
����������
� � �

��
�
��

All three codes i�� e
� g�� are unique in the sense that any linear or nonlinear code with the

same length� size and minimal distance and containing the zero vector is linear and equivalent

to the code given above ����� �see also ��	����

�
� Self�dual codes over F� exist if and only if the length n is a multiple of 
 �this follows from

Gleason�s theorem� see ������ and is also a consequence of the argument used to prove ���

������� We use indeterminates x� y for the Hamming weight enumerator W �x� y� and x� y� z for

the cwe�

The �
� �� 
�� tetracode t�� generated by f����� ����g �Section � of Chapter �� ���� p� ���
has

Wt��x� y� � x� � �xy� �
��

�




and cwe xfx� � �y � z��g� Aut�t�� � ��S�
�� where S�n� denotes a symmetric group of order
n��

The ���� �� ��� ternary Golay code g�� �Section �� of Chapter �� ����� p� ���� generated by

��������������� has

Wg���x� y� � x�� � ��
x�y� � 

�x�y� � �
y�� �
��

and �assuming the all�ones codeword is present�

cwe�x� y� z� � x��� y��� z������x�y�� y�z�� z�x�������x�y�z��x�y�z��x�y�z�� � �
��

Aut�g��� � ��M�� �where M�� is a Mathieu group�� of order �	�����

These two codes are unique in the same sense as our binary examples ������

�
H� We use indeterminates x� y for the Hamming weight enumerator� x� y� z for the swe

and x� y� z� t �corresponding to the symbols �� �� �� �� for the cwe� so that swe�x� y� z� �

cwe�x� y� z� z��

The ��� �� ��� repetition code i� � f��� ��� ��� ��g has

Wi��x� y� � x� � 
y� �

swe � x� � y� � �z� �

cwe � x� � y� � z� � t� � �

�

and a group of order ���

The ��� 
� 
�� hexacode h� �Section �� of Chapter �� ���� p� ���� in the form with generator

matrix �
� � � � � � �
� � � � � �

� � � � � �

�
� �

�

has

Wh��x� y� � x� � 
�x�y� � ��y�� �
��

swe � x� � y� � �z� � ����x�y�z� � x�z� � y�z�� � �
��

cwe � x� � y� � z� � t� � ���x�y�z� � x�y�t� � x�z�t� � y�z�t�� �
��

and Aut�h�� � 
�S���� of order �����

Again these codes are unique�

�




Of course this i� is simply the F��span of the binary code i� de�ned above� In general� if

C is de�ned over an alphabet F� and F� � F is a larger alphabet� we write C � F� to indicate
this process�

If C is a binary self�dual code then C � F� is a self�dual code belonging to both families

H and 
E� Conversely� it is not di!cult to show that if C is self�dual over F� with respect to

both the Hermitian and Euclidean inner products� then C � B � F� for some self�dual binary
code B�

�
E� The �
� �� 
�� Reed�Solomon code �
� � � �
� � � �

	

has

W �x� y� � x� � ��xy� � 
y� �

swe � x� � y� � �z� � ��xyz� �

cwe � x� � y� � z� � t� � ��xyzt �

The automorphism group is 
�S�
�� of order ���

�
H�� The smallest example is the ��� �� � ���� code i� � f�� �g� with automorphism group of

order � �conjugation�� The ���� �� ���� dodecacode z�� can be de�ned as the cyclic code with

generator ������������ ��
	�� see also ��

��� Aut�z��� is a semi�direct product of Z�
�� with

S�
� �where Z�n� denotes a cyclic group of order n� and has order �
��

�qH� Since the norm map from Fq to Fpq is surjective� there is an element a � Fq with aa � ���
Then ��a� is self�dual�

�qE� As in family 
H� there is a restriction on n� if q � 
 �mod 
� then self�dual codes exist

if and only if n is a multiple of 
� for other values of q� n need only be even ������ Provided

q �� �
� �mod 
�� Fq contains an element i such that i� � ��� and then ��i� is self�dual�
�
Z� The smallest example is the self�dual code i� � f�� �g of length �� The octacode o
 ������
����� is the length � code generated by the vectors 
���������� or equivalently with generator

matrix �


�
� � � � � � � �
� � � � 
 � � 

� � � � 
 
 � �
� � � � 
 � 
 �

�
��� � �
��

having minimal Lee weight � and minimal norm ��

swe � x
 � ��y
 � z
 � �
x�z� � ���xy�z�x� � z�� �

��



and jAut�o
�j � ���


�
The most interesting property of the octacode is that when mapped to a binary code under

the Gray map

�� ��� �� ��� �� ��� 
� �� � �
	�

o
 becomes the Nordstrom�Robinson code� a nonlinear binary code of length ��� minimal

distance �� containing ��� words �Section �
 of Chapter �� Chapter xx �Helleseth�Kumar��

�		�� ���	��� The latter is therefore a formally self�dual binary code� see Section 
�
�

The octacode reduces mod � to the Hamming code e
� There is another lift of e
 to Z��

namely the code E
� with generator matrix�


�
� � � � � � � �
� � � � 
 � � 

� � � � 
 
 � �
� � � � 
 � 
 �

�
��� � �
��

but the minimal Lee weight and norm are now both only 
� However� not all binary self�dual

codes lift to self�dual codes over Z�� e�g� f��� ��g does not�

Theorem �� �a� Let C be a binary self�dual code of length n� A necessary and su	cient

condition for C to be lifted to a self�dual code "C over Z� is that all weights in C are divisible

by 
� �b� If this condition is satis�ed� "C can be chosen so that all norms are divisible by ��

�c� More generally� a self�dual code over Zm� m even� that reduces to a self�dual code mod �

lifts to Z�m precisely when all norms are divisible by �m� and in that case all norms in the

lifted code can be arranged to be divisible by 
m� Thus if a code lifts from Zm to Z�m then it

lifts to Z�km for all k� In particular� if a binary code lifts to Z� then it lifts to a self�dual code

over the 
�adic integers�

Proof� �a� �Necessity� Suppose v � C has weight wt�v� �� � �mod 
�� and let "v � "C be any

lift of v� Then Norm�"v� � Norm�v� �mod 
� because for integers x� y if x � y �mod �� then

x� � y� �mod 
��

�Su!ciency� Without loss of generality C has a generator matrix of the form �IA� where

AAtr � �I �mod ��� Let B be any lift of A to Z�� We wish to �nd "A � B � �M such that

"A "Atr � �I �mod 
�� since then we can take "C � �I "A�� We have

"A "Atr � BBtr � ��MBtr � BM tr� �mod 
� �

��



The condition on C implies that BBtr � I has even coe!cients and is zero on the diagonal�

But then there exists a binary matrix M � such that ��M � �M �tr� � BBtr � I � and we take

M �M ��B���tr� This completes the proof of �a��

�b� We need to show that we can choose "A so that the diagonal entries of "A "Atr � I are

zero mod �� Set "A� � "A� �L "A� where L is symmetric� so that

"A�� "A��tr � "A "Atr � 
L� 
L��mod �� �

Let # � �
��
"A "Atr� I�� Then we need L��L�# �mod �� to be symmetric with zero diagonal�

It is easy to see that we can accomplish this provided trace�#� � � �mod �� �consider� for

instance� L �
�
�
�

�
�



�� In fact� we have

� � det� "A "Atr� � � � 
 trace # �mod ��

so trace # is even�

The proof of �c� is analogous�

It follows from Theorem 
 that the Golay code g�� can be lifted to Z�� Since g�� is

an extended cyclic code� the lift can be easily performed by Grae�e�s method ����� �
����

Suppose g��x� divides x
n � � �mod ��� and we wish to �nd a monic polynomial g�x� over Z�

such that g�x� � g��x� �mod �� and g�x� divides xn � � �mod 
�� Let g��x� � e�x� � d�x��

where e�x� contains only even powers and d�x� only odd powers� Then g�x� is given by

g�x�� � 
�e��x� � d��x��� Applying this technique to the generator polynomial for g��� that

is� to g��x� � �� x� x
� x�� x�� x�� x�� �see ������ we obtain g�x� � ��� x��x�� x
�
x� � x� � x� � �x�� � x��� and so


�
����


�
�������������� �
��

generates a self�dual code G�� of length �
 which is the Golay code lifted to Z�� Iterating this

process enables us to lift cyclic or extended cyclic codes to Z�m for arbitrarily large m�

�F�� Let q � �� Then �
� � �v v �� � �
� � �v v �� �
� � � �v v ��

�
� �
��

where v � �� � u���� generates a self�dual code of length � over F
�u���u���

The matrix �
�� also generates self�dual codes from family qH� Suppose q is a prime power

such that v� � v � � has no solution in Fq � and let v be a solution in Fq� � Then �
�� de�nes

��



a Hermitian self�dual code over Fq� with minimal distance 
� In the case q � � we get the

hexacode�

�F
� The ��adic Hamming code ���� is the self�dual code of length � with generator matrix

�


�
� 
 
� � �� � � � �
� � 
 
� � �� � � �
� � � 
 
� � �� � �
� � � � 
 
� � �� �

�
��� �

where 
 is the ��adic integer �� �
p������ The ��adic expansion of 
 is


 � � � 
� 
�� ��� � ��� � ��� � ���
 � ��
� � 
�	� � 
����� � � �

This is the cyclic code with generator

�� 
� 
� ����� �� �� �

with a � appended to each of the generators�

Similarly� the ��adic self�dual Golay code of length �
 is the cyclic code with generator

�� �� 
���� 
��
� 
� 
� �
� 
� �
� �� 
� 
� 
� 
� 
��
���� �� �� �� �� �� �� �� �� �� �� � �

where now 
 � �� �
p��
���� with a � appended to each of the �� generators�

The 
�adic self�dual Golay code of length �� is the cyclic code with generator

�� 
���� �� 
� ����� �� �� �� �� � �

where 
 � �� �
p������� again with a � appended to each generator�

�F
� We shall not discuss these codes here� but refer the reader to Wood �

���

���� MacWilliams Theorems

MacWilliams ����
�� see also ���	�� discovered that the Hamming weight distribution of

the dual of a linear code is determined just by the Hamming weight distribution of the code�

There are versions of this theorem for most of our families of codes� Although there are

several ways to state these identities� the simplest formulation is always in terms of the weight

enumerator polynomials �it is for this reason that we insist that the weight enumerator should

be a homogeneous polynomial��

Theorem �� �MacWilliams and others��

��



��� Three equivalent formulations of the result for binary self�dual codes are�

WC��x� y� �
�

jCjWC�x� y� x� y� � �

�

X
u�C�

xn�wt�u	ywt�u	 �
�

jCj
X
u�C

�x� y�n�wt�u	�x� y�wt�u	 � �

�

and� if fA�� � A�� � � � �g is the weight distribution of C��

A�k �
�

jCj
nX
i��

AiPk�i� �
��

where

Pk�x� �
kX

j��

����j
�
x

j

��
n� x

k � j

�
� k � �� � � � � n �

is a Krawtchouk polynomial ������� Chap� �� etc��� There are analogous Krawtchouk polyno�

mials for any alphabet� see ������ p� ���� For the remaining cases we give just the formulation

in terms of weight enumerators�

�
�

WC��x� y� �
�

jCjWC�x� �y� x� y� �

cweC��x� y� z� �
�

jCjcweC�x� y � z� x� �y � �z� x� �y � �z� �

�
H� and �
H��

WC��x� y� �
�

jCjWC�x� 
y� x� y� �

sweC��x� y� z� �
�

jCjsweC�x� y � �z� x� y � �z� x� y� �

cweC��x� y� z� t� �
�

jCjcweC�x� y � z � t� x� y � z � t� x� y � z � t� x� y � z � t� �

�
E�

WC��x� y� �
�

jCjWC�x� 
y� x� y� �

sweC��x� y� z� �
�

jCjsweC�x� y � �z� x� y � �z� x� y� �

cweC��x� y� z� t� �
�

jCjcweC��x� y � z � t� x� y � z � t� x� y � z � t� x� y � z � t� �

�qH�

WC��x� y� �
�

jCjWC�x� �q � ��y� x� y� � �
��

�	



Let 
 be a nontrivial linear functional from Fq to Fp� and set

���x� � e��i���x	�p � �
��

The cwe for C� is obtained from the cwe for C by replacing each xj by

q��X
k��

�	j ��k�xk �

�We omit discussion of the swe� since there are several di�erent ways in which it might be

de�ned��

�qE� Same as for qH� but omitting the bar in �
���

�
Z�

WC��x� y� �
�

jCjWC�x� 
y� x� y�

sweC��x� y� z� �
�

jCjsweC�x� �y � z� x� y� x� �y � z�

cweC��x� y� z� t� �
�

jCjcweC�x� y � z � t� x� iy � z � it� x� y � z � t� x� iy � z � it� �

�mZ�

WC��x� y� �
�

jCjWC�x� �m� ��y� x� y� �

The cwe for C� is obtained from the cwe for C by replacing each xj by

m��X
k��

e��ijk�mxk � �
��

Proof� We prove the result for family �� There are analogous proofs for the other cases� cf�

Section �� of Chapter �� Section � of Chapter xx �Helleseth�Kumar�� ������ ���	� Chap� ���

Let f be a polynomial�valued function on Fn� � De�ne the Fourier �or Hadamard� transform

of f by

"f�u� �
X
v�Fn

�

����u
vf�v�� u � Fn� �

If C is a linear code it is straightforward to verify that

X
u�C�

f�u� �
�

jCj
X
u�C

"f�u� � �
	�

�This is a version of the Poisson summation formula � cf� �	���� Now we set f�u� �

xn�wt�u	ywt�u	� and after some algebra �the details can be found on p� ��� of ���	�� discover

that

"f �u� � �x� y�n�wt�u	�x� y�wt�u	 � ����

Equations �
	� � ���� together imply �

��

��



Examples

�a� The repetition code C over a �eld Fq has Hamming weight enumerator

WC�x� y� � xn � �q � ��yn �

so from �
�� we deduce that the dual code C�� the zero�sum code� has weight enumerator

WC��x� y� �
�

q
f�x� �q � ��y�n � �q � ���x� y�ng �

Note that when n � �� WC� � WC �compare case �e� of Theorem ���

�b� The binary codes i� and e
 are self�dual� and indeed one easily veri�es that their weight

enumerators x�� y� ���� and x
� �
x�y�� y
 ���� are left unchanged if x and y are replaced

by �x� y��
p
� and �x� y��

p
��

Remarks

�� The map that sends WC�x� y� to
�
jCjWC�x � y� x � y�� or that sends fA�� A�� � � �g to

fA�� � A�� � � � �g as in �
��� is often called the MacWilliams or Krawtchouk transform� A remark�

able theorem of Delsarte ���� � see Chapters xx �Brouwer�� yy �Camion�� zz �Levenshtein� �

shows that this transform is useful even for nonlinear codes�

�� For the families �� 
H� 
E and 
H� all the MacWilliams transforms have order �� as they

do for the Hamming weight enumerators for families 
 and 
Zand the swe for 
Z� For the

cwe in families 
 and 
Zthe square of the MacWilliams transform takes xj to x�j � However�

this does not change the cwe of the code� and so� in all cases� if the MacWilliams transform is

applied twice� the original weight enumerator is recovered�


� The identity for the swe in family mZis left to the reader� For �F�� we refer to Bachoc

��� and for �F
� to Wood �

��� Duality fails for �F�� and weights are unde�ned in case �F
��


� Shor and La$amme ����� show that there is an analogue of the MacWilliams identity

for quantum codes� There is also an analogue of the shadow ������

���� Isodual and formally self�dual codes

Following ����� we say that a linear code which is equivalent to its dual is isodual� A �possibly

nonlinear� code with the property that its weight enumerator coincides with its MacWilliams

transform is called formally self�dual� An isodual code is automatically formally self�dual�

It is easy to prove that any self�dual code from family 
Zproduces a formally self�dual

binary code using the Gray map �
	� ��		�� ���	��� As already mentioned in Section 
��� the

��



octacode o
 produces the �formally self�dual� Nordstrom�Robinson code in this way� Similarly�
�

a self�dual code from family 
H� produces an isodual binary code using the map

�� ��� �� ��� � � ��� � � �� � ����

We give several examples of this construction�

�i� The code d�� �see Section ����� produces the isodual ��� 
� 
� binary code with generator

matrix �

� �� �� ��
�� �� ��
�� �� ��

�
�� � ����

�The dual� which is a di�erent code� is obtained by interchanging the last two columns��

�ii� The shortened hexacode� h
� �see Section ���
� produces an isodual ���� �� 
� code�

�iii� The hexacode h� produces an isodual ���� �� 
� code� There is an additive but not linear

version of the hexacode� h��� found by Ran and Snyders ���	�� generated by ��������� which

under the map ���� produces a second� inequivalent� isodual ���� �� 
� code� As members of the

family 
H�� however� h� and h
�
� are equivalent�

Further examples of formally self�dual codes will be mentioned in Remark 
 following

Theorem �� Isodual and formally self�dual codes have also been studied in ����� ���	�� ���
��

������ ���	�� ���	�� ����� �see also ������

�� Restrictions on weights

���� Gleason�Pierce Theorem

It is elementary that in a binary self�orthogonal code the weight of every vector is even� in

a ternary self�dual code the weight of every vector is a multiple of 
� and in a Hermitian self�

dual code over F� the weight of every vector is even� Furthermore� there are many well�known

binary self�dual codes whose weights are divisible by 
 � see above� The following theorem�

due to Gleason and Pierce� shows that these four are essentially the only possible nontrivial

divisibility restrictions that can be imposed on the weights of self�dual codes�

Theorem 	� �Gleason and Pierce ����� If C is a self�dual code belonging to any of the families

� through mZwhich has all its Hamming weights divisible by an integer c � � then one of the

�We are indebted to Dave Forney for these remarks�

��



following holds�

�a� jFj � �� c � � �so family ��

�b� jFj � �� c � 
 �so family ��

�c� jFj � 
� c � 
 �so family 
�

�d� jFj � 
� c � � �so families 
H� 
E� 
H�� 
Z�

�e� jFj � q� q arbitrary� c � �� and

the Hamming weight enumerator of C is

�x� � �q � ��y��n�� �

Remarks� �� The theorem may be proved by considering how the Hamming weight enumer�

ator behaves under the MacWilliams transform� see ���
� for details� An alternative proof of

a somewhat more general result is given in �
�	� � see Theorem �
�� of Chapter xx �Ward��

�� The same conclusion holds if �C is self�dual� is replaced by �C is formally self�dual��


� Note that there are no nontrivial examples from families qH� qE or mZ�


� There are several points to be mentioned concerning case �e�� Linear self�dual codes

with weight enumerator �x� � �q � ��y��n�� always exist in families �� 
H� 
E� 
H�� qH� exist
in families qE and mZprecisely when there is a square root of �� in Fq or Zm respectively� in
particular� they never exist in families 
 or 
Z�

Furthermore� it is easy to see that any linear code over Fq for q � � with weight enumerator

�x� � �q � ��y��n�� is a direct sum of codes of length �� However� in the binary case there

are many examples of linear codes with weight enumerator �x�� y��n�� that are not self�dual�

these have been classi�ed for n � ��� see ������ These are examples of formally self�dual

codes� see Section 
�
� There are also examples from family 
H�� e�g� the additive code

������ ����� ����� ����� with weight enumerator �x� � 
y����

�� In some cases� analogous restrictions can be imposed on Euclidean norms of codewords�

In particular� suppose C is a self�dual code over Zm �that is� a code from families 
Zor mZ�

where m is even� Then the Euclidean norms of the codewords must be divisible by m� and

may be divisible by �m ��	�� ����� ����� see also Theorem 
��

�� Codes from family �F�� with q � � can also satisfy case �d� of the theorem� since they

can be embedded in family 
H� via the map a � bu� a� b��

�




Examples

Many of the examples given in Section 
�� satisfy one of these divisibility conditions�

���� all self�dual codes satisfy �a�� and e
 and g�� satisfy �b�� Note that any code satisfying

�b� is self�orthogonal �from ������

�
�� a code satis�es �c� precisely when it is self�orthogonal

�
H�� a code satis�es �d� precisely when it is self�orthogonal

�
E�� a self�dual code satisfying �d� is a linearized binary code

�
H��� The dodecacode z�� satis�es �d�� Any code satisfying �d� is self�orthogonal�

���� Type I and Type II codes

A binary self�dual code C with all weights divisible by 
 is called doubly�even� or of Type

II� if we do not impose this restriction then C is singly�even or of Type I� We denote these two

families by �I and �II� A Type I code may or may not also be of Type II� the classes are not

mutually exclusive� We say a code is strictly Type I if it is not of Type II�

Similarly� we will say that a self�dual code over Zm� m even� from the families 
Zor mZis

of Type II if the Euclidean norms are divisible by �m� or of Type I if they are divisible by m�

�This terminology was introduced in �	�� ����� ������ We denote these families by 
ZI �or m
Z

I �

and 
ZII �or m
Z

II��

There is one other situation where a similar distinction can be made� An additive trace�

Hermitian self�dual code over F� from the family 
H� is of Type II if the Hamming weights are

even� or of Type I if odd weights may occur �if odd weights do occur then the code cannot be

linear�� We denote these two families by 
H�I and 
H�II �

More generally� we will say that a binary code is doubly�even if all its weights are divisible

by 
� or singly�even if its weights are even� It follows from ���� that a doubly�even code is

necessarily self�orthogonal �and from ��
� and ��
� that Type II codes over Zm and F� are

necessarily self�orthogonal��

In view of Theorem �� in the past self�dual codes over F� have been called Type III codes�

and Hermitian self�dual codes over F� have been called Type IV codes� However� we shall not

use that terminology in this chapter�

�The unquali�ed term �even� has been used to denote both Type I and Type II codes� and is therefore to
be avoided when speaking of self�dual codes� Use �singly�even� or �doubly�even� instead�

�




	� Shadows

In the three cases where we can de�ne a Type II code �see the previous section� we can also

de�ne a certain canonical translate of a code called its shadow ��	�� The weight enumerator

of the shadow can be obtained from the weight enumerator of the code via a transformation

analogous to the MacWilliams transform of Theorem 
�

We �rst discuss binary codes�

Lemma �� Let C be a self�orthogonal singly�even binary code� and let C� be the subset of

doubly�even codewords� Then C� is a linear subcode of index 
 in C�

Proof� From ����� �
�wt�u� is a linear functional on C� and C� is its kernel�

De�nition �� ��	�� The shadow
 S of a self�orthogonal binary code C is

S �

��
�

C�� n C� if C is singly�even

C� if C is doubly�even

��
� �

The weight enumerator of the shadow of C will usually be denoted by SC�x� y��

Examples� �i� If C is the repetition code f�n� �ng of even length n� then if n � � �mod 
��
S � C� � all even weight vectors� but if n � � �mod 
�� S � all odd weight vectors� �ii� If

C � i� 
 i� 
 � � � 
 i� then S is the translate of C by ���� � � ���� �iii� Let C be the ���� ��� ��

shorter Golay code g��� obtained by �subtracting� �see Section ���
� i� from g��� so that g��

consists of all words of g�� that begin �� or ��� with these two coordinates deleted� Then S

consists of the remaining words of g�� with the same two coordinates deleted�

Theorem 
� ��	� The shadow S has the following properties�

�i� S is the set of �parity vectors� for C� that is�

S � fu � Fn� � �u� v� �
�

�
wt�v� mod � for all v � Cg ��
�

�ii� S is a coset of C�

�iii�

SC�x� y� �
�

jCjWC�x� y� i�x� y�� � ��
�

�A somewhat more general de�nition of shadow has been proposed in �	
�� but since it fails to possess the
crucial properties �i
 and �iii
 of Theorem � we shall not discuss it here�

��



Proof� If C is doubly�even then �i� and �ii� are immediate� and �iii� follows from the MacWilliams

transform and the fact that the weights are divisible by 
� Suppose C is singly�even� let C� be

the doubly�even subcode� and let C� � C n C�� Then

C� � C � C� � C�� � ����

The �rst and last inclusions have index �� so C�� � C� � �a� C��� say� where �a� u� � � for

u � C�� �a� v� � � for v � C�� Thus S � C�� nC� � a�C� has the properties stated in �i� and

�ii�� Also�

WC�
�x� y� �

�

�
fWC�x� y� �WC�x� iy�g �

WC��
�x� y� �

�

jCj fWC�x� y� x� y� �WC�x� y� i�x� y�g �

so

SC�x� y� � WC��
�WC� �

�

jCjWC�x� y� i�x� y�� �

If C is a singly�even self�dual code with doubly�even subcode C�� then C
�
� is the union of

four translates of C�� say C�� C�� C�� C�� with

C � C� � C�� S � C� � C� � ����

When n is a multiple of � then C� � C��C� and C�� � C� �C� are both Type II codes �in

the notation of Chapter xx �Pless�� C� and C�� are neighbors of C�� If C has a weight � word

then C � and C�� are equivalent�

Similar de�nitions for the shadow can be given in the other two cases mentioned� If C

is an additive trace�Hermitian self�orthogonal code over F�� let C� be the subcode with even

Hamming weights� and secondly� if C is a self�orthogonal code overZm �m even� let C� be the

subcode with Euclidean norms divisible by �m� In both cases the shadow is de�ned by�

S �

��
�

C�� n C� if C �� C�

C� if C � C� �

If C is self�dual from family 
H� then the quotient group C�� �C� is isomorphic to Z����Z����

If C is self�dual from family mZthen C�� �C� is isomorphic to Z���� Z��� if n is even and to

Z�
� if n is odd�

There are analogues of Theorem ��

��



Theorem �� Let C be a self�orthogonal additive code over F�� with shadow S�

�i� S � fu � Fn� � �u� v� � wt�v� �mod �� for all v � Cg
�ii� S is a coset of C�

�iii�

SC�x� y� �
�

jCjWC�x� 
y� y � x� �

sweS�x� y� z� �
�

jCj sweC�x� y � �z��x� y � �z� y � x�

cweS�x� y� z� t� �
�

jCjcweC�x� y � z � t��x� y � z � t��x� y � z � t��x� y � z � t� �

Remark� It follows from Theorem � that there is a code equivalent to C that has �n � S�

For the number of vectors of weight n in S is

SC��� �� �
�

jCjWC�
� �� � � �

All vectors of full weight are equivalent�

Theorem �� Let C be a self�orthogonal linear code over Z�� with shadow S�

�i� S � fu �Zn� � �u� v� � �
� Norm�v� �mod 
� for all v � Cg

�ii� S is a coset of C�

�iii� sweS�x� y� z� �
�
jCjsweC�x� �y � z� 
�x� y���x� �y � z�� where 
 � e�i���

cweS�x� y� z� t� �
�

jCjcweC�x� y� z� t� 
�x� iy� z� it����x� y� z� t�� 
�x� iy� z� it�� �

Remark� It follows that the shadow contains a vector of the form
�n� �For cweS��� �� �� �� �
�
jCjcweC��� �� �� �� � cweC��� �� �� �� � �� since �n � C�� This observation� and a formula for

the swe equivalent to ours� can be found in ����� In particular� a self�dual code from family 
ZII

contains a vector of the form 
�n�

Theorem �� Let C be a self�orthogonal linear code over Zm� m even� with shadow S�

�i� S � fu �Znm � �u� v� � �
� Norm�v� �mod m� for all v � Cg

�ii� S is a coset of C�

�iii� The cwe of S is obtained from the cwe of C by replacing each xj by

m��X
k��

e��i�j
���jk	��mxk �

and then dividing by jCj�

The proofs are analogous to that of Theorem ��

��




� Invariant theory

���� An introduction to invariant theory

If C is self�dual then its weight enumerator must be unchanged by the appropriate trans�

formation from Theorem 
� As we will see� this imposes strong restrictions on the weight

enumerator�

We begin by discussing the particular case of the weight enumerator W �x� y� of a binary

doubly�even self�dual code C� Since C is self�dual� Theorem 
 implies

W �x� y� �
�

�n��
W �x� y� x� y�

� W

�
x� yp
�
�
x� yp
�

�
����

�for W �x� y� is homogeneous of degree n�� Since all weights are divisible by 
� W �x� y� only

contains powers of y�� Therefore

W �x� y� � W �x� iy� � ����

The problem we wish to solve is to �nd all polynomials W �x� y� satisfying ���� and �����

Invariants� Equation ���� says that W �x� y� is unchanged� or invariant� under the linear

transformation

replace x by
x� yp
�

�

T� �

replace y by
x� yp
�

�

or� in matrix notation�

T� � replace

�
x

y

�
by

�p
�

�
�

�

�

��
��

x

y

�
�

Similarly� ���� says that W �x� y� is also invariant under the transformation

replace x by x
T� �

replace y by iy

or

T� � replace

�
x

y

�
by

�
�

�

�

i

��
x

y

�
�

Of course W �x� y� must therefore be invariant under any combination T �
� � T�T�� T�T�T�� � � �

of these transformations� It is not di!cult to show �as we shall see in the next section� that

��



the matrices
�p
�

�
�

�

�

��
�

and

�
�

�

�

i

�

when multiplied together in all possible ways produce a group G� containing �	� matrices�
So our problem now says� �nd the polynomials W �x� y� which are invariant under all �	�

matrices in the group G��

How many invariants� The �rst thing we want to know is how many invariants there are�

This isn�t too precise� because of course if f and g are invariants� so is any constant multiple

cf and also f � g� f � g and the product fg� Also it is enough to study the homogeneous

invariants �in which all terms have the same degree��

So the right question to ask is� how many linearly independent� homogeneous invariants

are there of each degree d% Let�s call this number ad�

A convenient way to handle the numbers a�� a�� a�� � � � is by combining them into a power

series or generating function

&�
� � a� � a�
� a�

� � � � � �

Conversely� if we know &�
�� the numbers ad can be recovered from the power series expansion

of &�
��

At this point we invoke a beautiful theorem of T� Molien� published in ��	� ������� see also

��
�� p� ��� �
��� p� ���� �
��� p� 
��� ��		�� p� ��	� ������ p� ��� ��	��� p� �	��

Theorem ��� �Molien� For any �nite group G of complex m�m matrices� &�
� is given by

&�
� �
�

jGj
X
A�G

�

det�I � 
A�
� ��	�

We call &�
� the Molien series of G� The proof of this theorem is given in the next section�
For our group G�� from the matrices corresponding to I � T�� T�� � � � we get

&�
� �
�

�	�

�
�

��� 
��
�

�

�� 
�
�

�

��� 
���� i
�
� � � �

�
� ����

There are shortcuts� but it is quite feasible to work out the �	� terms directly �many are the

same� and add them� The result is a surprise� everything collapses to give

&�
� �
�

��� 

���� 
���
� ����

�	



Interpreting &�
�� The very simple form of ���� is trying to tell us something� Expanding

in powers of 
� we have

&�
� � a� � a�
� a�

� � � � �

� �� � 

 � 
�� � 
�� � � � ���� � 
�� � 
�
 � � � �� � ����

We can deduce one fact immediately� ad is zero unless d is a multiple of �� i�e� the degree

of a homogeneous invariant must be a multiple of �� �This already proves that the length of

a doubly�even binary self�dual code must be a multiple of ��� But we can say more� The

right�hand side of ���� is exactly what we would �nd if there were two �basic� invariants� of

degrees � and �
� such that all invariants are formed from sums and products of them�

This is because two invariants� �� of degree �� and 	� of degree �
� would give rise to the

following invariants�
Degree d Invariants Number ad

� � �
� � �
�� �� �
�
 ��� 	 �

� ��� �	 �

� �
� ��	 �

� ��� ��	� 	� 

� � � � � � � � �

��
�

Provided all the products �i	j are linearly independent � which is the same thing as saying

that � and 	 are algebraically independent � the numbers ad in ��
� are exactly the coe!cients

in

� � 

 � 
�� � �
��� �
��� �
�� � 

�
 � � � �
� �� � 

 � 
�� � 
�� � � � ���� � 
�� � 
�
 � � � ��
�

�

��� 

���� 
���
� ��
�

which agrees with ����� So if we can �nd two algebraically independent invariants of degrees �

and �
� we will have solved our problem� The answer will be that any invariant of this group

is a polynomial in � and 	� Now 	
 �Eq� ����� and 	�� �Eq� ��	��� the weight enumerators

of the Hamming and Golay codes� have degrees � and �
 and are invariant under the group�

So we can take � � 	
 and 	 � 	��� �It�s not di!cult to verify that they are algebraically

independent�� Actually� it is easier to work with

	��� �
	�
 � 	��

�

� x�y��x� � y��� ����


�



rather than 	�� itself� So we have proved the following theorem� discovered by Gleason in �	���

Theorem ��� Any invariant of the group G� is a polynomial in 	
 and 	����

This also gives us the solution to our original problem�

Theorem ��� Any polynomial which satis�es Equations ���� and ���� is a polynomial in 	


and 	����

Finally� we have characterized the weight enumerator of a doubly�even binary self�dual

code�

Theorem ��� �Gleason ������� The weight enumerator of any Type II binary self�dual code is

a polynomial in 	
 and 	����

Alternative proofs of this astonishing theorem are given by Berlekamp et al� ��
�� and

Brou'e and Enguehard �

� �see also Assmus and Mattson �
��� But the proof given here seems

to be the most informative� and the easiest to understand and to generalize�

Notice how the exponents � and �
 in the denominator of ���� led us to guess the degrees

of the basic invariants�

This behavior is typical� and is what makes the technique exciting to use� One starts with

a group of matrices G� computes the complicated�looking sum shown in ��	�� and simpli�es the
result� Everything miraculously collapses� leaving a �nal expression resembling ���� �although

not always quite so simple � the precise form of the �nal expression is given in ����� ������

This expression then tells the degrees of the basic invariants to look for�

Finding the basic invariants� In general� �nding the basic invariants is a simpler problem

than �nding &�
�� In our applications we can often use the weight enumerators of codes

having the appropriate properties� as in the above example� or basic invariants can be found

by averaging� using the following simple result �proved in Section �����

Theorem ��� If f�x� � f�x�� � � � � xm� is any polynomial in m variables� and G is a �nite

group of m�m matrices� then

f�x� �
�

jGj
X
A�G

A � f�x� ����

is an invariant� where A�f�x� denotes the polynomial obtained by applying the transformation

A to the variables in f �


�



Of course f�x� may be zero� An example of the use of this theorem is given below�

To illustrate the use of Theorem �
� we use it to �nd the weight enumerator of the �
�� �
� ���

extended quadratic residue code XQ��� using only the fact that it is a doubly�even self�dual

code with minimal distance ��� This implies that the weight enumerator of the code� which is

a homogeneous polynomial of degree 
�� has the form

W �x� y� � x�
 �A��x
��y�� � � � � � ����

The coe!cients of x��y� x��y�� � � � � x��y�� are zero� Here A�� is the unknown number of code�

words of weight ��� It is remarkable that� once we know Equation ����� the weight enumerator

is completely determined by Theorem �
� For Theorem �
 says that W �x� y� must be a poly�

nomial in 	
 and 	
�
��� Since W �x� y� is homogeneous of degree 
�� 	
 is homogeneous of degree

�� and 	��� is homogeneous of degree �
� this polynomial must be a linear combination of 	�
�

	�
	
�
�� and 	

��
���

Thus Theorem �
 says that

W �x� y� � a�	
�

 � a�	

�

	
�
�� � a�	

��
�� � ����

for some real numbers a�� a�� a�� Expanding ����� we have

W �x� y� � a��x
�
 � �
x��y� � �	
�x��y
 � � � �� � a��x

��y� � 
�x��y
 � � � ��
� a��x

��y
 � � � �� � ��	�

and equating coe!cients in ����� ��	� we get

a� � �� a� � ��
� a� � �
� �

Therefore W �x� y� is uniquely determined� When these values of a�� a�� a� are substituted in

���� we �nd that

W �x� y� � x�
 � ���	�x��y�� � �
��	�x��y��

� 
		�
��x�
y�� � �������x��y�� � 
		�
��x��y�


� �
��	�x��y�� � ���	�x��y�� � y�
 � ����

This is certainly faster than computing W by examining each of the ��� codewords�

There is a fair amount of algebra involved in computing ����� Here is a second example�

simple enough for the calculations to be shown in full�


�



For a self�dual code from family qH� from �
�� the Hamming weight enumerator satis�es

W

�
x� �q � ��yp

q
�
x� yp

q

�
� W �x� y� � ����

Let us consider the problem of �nding all polynomials which satisfy �����

The solution proceeds as before� Equation ���� says that W �x� y� must be invariant under

the transformation

T� � replace

�
x

y

�
by A

�
x

y

�
�

where

A �
�p
q

�
�

�

q � �
��

�
� ����

Now A� � I � so W �x� y� must be invariant under the group G� consisting of the two matrices
I and A�

To �nd how many invariants there are� we compute the Molien series &�
� from ��	�� We

�nd

det�I � 
I� � ��� 
�� �

det�I � 
A� � det

�
� �� �p

q � q��p
q 


� �p
q � � �p

q

�
� � �� 
� �

&�
� �
�

�

�
�

��� 
��
�

�

�� 
�

�

�
�

��� 
���� 
��
� ��
�

which is even simpler than ����� Equation ��
� suggests that there might be two basic in�

variants� of degrees � and � �the exponents in the denominator�� If algebraically independent

invariants of degrees � and � can be found� say g and h� then ��
� implies that any invariant

of G� is a polynomial in g and h�
This time we shall use the method of averaging to �nd the basic invariants� Let us average

x over the group � i�e�� apply Theorem �
 with f�x� y� � x� The matrix I leaves x unchanged�

of course� and the matrix A transforms x into ���
p
q��x� �q � ��y�� Therefore the average�

f�x� y� �
�

�

�
x�

�p
q
fx� �q � ��yg

�
�
�
p
q � ��fx� �pq � ��yg

�
p
q

�

is an invariant� Of course any scalar multiple of f�x� y� is also an invariant� so we may divide

by �
p
q � ����

p
q and take

g � x� �
p
q � ��y ��
�







to be the basic invariant of degree �� To get an invariant of degree � we average x� over the

group� obtaining
�

�

�
x� �

�

q
fx� �q � ��yg�

	
�

This can be cleaned up by subtracting ��q � ����q�g� �which of course is an invariant�� and

dividing by a suitable constant� The result is

h � y�x� y� �

the desired basic invariant of degree ��

Finally g and h must be shown to be algebraically independent� it must be shown that no

sum of the form X
i�j

cijg
ihj � cij complex and not all zero � ����

is identically zero when expanded in powers of x and y� This can be seen by looking at the

leading terms� The leading term of g is x� the leading term of h is xy� and the leading term

of gihj is xi�jyj � Since distinct summands in ���� have distinct leading terms� ���� can only

add to zero if all the cij are zero� Therefore g and h are algebraically independent� So we have

proved�

Theorem �	� Any invariant of the group G�� or equivalently any polynomial satisfying �����

or equivalently the Hamming weight enumerator of any self�dual code from family qH� is a

polynomial in g � x� �
p
q � ��y and h � y�x� y��

At this point the reader should cry Stop�� and point out that self�dual codes from family

qH must have even length� and so every term in the weight enumerator must have even degree�

But in Theorem ��� g has degree ��

Thus we haven�t made use of everything we know about the code� W �x� y� must also be

invariant under the transformation

replace

�
x

y

�
by B

�
x

y

�
�

where

B �

���
�

�

��
�
� �I �

This rules out terms of odd degree� So W �x� y� is now invariant under the group G� generated
by A and B� which consists of I� A� � I� � A� The reader can easily work out that the







new Molien series is

&G��
� �
�

�
f&G��
� � &G���
�g

�
�

�

�
�

��� 
���� 
��
�

�

�� � 
���� 
��

�

�
�

��� 
���
� ����

There are now two basic invariants� both of degree � �matching the exponents in the denom�

inator of ������ say g� and h� or the equivalent and slightly simpler pair g� � x� � �q � ��y�

and h � y�x� y�� Hence�

Theorem �
� The Hamming weight enumerator of any Hermitian self�dual code over Fq is a

polynomial in g� and h�

The general plan of attack� As these examples have illustrated� there are two stages in

using invariant theory to solve a problem�

Stage I� Convert the assumptions about the problem �e�g� the code� into algebraic con�

straints on polynomials �e�g� weight enumerators��

Stage II� Use the invariant theory to �nd all possible polynomials satisfying these con�

straints�

���� The basic theorems of invariant theory

Groups of matrices� Given a collection A�� � � � � Ar of m � m invertible matrices� we can

form a group G from them by multiplying them together in all possible ways� Thus G con�
tains the matrices I � A�� A�� � � � � A�A�� � � � � A�A

��
� A��� A�� � � �� We say that G is generated by

A�� � � � � Ar� We will suppose that G is �nite� which covers all the cases encountered in this
chapter� �For in�nite groups� see for example Dieudonn'e and Carroll ��	�� Rallis ������ Springer

��	
�� Sturmfels ��	��� Weyl �
�����

Example� Let us show that the group G� generated by the matrices

M �
�p
�

�
�

�

�

��
�

and J �

�
�

�

�

i

�


�



that was encountered in Section ��� does indeed have order �	�� The key is to discover �by

randomly multiplying matrices together� that G� contains

J� �

�
� �
� ��

�
� E � �MJ�� � ��ip

�

�
� �
� �

�
�

E� � i

�
� �
� �

�
� R � MJ�M �

�
� �
� �

�
�

So G� contains the matrices

�

�
� �
� 
�

�
� �

�
� �

� �

�
� � � f�� i�����ig �

which form a subgroup H� of order ��� From this it is easy to see that G� consists of the union
of �� cosets of H��

G� �
���
k��

akH� � ����

where a�� � � � � a� are respectively

�
� �
� �

�
�

�
� �
� i

�
�
�p
�

�
� �
� ��

�
�
�p
�

�
� �
i �i

�
�
�p
�

�
� i

� �i
�
�
�p
�

�
� i

i �

�
�

a� � 
a�� � � � � a�� � 
a�� and 
 � ��� i��
p
�� an �th root of unity� Thus G� consists of the �	�

matrices


�
�
� �
� �

�
� 
�

�
� �
� �

�
� 
�

�p
�

�
� �

� ���
�
� ����

for � � � � � and �� � � f�� i�����ig�
As a check� one veri�es that every matrix in ���� can be written as a product of M �s and

J �s� that the product of two matrices in ���� is again in ����� and that the inverse of every

matrix in ���� is in ����� Therefore ���� is a group� and is the group generated by M and J �

Thus G� is indeed equal to �����
We have gone into this example in some detail to emphasize that it is important to begin

by understanding the group thoroughly� �For an alternative way of studying G�� see �

�
pp� ���������

Invariants� To quote Hermann Weyl �
�
�� �the theory of invariants came into existence

about the middle of the nineteenth century somewhat like Minerva� a grown�up virgin� mailed

in the shining armor of algebra� she sprang forth from Cayley�s Jovian head�� Invariant theory

became one of the main branches of nineteenth century mathematics� but dropped out of

fashion after Hilbert�s work� see Fisher �	�� and Reid ������ In the past thirty years� however�


�



there has been a resurgence of interest� with applications in algebraic geometry �Dieudonn'e and

Carroll ��	�� Mumford and Fogarty ���
��� physics �see for example Agrawala and Belinfante ���

and the references given there�� combinatorics �Doubilet et al� ����� Rota ������ Stanley ��	���

and coding theory ������� ��	
�� ��	��� ��	���� Recently a number of monographs �Benson ��
��

Bruns and Herzog �
��� Smith ������ Springer ��	
�� Sturmfels ��	��� and conference proceedings

������� ���
�� ������ ��	��� on invariant theory have appeared�

There are several di�erent kinds of invariants� but here an invariant is de�ned as follows�

Let G be a group of g m � m complex matrices A�� � � � � Ag� where the �i� k�
th entry of

A� is a
��	
ik � In other words G is a group of linear transformations on the variables x�� � � � � xm�

consisting of the transformations

T ��	 � replace xi by x
��	
i �

mX
k��

a
��	
ik xk� i � �� � � � � m ��	�

for � � �� �� � � � � g� It is worthwhile giving a careful description of how a polynomial f�x� �

f�x�� � � � � xm� is transformed by a matrix A� in G� The transformed polynomial is

A� � f�x� � f�x
��	
� � � � � � x��	m �

where each x
��	
i is replaced by

Pm
k�� a

��	
ik xk� Another way of describing this is to think of

x � �x�� � � � � xm�
T as a column vector� Then f�x� is transformed into

A� � f�x� � f�A�x� � ����

where A�x is the usual product of a matrix and a vector� One can check that

B � �A � f�x�� � �AB� � f�x� � f�ABx� � ����

For example�

A �

�
� �
� ��

�

transforms x�� � x� into �x� � �x��� � x��

De�nition� An invariant of G is a polynomial f�x� which is unchanged by every linear

transformation in G� In other words� f�x� is an invariant of G if

A� � f�x� � f�A�x� � f�x� ����

for all � � �� � � � � g�


�



Example� Let

G� �
��

� �
� �

�
�

��� �
� ��

��
�

a group of order g � �� Then x�� xy and y� are homogeneous invariants of degree ��

Even if f�x� isn�t an invariant� its average over the group�

f�x� �
�

g

gX
���

A� � f�x� ��
�

is� as was already stated in Theorem �
� To prove this� observe that any A� � G transforms
the right�hand side of ��
� into

�

g

gX
���

�A�A�� � f�x� � ��
�

by ����� As A� runs through G� so does A�A�� if A� is �xed� Therefore ��
� is equal to

�

g

gX
���

A� � f�x� �

which is f�x�� Therefore f�x� is an invariant�

More generally� any symmetric function of the g polynomials A� � f�x�� � � � � Ag � f�x� is an
invariant of G�

Clearly� if f�x� and h�x� are invariants of G� so are f�x� � h�x�� f�x�h�x�� and cf�x� �c

complex�� or in other words the set of invariants of G� which we denote by J �G�� forms a ring�
One of the main problems of invariant theory is to describe J �G�� Since the transformations

in G do not change the degree of a polynomial� it is enough to describe the homogeneous
invariants �for any invariant is a sum of homogeneous invariants��

Basic invariants� Our goal is to �nd a �basis� for the invariants of G� that is� a set of basic
invariants such that any invariant can be expressed in terms of this set� There are two di�erent

types of bases one might look for

De�nition� Polynomials f��x�� � � � � fr�x� are called algebraically dependent if there is a poly�

nomial p in r variables with complex coe!cients� not all zero� such that p�f��x�� � � � � fr�x��

is identically zero� Otherwise f��x�� � � � � fr�x� are algebraically independent� A fundamental

result from algebra is �Jacobson ���
�� vol� 
� p� ��
��

Theorem ��� Any m� � polynomials in m variables are algebraically dependent�


�



The �rst type of basis we might look for is a set of m algebraically independent invariants

f��x�� � � �fm�x�� Such a set is indeed a �basis�� for by Theorem �� any invariant is algebraically

dependent on f�� � � � � fm and so is a root of a polynomial equation in f�� � � � � fm� The following

theorem guarantees the existence of such a basis�

Theorem ��� �
�� p� 
��� There always exist m algebraically independent invariants of G�

Proof� Consider the polynomial
gY

���

�t� A� � xi�

in the variables t� x�� � � � � xm� Since one of the A� is the identity matrix� t � x� is a zero of this

polynomial� When the polynomial is expanded in powers of t� the coe!cients are invariants�

by the remark immediately following the proof of Theorem �
� Therefore x� is an algebraic

function of invariants� Similarly each of x�� � � � � xm is an algebraic function of invariants� Now if

the number of algebraically independent invariants werem� �� m�� them independent variables

x�� � � � � xm would be algebraic functions of the m� invariants� a contradiction� Therefore the

number of algebraically independent invariants is at least m� But by Theorem �� this number

cannot be greater than m�

Example� For the preceding group G�� we may take f� � �x� y�� and f� � �x� y�� as the

algebraically independent invariants� Then any invariant is a root of a polynomial equation in

f� and f�� For example�

x� � �
�

�p
f� �

p
f�
��

�

xy � �
��f� � f�� �

and so on�

However� by far the most convenient description of the invariants is a set f�� � � � � fl of

invariants with the property that any invariant is a polynomial in f�� � � � � fl� Then f�� � � � � fl is

called a polynomial basis �or an integrity basis� for the invariants of G� Of course if l � m then

by Theorem �� there will be polynomial equations� called syzygies� relating f�� � � � � fl�

For example� f� � x�� f� � xy� f� � y� form a polynomial basis for the invariants of G��
The syzygy relating them is

f�f� � f�� � � �

The existence of a polynomial basis� and a method of �nding it� is given by the next theorem�


	



Theorem ��� �Noether ������ �
��� p� ������ The ring of invariants of a �nite group G of

complex m�m matrices has a polynomial basis consisting of not more than
�m�g

m

�
invariants�

of degree not exceeding g� where g is the order of G� Furthermore this basis may be obtained

by taking the average over G of all monomials

xb�� x
b�
� � � �xbmm

of total degree
P
bi not exceeding g�

Proof� Let the group G consist of the transformations ��	�� Suppose

f�x�� � � � � xm� �
X
e

cex
e�
� � � �xemm �

ce complex� is any invariant of G� �The sum extends over all e � e� � � �em for which there is

nonzero term xe�� � � �xemm in f�x�� � � � � xm��� Since f�x�� � � � � xm� is an invariant� it is unchanged

when we average it over the group� so

f�x�� � � � � xm� �
�

g
ff�x��	� � � � � � x��	m � � � � �� f�x

�g	
� � � � � � x�g	m �g

�
�

g

X
e

cef�x��	� �
e� � � � �x��	m �

em � � � �� �x�g	� �e� � � ��x�g	m �
emg

�
�

g

X
e

ceJe �say� �

Every invariant is therefore a linear combination of the �in�nitely many� special invariants

Je �
gX

���

�x
��	
� �e� � � ��x��	m �em �

Now Je is �apart from a constant factor� the coe!cient of ue�� � � �uemm in

Pe �
gX

���

�u�x
��	
� � � � �� umx

��	
m �e � ����

where e � e� � � � �� em� In other words� the Pe are the power sums of the g quantities

u�x
��	
� � � � �� umx

��	
m � � � � � u�x

�g	
� � � � �� umx

�g	
m �

Any power sum Pe� e � �� �� � � �� can be written as a polynomial with rational coe!cients in

the �rst g power sums P�� P�� � � � � Pg� Therefore any Je for

e �
mX
i��

ei � g


�



�which is a coe!cient of Pe� can be written as a polynomial in the special invariants

Je with e� � � � �� em � g

�which are the coe!cients of P�� � � � � Pg�� Thus any invariant can be written as a polynomial in

those Je with
Pm

i�� ei � g� The number of such Je is the number of e�� e�� � � � � em with ei � �
and e� � � � �� em � g� which is

�m�g
m

�
� Finally� deg Je � g� and Je is obtained by averaging

xe�� � � �xemm over the group�

Molien
s theorem� Since we know from Theorem �	 that a polynomial basis always exists�

we can go ahead with con�dence and try to �nd it� using the methods described in Section ����

To discover when a basis has been found� we use Molien�s theorem �Theorem ���� This states

that if ad is the number of linearly independent homogeneous invariants of G with degree d�
and

&G�
� �
	X
d��

ad

d �

then

&G�
� �
�

g

gX
���

�

det�I � 
A��
� ����

The proof depends on the following theorem�

Theorem ��� ��		� p� ����� ����� p� ��� The number of linearly independent invariants of G
of degree � is

a� �
�

g

gX
���

trace�A�� �

Proof� Let

S �
�

g

gX
���

A� �

Changing the variables on which G acts from x�� � � � � xm to y�� � � � � ym� where �y�� � � � � ym� �

�x�� � � � � xm�T
tr� changes S to S� � TST��� We may choose T so that S� is diagonal �see �
��

p� ������ Now S� � S� �S��� � S�� hence the diagonal entries of S� are � or �� So with a change

of variables we may assume

S �

�









�

� �
� ��

�
�
� ��

� �

�
����������


�



with say r ��s on the diagonal� Thus S � yi � yi if � � i � r� S � yi � � if r � � � i � m�

Any linear invariant of G is certainly �xed by S� so a� � r� On the other hand� by

Theorem �
�

S � yi � �

g

gX
���

A� � yi

is an invariant of G for any i� and so a� � r�

Before proving Theorem �� let us introduce some more notation� Equation ��	� describes

how A� transforms the variables x�� � � � � xm� The d
th induced matrix� denoted by A

�d�
� � describes

how A� transforms the products of the xi taken d at a time� namely xd�� x
d
�� � � � � x

d��
� x�� � � �

�Littlewood ����� p� ������ E�g�

A� �

�
a b

c d

�

transforms x��� x�x� and x
�
� into

a�x�� � �abx�x� � b�x�� �

acx�� � �ad� bc�x�x� � bdx�� �

c�x�� � �cdx�x� � d�x��

respectively� Thus the �nd induced matrix is

A���
� �

�
�a� �ab b�

ac ad� bc bd

c� �cd d�

�
� �

Proof of Theorem ��� To prove ����� note that ad is equal to the number of linearly

independent invariants of degree � of G�d� � fA�d�
� � � � �� � � � � gg� By Theorem ���

ad �
�

g

gX
���

trace A�d�
� �

Therefore� to prove Theorem ��� it is enough to show that the trace of A
�d�
� is equal to the

coe!cient of 
d in
�

det�I � 
A��
�

�

��� 
��� � � ���� 
�m�
� ����

where ��� � � � � �m are the eigenvalues of A�� By a suitable change of variables we can make

A� �

�

�
�� �

� � �

� �m

�
�� � A�d�

� �

�






�

�d� �
�d�

� � �

�d��� ��

�
� � �

�
�������
�


�



and trace A
�d�
� � sum of the products of ��� � � � � �m taken d at a time� But this is exactly the

coe!cient of 
d in the expansion of �����

It is worth remarking that the Molien series does not determine the group� For example

there are two groups of �� � matrices of order � having

&�
� �
�

��� 
����� 
��

�namely the dihedral group D
 and the abelian group Z��� � Z�
��� In fact there exist ab�

stract groups A and B whose matrix representations can be paired in such a way that every
representation of A has the same Molien series as the corresponding representation of B �Dade
������

A standard form for the basic invariants� The following notation is very useful in

describing the ring J �G� of invariants of a group G� The complex numbers are denoted by
C � and if p�x�� q�x�� � � � are polynomials� C �p�x�� q�x�� � � �� denotes the set of all polynomials

in p�x�� q�x�� � � � with complex coe!cients� For example Theorem �� just says that J �G�� �
C �	
 � 	

�
����

Also� 
 will denote the usual direct sum operation� For example a statement like J �G� �
R
 S means that every invariant of G can be written uniquely in the form r� s where r � R�

s � S�

Using this notation we can now specify the most convenient form of polynomial basis for

J �G��

De�nition� A good polynomial basis for J �G� consists of homogeneous invariants f�� � � � � fl
�l � m� where f�� � � � � fm are algebraically independent and

J �G� � C �f� � � � � � fm� if l �m � ����

or� if l � m�

J �G� � C �f� � � � � � fm�
 fm��C �f� � � � � � fm�
 � � � 
 flC �f� � � � � � fm� � ��	�

In words� this says that any invariant of G can be written as a polynomial in f�� � � � � fm �if
l � m�� or as such a polynomial plus fm�� times another such polynomial plus � � � �if l � m��

f�� � � � � fm are called primary invariants and fm��� � � � � fl �if present� are secondary invariants�







Speaking loosely� ���� and ��	� say that when describing an arbitrary invariant� f�� � � � � fm are

�free� and can be used as often as needed� while fm��� � � � � fl are �transients� and can each be

used at most once� Equations ���� and ��	� are sometimes called a Hironaka decomposition of

J �G� ���	��� p� 
	��
For a good polynomial basis f�� � � � � fl we can say exactly what form the syzygies must take�

If l � m there are no syzygies� If l � m there are
�l�m��

�

�
syzygies expressing the products

fifj �m� � � i � j � l� in terms of f�� � � � � fl�

It is important to note that the Molien series can be written down by inspection from the

degrees of a good polynomial basis� Let d� � deg f�� � � � � dl � deg fl� Then

&G�
� �
�Qm

i����� 
di�
� if l � m � �	��

or

&G�
� �
� �

Pm
j�l�� 


djQm
i����� 
di�

� if l � m � �	��

�This is easily veri�ed by expanding �	�� and �	�� in powers of 
 and comparing with ���� and

��	���

Some examples will make this clear�

��� For the group G� of Section ���� f� � 	
 and f� � 	��� form a good polynomial basis�

with degrees d� � �� d� � �
� Indeed� from Theorem �� and �����

J �G�� � C �	
 � 	����

and

&G��
� �
�

��� 

���� 
���
�

��� For the group G� de�ned above� f� � x�� f� � y�� f� � xy is a good polynomial basis�

with d� � d� � d� � �� The invariants can be described as

J �G�� � C �x� � y��
 xyC �x� � y�� � �	��

In words� any invariant can be written uniquely as a polynomial in x� and y� plus xy times

another such polynomial� E�g�

�x� y�� � �x��� � �x�y� � �y��� � xy�
x� � 
y�� �

The Molien series is

&G��
� �
�

�

�
�

��� 
��
�

�

�� � 
��

�
�

� � 
�

��� 
���







in agreement with �	�� and �	��� The single syzygy is x� � y� � �xy��� Note that f� � x��

f� � xy� f� � y� is not a good polynomial basis� for the invariant y� is not in the ring

C �x� � xy�
 y�C �x� � xy��

Fortunately the following result holds�

Theorem ��� �Hochster and Eagon ��

� Proposition �
�� A good polynomial basis exists for

the invariants of any �nite group of complex m�m matrices�

For the proof see ��
�� �
��� ��

� or ������

So we know that for any group the Molien series can be put into the standard form of

�	��� �	�� �with denominator consisting of a product of m factors �� � 
di� and numerator

consisting of sum of powers of 
 with positive coe!cients�� and that a good polynomial basis

����� ��	� can be found whose degrees match the powers of 
 occurring in the standard form

of the Molien series�

On the other hand the converse is not true� It is not always true that when the Molien

series has been put into the form �	��� �	�� �by cancelling common factors and multiplying

top and bottom by new factors�� then a good polynomial basis for J �G� can be found whose
degrees match the powers of 
 in &�
�� This is shown by the following example� due to Stanley

��	
��

Let G� be the group of order � generated by the matrices diagf��������g and diagf�� �� ig�
The Molien series is

&G��
� �
�

��� 
���
�	
�

�
�� 
�

��� 
������ 
��
� �	
�

A good polynomial basis exists corresponding to �	
�� namely

J �G�� � C �x� � y�� z��
 xyC �x� � y�� z�� �

but there is no good polynomial basis corresponding to �	
��

Remarks� ��� Shephard and Todd ����� have characterized those groups for which ���� holds�

i�e� for which a good polynomial basis exists consisting only of algebraically independent

invariants� These are the groups known as �unitary groups generated by re$ections�� A

complete list of the 
� irreducible groups �or families of groups� of this type is given in �����

and ������ p� �		�


�



��� Sturmfels ��	�� gives an algorithm for computing a good polynomial basis for the ring of

invariants of a �nite group� The computer language MAGMA ������ ��	�� �
��� has commands

for computing Molien series and �nding a good polynomial basis �and many other things��

�
� Relative invariants� If � is a homomorphism from G into the multiplicative group of
the complex numbers �i�e� a linear character of G�� then a polynomial f�x� is called a relative
invariant of G with respect to � if

A � f�x� � ��A�f�x� for all A � G �

Molien�s theorem for relative invariants states that the number of linearly independent homo�

geneous relative invariants with respect to � of degree � is the coe!cient of 
� in the expansion

of
�

jGj
X
A�G

��A�

det jI � 
Aj �

�� Gleason�s theorem and generalizations

We now make use of the machinery developed in the previous section to give a series of

results that characterize the rings to which the various weight enumerators of self�dual codes

belong� The �rst theorems of this type� for binary and ternary codes� were discovered by

Gleason ������ The results can be proved by the generalizations of the arguments used to

establish Theorem �
� We remind the reader that hwe� swe and cwe stand for Hamming�

symmetrized and complete weight enumerators� respectively� The code under consideration is

denoted by C and its shadow by S�

In each case the conclusion is that the weight enumerator being considered must be an

element of a certain ring R� We describe R by giving its Molien series �also called a Hilbert

series or Poincar�e series�

&�
� �
	X
n��

�dimCRn�

n �

where Rn is the subspace of homogeneous polynomials in R of degree n� We then give a good

polynomial basis for R �in the sense of ����� ������

In many cases R is obtained �as described in the previous sections� as the ring of invariants

of a certain matrix group G� If so then we start by giving generators for G� its order� and� if it

is a well�known group� a brief description� We have preferred to give natural generators for G�

rather than attempting to �nd a minimal but less�intuitive set � in most cases two generators


�



would su!ce� If G is a re$ection group we give its number in Shephard and Todd�s list �������

������ page �		��

In other cases �the symmetrized weight enumerator of a Hermitian self�dual code over F��

������ for example� the ring R cannot be found directly as the ring of invariants of any group�

but must be obtained by collapsing the ring of complete weight enumerators�

At the end of each subsection is a table that gives� for most of the rings mentioned� a

list of codes whose weight enumerators provide a polynomial basis for the ring� The weight

enumerators of the codes before the semicolon are primary invariants� those after the semicolon

�if present� are secondary invariants�

For example� the �rst line of Table ����� is equivalent to Theorem �
�

���� Family �I	 Binary self�dual codes

hwe of code C� ������� ��
�� �

�� ������ G � G�� �
D

�p
�

�
�
�

�
��


�
�
�
�

�
��

E 	� dihedral group

D�� �Shephard and Todd (�b�� order ��

& �
�

��� 
����� 

�

R �
�

	�� �

� �	��

where 	� � x� � y�� �
 � x�y��x� � y���� For example� since a Type II code is also a Type I

code� the weight enumerator of g��� ��	�� must be in this ring� It is�

	�� � 	��� � ��	
��
 � �	����
 � �
��
 �

hwe of shadow S� It follows from Theorem � that if C has weight enumerator W �x� y� then

its shadow has weight enumerator S�x� y� � W ��x� y��
p
�� i�x� y��

p
��� This map from W

to S preserves multiplication and addition� so to evaluate it it su!ces to consider the images

of the generators of the above ring� We �nd that x� � y� becomes �xy and x�y��x� � y���

becomes �
�x� � y���� So S�x� y� belongs to the ring

R �
�

xy� �x� � y���
� �	��

In particular� every element of the shadow has weight congruent to n�� mod 
 �since this

is true of the generators��

The shadow must satisfy an additional constraint� If C is Type I� let W �j	�x� y� be the

weight enumerator of coset Cj � j � �� � � � � 
 �see ������ Then W
��	�x� y��W ��	�x� y� is �up to


�



sign� a multiplicative function on codes� i�e�� if C is the direct sum of two Type I codes C� and

C��� then W ��	 �W ��	 for C is 
� times the product of the polynomials W ��	 �W ��	 for C�

and C��� In order for this property to still hold when one �or both� of C� and C�� is of Type II�

we adopt the convention that for a Type II code� W ��	�W ��	 is simply the weight enumerator

of the code�

Then the additional condition satis�ed by the shadow is that �if C is Type I or Type II�

W ��	�x� y��W ��	�x� y� is a relative invariant for the group G��� �see �	��� with respect to the

character

�

�
�p
�

�
�

�

�

��
��

� in� �

��
�

�

�

i

��
� 
n

where 
 � ��� i��
p
� ��	�� An equivalent assertion is that W ��	�W ��	 is an absolute invariant

for the subgroup of G��� with determinant ��

It follows �see ��	� for the proof� that for a Type I code W ��	�x� y��W ��	�x� y� lies in the

following ring�

& �
�� 
�


��� 

���� 
���

R �
�� xy�x
 � y
��x
 � 

x�y� � y
�

x
 � �
x�y� � y
� x�y��x� � y���
� �	��

One of the di�erences between binary codes of Types I and II is that whereas the weight

enumerator of the former is invariant under a group of order only ��� the weight enumerator of

the latter is invariant under a group of order �	� �see Eq� �	���� The above result restores the

balance to a certain extent� by requiring W ��	 �W ��	 to be a relative invariant for the larger

group�

���� Family �II	 Doubly�even binary self�dual codes

hwe of C ������� ��
�� �

�� ������

G � G��� �

�
�p
�

�
�

�

�

��
�
�

�
�

�

�

i

��
� order �	� �	��

�Shephard and Todd (	�

& �
�

��� 

���� 
���

R �
�

x
 � �
x�y� � y
� x�y��x� � y���
� �		�


�



Codes whose weight enumerators give generators for the above rings�

Ring Codes

�	�� i� ����� e
 ����
�	�� i� ����� e
 ����
�	�� e
 ����� g�� ��	�� d

�
��� �d��e�f��

� �x���
�
�		� e
 ����� g�� ��	�

�����

Remark� The above groups G�� and G��� are also the two�dimensional real and complex

Cli�ord groups occurring in quantum coding theory �
��� �
	�� At present this appears to

be nothing more than a coincidence� However� in view of the other mysterious coincidences

involving the Cli�ord groups� there may be a deeper explanation that is presently hidden

�compare the remarks in Section ��	��

���� Family �	 Ternary codes

hwe of C ������� ��
�� ������ ���	� p� �����

G �

�
�p



�
�

�

�

��
	
�

�
�

�

�

�

	
� � � e��i��

�
� order 
�

�Shephard � Todd (��

& �
�

��� 
����� 
���
�����

R �
�

x� � �xy�� y��x� � y���
�����

cwe of C� �n � C ���	��� ���	� p� ����� �This forces the length to be a multiple of ����

G �

�
�p



�

� � � �
� � �
� � �

�
�� �

�

� � � �
� � �
� � �

�
�� �

�

� � � �
� � �
� � �

�
�� �

�

� � �

�

�
��
 

�

order ��	��

& �
�� 
��

��� 
������� 
���

R �
�� �����

���� ��� � �
�
�

���
�

where

a � x� � y� � z�� b � x�y� � y�z� � z�x��

p � 
xyz� ��� � a�a� � �p���

�� � a�� � ��b� �� � �x� � y���y� � z���z� � x�� �


	



cwe of C� not requiring that �n � C ��	�� �Now the length is just a multiple of 
��

G �

�
�p



�

� � � �
� � �

� � �

�
�� �

�

� � � �
� � �
� � �

�
�� �

�

� � �

�

�
��
 

�

order 	�

& �
�� 

�� � 
��

��� 
����� 
����
�

R �
�X

i��

f �i	S

where S � C ��� � �
�
�� t

���� s � y� z� t � y� z� �� � x�x�� s��� �� � �x
�� ��x�s�� s�� f ��	 � ��

f ��	 � t�	���� 	� � s��x� � s��� f ��	 � t�	��� f
��	 � t���� f

��	 � t
	�� f
�
	 � t��	�����

Codes�
Ring Codes

����� t� �
��� g�� �
��

���
� e��� �x���
�� g�� �
��� S�
�� �x������ XQ�� �x�����
���
�

���� Family �
H	 Self�dual codes over F� with Hermitian inner product

hwe of C ������� ���	� p� ������

G �

�
�

�

�
� 

� ��

�
�

�
� �
� ��

� 
� Weyl group of type G�

	� dihedral group D��

�Shephard � Todd (�b�

& �
�

��� 
����� 
��

R �
�

x� � 
y�� y��x� � y���
�����

cwe of C� �n � C �There must be some word of full weight� so this is not a severe restriction�

G �

�
�

�

�



�
� � � �
� � �� ��
� �� � ��
� �� �� �

�
���� �

�



�
�

��
��

��

�
���� �

�



�
� � � �
� � � �
� � � �
� � � �

�
���� �

�



�
� � � �
� � � �
� � � �
� � � �

�
����
 

order ���

& �
�� 
��

��� 
����� 
����� 

���� 
���

R �
�� �x� � y���x� � z���x� � t���y� � z���y� � t���z� � t��

x� � y� � z� � t�� �
��� f
� f��
�����

��



where

f
 � x
 � � � ��
 terms� � �
x�y� � � � � �� terms� � ���x�y�z�t� � cwe of e
 � F�
f�� � �s� � 
x�y� � 
z�t���s� � 
x�z� � 
y�t���s� � 
x�t� � 
y�z�� �
s� � x�y� � x�z� � � � � �� terms� �

cwe of C� assuming �n � C and C and C have same cwe�

G � previous G together with

�



�
� � � �
� � � �
� � � �
� � � �

�
����

	� Weyl group of type F� �Shephard � Todd (���� order ����

& �
�

��� 
����� 
����� 

���� 
���

R �
�

x� � y� � z� � t�� �
��� f
� f��
�����

swe of C� �n � C� �Set t � z in cwe�

& �
�� 
��

��� 
����� 
����� 

�

R �
�� f�x�� z���y� � z��g�

x� � y� � �z�� �
��� f�x� � z���y� � z��g� �����

Remark� If we try to apply invariant theory directly to the swe� we are led to the group

G �

�
�

�

!
B" � � �
� � ��
� �� �

#
CA �

!
B" � � �
� � �
� � �

#
CA �

!
B" �

��
��

#
CA
 

�Weyl group of type B�� Shephard � Todd (�a� of order 
�� with Molien series

& �
�

��� 
����� 
����� 
��
�

However� the invariant of degree 
 is

�� � �x
� � z���y� � z�� �

which cannot be obtained from the swe of any self�dual code of length 
� The ring of invariants

here and the ring in ����� have the same quotient �eld� So there is no group whose ring of

invariants is ������

��



Codes�
Ring Codes

����� i� �

�� h� �
��
����� i� �

�� h� �
��� e
 � F�� �e�e
�� �x������ d���
����� i� �

�� h� �
��� e
 � F�� �e�e
�� �x�����
����� i� �

�� h� �
��� e
 � F�� �e�e
�� �x�����

���	�

Here d��� is the code obtained from d��� of Section ���
 by multiplying the last four coordinates

by ��

��
� Family �
E	 Self�dual codes over F� with Euclidean inner product

�This is inadequately treated in ������ where only even codes are considered�� Neither the

hwe nor the swe can be obtained directly from invariant theory� but must be obtained by

collapsing the cwe� Since �v� v� � � � P
v�i � � �

P
vi � � � �v� �n� � �� we may assume

�n � C�

cwe of C

G �

�
�

�

!
BBB"
� � � �
� � �� ��
� �� �� �
� �� � ��

#
CCCA �

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA �

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA
 

order �	�

& �
�� 
��

��� 
����� 
����� 
����� 

�

R �
�� abcd�a�� b���a� � c�� � � ��c� � d��

symmetric polynomials in a�� b�� c�� d�
�����

where

a � ��x � y � z � t���� b � ��x� y � z � t��� �

c � ��x � y � z � t���� d � ��x� y � z � t��� �

cwe of C� assuming C has same cwe as C�

G � previous group together with

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA

�Weyl group of type B�� Shephard � Todd (�a�� order 
�


& �
�

��� 
����� 
����� 
����� 

�

R � symmetric polynomials in a�� b�� c�� d� � �����

��



swe of C� �Set t � z in the above cwe�

& �
� � 

 � 
��

��� 
����� 
����� 
��

R �
�� f�x� � z���y� � z��g�� f�x� � z���y� � z��g�

x� � y� � �z�� x� � y� � �z� � ��xyz�� z��x� y���xy � z��
� �����

hwe of C� �Set t � z � y in the cwe�

& �
� � 
�

��� 
����� 
��

R �
�� y��x� � y���

x� � 
y�� y��x� y��
� ���
�

Rather surprisingly� ������ ������ ���
� appear to be new�

Codes� The following codes will be used�

i� � ����� cwe � x� � y� � z� � t�� swe � x� � y� � �z�� hwe � x� � 
y�

c� �

�
� � � �
� � � �

�
� a �
���
� Reed�Solomon code�

cwe � x� � y� � z� � t� � ��xyzt� swe � x� � y� � �z� � ��xyz��
hwe � x� � ��xy� � 
y� �

c� �

�

� � � � � � �
� � � � � �
� � � � � �

�
�� �

cwe � x� � � � � �
 terms� � �x�yzt� � � ��
 terms� � 	x�y�z� � � � � �
 terms��
hwe � x� � �x�y� � ��x�y� � ��xy
 � ��y� �

���
�

Codes�
Ring Codes

����� i�� c�� c�� e
 � F�� %
����� i�� c�� c�� e
 � F�
����� i�� c�� c�� e
 � F�
���
� i�� c�� c�

�����

Remark� The question mark in the �rst line of the table indicates that we do not have a

code that produces the degree �� polynomial in the numerator of ������ Such a code would

necessarily be odd and have the property that the cwe of C is not equal to that of C� Pre�

sumably a random self�dual code would do� but we would prefer to �nd a code with some nice

structure�

�




���� Family �
H�
I 	 Additive self�dual codes over F� using trace inner product

hwe of C�

G �

�
�

�

�
� 

� ��

� 
� order �

& �
�

��� 
���� 
��

R �
�

x� y� y�x� y�
�����

cwe of C� �n � C�

G �

�
M� �

�

�

!
BBB"
� � � �
� � �� ��
� �� � ��
� �� �� �

#
CCCA � �� �

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA
 
� order �

& �
� � 
�

��� 
���� 
������ 
��

R �
�� BCD

A�B� � C�� D�� B�C�
�����

where

A � �x� y���� B � �x� y���� C � �z � t���� D � �z � t��� � �����

swe of C� �n � C� �Set t � z in cwe�

& �
�

��� 
���� 
����� 
��

R �
�

A� B� � C�� B�C�
���	�

where

A � �x� y���� B � �x� y���� C � z � �����

cwe of C� �n � S� Note that ��n� u� � wt�u� � n��u� � wt�u� �mod �� if and only if the

number of ��s in u is even� So if �n � S� the cwe is invariant under diagf����� �� �g�

G � hM�� diagf����� �� �gi � order �

& �
�

��� 
����� 
����� 
��

R �
�

D� A�B � C� A� � B� � C�� A� � B� � C�
�����

where A� B� � � � are as in ������

�




swe of C� �n � S� �Set t � z in cwe�

& �
�

��� 
���� 
����� 
��

R �
�

symmetric polynomials in A� B� C
�����

hwe of S�

& �
�

��� 
���� 
��

R �
�

�y� � �
��x

� � y��
���
�

As a corollary� the weight of a vector in the shadow is congruent to n �mod ���

hwe of W ��	 �W ��	� Again we use the terminology W �i	� i � �� � � � � 
� for the cosets of C�

in C�� �as in Sect� ��

G �

�
M� �

�

�

�
� 

� ��

�
� �� �

�
� �
� ��

� 

with character ��M�� � �� ����� � ����n �Ker � 	� S��

& �
�

��� 
����� 
��

R �
�

x� � 
y�� y�x� � y��
� ���
�

cwe of S� �n � C� Belongs to image of ����� under the map that sends �x� y� z� t� to

�x� y� z� t���M��

R �
�� ABD

C� A� �B�� D�� A�B�
�����

cwe of W ��	 �W ��	� �n � C� G � hM�� ��� ��i with character ��M�� � �� ����� � ����� �

����n� order 
�
& �

�

��� 
���� 
����� 
����� 
��

R �
�

D� A� � B� � C�� ABC� A� �B� � C�
�����

where

A � x� y� B � x� y� C � z � t� D � z � t�

��



swe of W ��	 �W ��	� �n � C�

& �
�

��� 
����� 
����� 
��

R �
�

A� �B� � C�� ABC� A� �B� � C�
�����

cwe of S� �n � S� Belongs to image of ����� under the map x� y� y � x� z � t� t� z�

R �
�

�D� A �B � C� A� �B� � C�� A� �B� � C�
�����

swe of S� �n � S� Set D � � in ������

hwe of S� �n � S� Same as ���
��

cwe of W ��	�W ��	� �n � S� G � hM�� �� � diagf����������gi� with character ��M�� � ��

����� � ����n� order ��
& �

�

��� 
����� 
����� 
��

R �
�

D� A�B � C� A� � B� � C�� A� � B� � C�
���	�

Remark� We may obtain W ��	 � W ��	 by applying �� to W ��	 � W ��	� which in turn is

obtained by applying �� to W
��	 �W ��	�

���� Family �
H�
II 	 Additive even self�dual codes over F� using trace inner

product

hwe of C� Same as family 
H� see ������

cwe of C� �n � C�

G � hM�� ��� ��i � order 
�

& �
� � 
�

��� 
������ 
����� 
��

R �
�� ABCD

D�� A� � B� � C�� A� � B� � C�� A� � B� �D�
��
��

swe of C� �n � C� �Set t � z in cwe�

& �
�

��� 
����� 
����� 
��

R �
�

symmetric polynomials in A�� B�� C� ��
��

��



cwe of C �not assuming �n � C��

G � hM�� ��i� order ��

& �
� � 
� � �
�

��� 
������ 
��
��
��

Codes� The following codes will be used�

i� � ���� cwe � swe � hwe � x� y

i�� � ���� cwe � swe � x� z

i��� � ���� cwe � x � t� swe � x� z

i� � ���� ���� see ���
�

i�� � ���� ���� cwe � x� � y� � �zt� swe � x� � y� � �z�� hwe � x� � 
y�

c� � ����� ���� ����

c� � ������ �������

c�� � ������ �������

Ring Codes

����� i�� i�
����� i�� i�� i

�
�� c�� c�

���	� i�� i�� c�
����� i��� i���� i�� c��
����� i��� i�� c��
���
� i�� i�
����� i�� i�� i

�
�� c�� c�

���	� i��� i���� i�� c�
��
�� i�� i

�
�� c

�
�� h�� c�

��
�� i�� c
�
�� h�

��

�

���� Family qH	 Codes over Fq� q a square� with Hermitian inner product

The case q � 
 has been studied in Section ��
� The next case is q � 	� but as little

attention has been paid so far to codes over this �eld we shall not discuss the cwe or swe

further� It is possible to say a little about the Hamming weight enumerator in the general

case�

hwe of C �See Theorem ����

G �

�
�p
q

�
� q � �
� ��

�
�

�
�� �
� ��

� 
� order 


��



& �
�

��� 
���

R �
�

x� � �q � ��y�� y�x� y�
��

�

�This is somewhat unsatisfactory� since y�x�y� forces a vector of weight �� which is impossible
in a self�dual code��

��
� Family qE	 Codes over Fq with Euclidean inner product

The cases q � �� 
 and 
 have been studied in Sections ���� ��
� ���� As q increases the

results rapidly become more complicated�

We �rst discuss the case q � � and then say a little about the general case�

cwe of C� q � �� Let � � e��i�
�

G �

�
�p
�
��rs�r�s���


��� diagf�� �� ���� ���� �g

�
� order �
�

& �
	�
�

��� 
����� 
����� 
����
��
��

where 	�
� is a polynomial of degree ��� with 	��� � ��� A good basis for this ring would

therefore involve about �� polynomials� Such Behavior is typical of most groups � see Hu�man

and Sloane ��
	��

swe of C� q � �

G �

�!B" � � �
� � � �� �� � ��

� �� � �� � � ��

#
CA � diagf�� �� ��g�

!
B" � � �
� � �
� � �

#
CA
 

�

�the re$ection group �
� ��� a three�dimensional representation of the icosahedral group� Shep�

hard and Todd (�
�� order ���

& �
�

��� 
����� 
����� 
���

R �
�

�� �� �
��
��

where

� � x� � 
yz

� � x�yz � x�y�z� � x�y
 � z
� � �y�z�

� � �x�y�z� � 
x
�y
 � z
�� ��x�y�z� � ��x��y�z � yz�� � �x�y�z�

� ��x�y�z� � y�z�� � �y
z
 � y�� � z�� �

��



Codes� ����� ��������

�� and either

d��
 � �����

��������� �����������

�� �����������

or

e��� � ������
������
�� ����������� ��
��

for the invariant of degree ���

In ����� it was observed that these invariants were already known to Klein ���
�� ���
�� This

paper then went on to remark that �it is worth mentioning that precisely the same invariants

have recently been studied by Hirzebruch in connection with cusps of the Hilbert modular

surface associated with Q�
p
�� � see ��
��� p� 
��� However� there does not seem to be any

connection between this work and ours�� An elegant explanation for this was soon found by

Hirzebruch ��
��� The basic idea is to take a self�dual code over F
 and to obtain from it

�using a version of Construction A ����� a lattice over Z�
p
��� The theta series of this lattice is

a Hilbert modular form which can be written down from the swe of the code� This produces

an isomorphism between the ring of swe�s and the appropriate ring of Hilbert modular forms�

The monograph �	�� gives a comprehensive account of these connections�

Incidentally� we do not know if the cwe ring described by ��
�� collapses to ��
���

hwe of C� q � �� ����
�� �Set z � y in swe�

& �
� � 
�� � 
��

��� 
����� 
��

R �
�� �� ��

�� �

where

� � x� � 
y��

� � y��x� y���x� � �xy � �y���

� � y��x� y����x� � ��xy � �y�� �

cwe of C� q � �� �n � C� �The group is now considerably larger� but the ring of invariants

is no simpler�

G � hprevious group� diagf�� �� ��� ��� ��gi

�	



	� 
�����Sp����� a Cli�ord group ����� ����� �

�� �
��� �see also ��
���� order 
����

& �
� � 

�� � �

�� � ��
�� � ��

� � 


�� � ��
��� 


� � �
��

��� 
������ 
������� 
����
�

The sum of the coe!cients in the numerator is ���� so again there is no possibility of giving a

good basis�

The degree �� invariant is the cwe of either of the codes of length �� given in ��
���

cwe of C� general q� It is hard to say anything in general� but if q is an odd prime p we

can at least describe the structure of the group G under which the cwe is invariant�

G �

�
M �

�p
p
��rs�r�s���


�p��� J � diagf�� �� ��� ��� � � �g��I

 
�

If �n � C then the cwe is invariant under the larger group G� � hG�P i� where

P � xj � xj��� �subscripts mod p�

We use )�H� to denote the center of a group H �

Theorem ��� �a� Suppose p � � �mod 
�� Then G has structure Z���� SL��p� and center

)�G� � h�Ii� G� has structure Z��� � p��� SL��p� and )�G�� � h�I� �Ii� �b� Suppose

p � 
 �mod 
�� Then G has structure Z�
� � SL��p� and )�G� � hiIi� G� has structure

Z�
��p���SL��p� and )�G
�� � hiI� �Ii� In either case G and G� are preserved by the Galois

group Gal�Q�
p
p� ���Q��

Remarks� �i� The group G was �rst studied in the present context by Gleason ������ The

groups G and G� �also for composite odd q� and with the appropriate modi�cation for even q

as well� are a special case of the construction in �
�
�� Weil obtains analogs of G�� in which

Fq can be replaced by any locally compact abelian group isomorphic to its Pontrjagin dual�
�

�ii� The analogous results for p � � are given in Sections ��� and ���� �iii� In both cases �a�

and �b� G� is the full normalizer �with coe!cients restricted to Q�
p
p� ��� of the extraspecial

p�group E � hP�Qi� where Q � diagf�� �� ��� ��� � � �g �cf� �

���

Proof� G normalizes E� since MPM�� � Q���MQM�� � P � JPJ�� � �aPQ��� JQJ�� �

�bQ for appropriate integers a and b� �Note that �I � PQP��Q�� � E�� Thus we have a

�We are grateful to N� D� Elkies for this comment�

��



surjective homomorphism 	 from G to SL��p� � M �
�
�
�
��
�



� J �

�
�
��

�
�



� In particular G

is transitive on E�h�Ii�
Suppose G � E is nontrivial� If there were a noncentral element of E in G then by the

transitivity of G it would follow that �cP � G and �dQ � G for some c� d� But then �I � G�

This would force the length of C to be a multiple of p� which is false �since there is always a

code of length 
�� Hence G �E � fIg�
E is irreducible� so the centralizer of E consists only of multiples of I � It follows that ker	

consists of multiples of elements of E� But the fourth power of an element of ker	 would be in

E� and this must be I � Thus ker	 is either h�Ii or hiIi� If p � � �mod 
� then i �� Q�pp� ��� so
the �rst possibility obtains� It remains to show that iI � G when p � 
 �mod 
�� The matrix
�MJ�pM� is readily veri�ed to belong to ker	� But det��MJ�pM�� � �detM�p��� Since M�

maps xj to x�j � detM� � ��� so detM � 
i� It follows that �MJ�pM� is 
iI �

Corollary �� If p � 
 �mod 
� then a self�dual code over Fp must have length divisible by 
�

Proof� iI � G�

The conclusion of Corollary � also holds for self�dual codes over Fq � q � 
 �mod 
� ������

hwe of C� general q� Belongs to the ring ��

�� If q � 
 �mod 
� we can say more ��������

G �

�
�p
q

�
� q � �
� ��

�
�

�
i �
� i

� 
� order �

& �
� � 
�

��� 
���

R �
�� x�y� � �xy� � y�

x� � 
�q � ��xy� � �q � ���q � 
�y�� x�y � �q � 
�xy� � �q � ��y�

����� Family �
Z

I 	 Self�dual codes over Z�

cwe of C� �������

G �

�
M� �

�

�

!
BBB"
� � � �
� i �� �i
� �� � ��
� �i �� i

#
CCCA � �� � diagf�� i� �� ig

 
� order �


& �
�� 
��

��� 
���� 
������ 

�

R �
�� �BCD���B� � C��

A� B� � C�� D�� B�C�
��
��

��



where

A � x� z� B � y � t� C � x� z� D � y � t � ��
	�

swe of C� �Set t � y in cwe�

& �
�

��� 
���� 
����� 

�

R �
�

A� B� � C�� B�C�
��
��

hwe of C� �Set t � z � y in cwe�

& �
� � 



��� 
���� 
��

R �
�� y��x� y��

x� y� y�x� y��x� � xy � �y��
��
��

cwe� �n � C

G �

�
M�� ���

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA
 

� order ���


& �
�� � 
����� � 
���

��� 
����� 

����� 
���

R �
��� A�� �B�� � C�� �D���� ��� ����

A� � B� � C� �D�� A
 �B
 � C
 �D
� �
� A�B�C�D�
��
��

where

�
 � A�D� �B�C� �

��� � �ABCD���A�B� � C�D� � A�C� � B�D��

swe of C� 
�n � C �Set t � y in cwe�

& �
�� 
��

��� 
����� 

��

R �
�� A�B�C�

A� �B� � C�� A
 B
 C
� B�C�
� ��

�

This ring may also be described as R�
B�C�R�
B
C
R�� where R� is the ring of symmetric

polynomials in A�� B�� C��

��



hwe of C� 
�n � C� �Set t � z � y in cwe�

& �
�� � 

��� � 
���

��� 
����� 

�

R �
��� y��x� � 
y���x� � y����� ��� y��x� � y����

�x� � 
y���� y��x� y��
��

�

cwe of C� �n � S� If �n � S� Part �i� of Theorem � implies that if a vector �a�b�cdd � C

then b�d��c � �
��b�d���c �mod 
�� i�e� b � 
d �mod ��� and so �� � diagf�� 
� �� 

g � G�

G � hM�� ��i� order �	�

& �
�� 
�


��� 
���� 
����� 

���� 
���

R �
�� B�C�D��B� � C���B� �D���C� �D��

A� B� � C� �D�� B
 � C
 �D
� B�� � C�� �D��
��
��

swe and hwe of C� 
�n � S� Same as ��
�� and ��
��� respectively�

cwe of S� the image of ��
�� under A� B� B � 
C�C� A� D� 
�D

& �
�� � 
���

��� 
���� 
������ 

�

R �
�� A�C�D���A� � C��

B� A� � C�� �D�� �A�C�
��
��

swe of S� the image of ��
�� under A� B� B � 
C� C � A

& �
�

��� 
���� 
����� 

�

R �
�

B� A� � C�� � A�C�
��
��

It follows that the norms of vectors in the shadow are congruent to n mod ��

cwe of S� �n � C� the image of ��

� under A� B� B � 
C� C � A� D � 
�D�

swe of S� 
�n � C�

& �
�� 
��

��� 
����� 

��

R �
�� �A�B�C�

A� �B� � C�� A
 �B
 � C
� � A�C�
��
��

�




cwe of S� �n � S�

R �
�� A�C�D��A� � C���C� �D���A� �D��

B� A� � C� �D�� A
 � C
 �D
� A�� � C�� �D��
��
	�

swe of S� 
�n � S� same as ��
���

cwe of W ��	 �W ��	�

G � hM�� �� � diagf�� 
���� 
gi � order ��� �

with character ��M�� � in� ����� � 
n

& �
�� 
�


��� 
���� 
����� 

���� 
���

R �
�� A�B�C��A� � B���A� � C���B� � C��

D� symmetric polynomials in A���B���C�
�����

swe of W ��	 �W ��	�

& �
�� 
�


��� 
����� 

���� 
���

R � omit D from ����� �����

�This ring has also been studied in ������

cwe of W ��	�W ��	 with �n � C� G � hM�� ��� ��i� order ��

� with character ��M�� � in�

����� � �� ����� � 
n� ker��� has order 
���

& �
�� 
��

��� 
����� 

���� 
������ 
���

R �
�� A�B�C�D��A� � B���A� � C���A� �D���B� � C���B� �D���C� �D��

symmetric polynomials in A���B���C�� D� �����

swe of W ��	 �W ��	 with �n � C�

& �
�

��� 
����� 

���� 
���

R �
�

symmetric polynomials in A�� � B�� � C�

�




����� Family �
Z

II	 Type II self�dual codes over Z�

cwe of C� �n � C ����� ���� In view of the remarks following Theorem �� this is not a severe

restriction�

G � hM�� ��� ��i � order ��



& �
�� � 
����� � 
���

��� 

����� 
������ 
���

R �
��� f���� ��� f���

A
 �B
 � C
 �D
� f
� A�� � � � ��D��� A�� � � � ��D��
���
�

where

f
 � A�C� � C�D� �D�B� � B�A� �A�D� �B�C� �

f�� � �ABCD�� �

f�� � �ABCD���A� � C���C��D���D� �B���B� � A���A� �D���B� � C��

swe of C� 
�n � C

& �
�� 
��

��� 

����� 
���

R �
�� ���

�
� h
� ���
���
�

where

�
 � x
 � ��x�z� � ��x�z� � ��x�z� � z
 � ���y
 �

��� � fx�z��x� � z��� � 
y
gf�x� � �x�z� � z��� � �
y
g �
��� � y
�x� � z��
 �

h
 � fxz�x� � z��� �y�g� �

cwe of C� �n � C� Lee weights divisible by � ������

G �

�
M�� ��� ���

!
BB"
� � � �
� i � �
� � � �
� � � i

#
CCA
 

�Shephard � Todd (�a�� order 
	���

& �
�

��� 

���� 
������� 
���

R �
�

f��� symmetric polynomials in A

� B
� C
� D
 �����

��



swe of C� 
�n � C� Lee weights divisible by � ������ �Set t � y in cwe�

& �
�

��� 

���� 
������ 
���

R �
�

�
� ���� ���
�����

However� the following result shows that the extra condition on the Lee weights may not be a

good thing� For it was shown in ���	� that most interesting linear codes over Z� do not have

linear images under the Gray map�

Theorem ��� ���� If C is a self�dual code over Z� with all Lee weights divisible by 
� then the

binary image of C under the Gray map ���� is linear�

For the proof� see �����

Codes� The following codes will be used� i� and D
� are de�ned in Section ����� and o
 is

the octacode �
��� J�� is the self�dual code with generator matrix�











�

� � � � � � � � � �
� � � � � � 
 
 � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

�
������������

and jJ��j � 
��� ������� J�� has generator matrix�
















�

� � � � � � � � � � 
 
 � � 
 �
� � � � � � � � � � 
 
 � � � 

� � � � � � � � � � � � � � 
 

� � � � � � � � � � 
 � � 
 
 �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � 
 � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

�
�����������������

and jJ��j � 
����
K�m �m � �� but note that K�

	� D
� � is a self�dual code introduced by Klemm ������

having generator matrix �





�

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �

�
������ � �����

��



jK�mj � 
���m��� g � ��m���
m��� cwe � �A�m � B�m � C�m �D�m��� �see ��
	���

Ring Codes

��
�� i�� D
� in � versions ������ o
� J��
��
�� i��D
� � o

��
�� i��D
� � o

��
�� K�� K
� o
� K��� K���J��
��

� K�� K
� o
� K��

��

� K�� o
� K
� K��

���
� K
� o
� K��� K��� J���%
���
� K
� o
� K��� J��
����� K
� K��� K��

�����

Again the question mark indicates that we do not have a satisfactory code to produce the

desired polynomial�

����� Family mZ	 Self�dual codes over Zm

The Hamming weight enumerator of a self�dual code over Zm for general m has been

considered in ������


� Weight enumerators of maximally self�orthogonal codes

In some cases it is possible to prove results analogous to those in Section � for codes which

are maximally self�orthogonal yet not self�dual� the ��� 
� 
� Hamming code e� with weight

enumerator p� � x� � �x�y� being a typical example� A more trivial example is the zero code

z� � f�g� with weight enumerator p� � x�

The following results are proved in ��	���

For n odd� let C be an �n� ���n� ��� self�orthogonal binary code� Thus C� � C � �� � C��

The weight enumerator of C belongs to the module R � p�C �x��y�� x�y��x��y����
p�C �x��
y�� x�y��x� � y����� which in the notation of the previous section would be described by

& �

� 
�

��� 
����� 

�

R �
p�� p�

x� � y�� x�y��x� � y���
���	�

�compare �	���� If in addition C is doubly�even� the module is described by�

�a� if n � �m� ��
& �


� � 
��

��� 

���� 
���

R �
p�� p��

x
 � �
x�y� � y
� x�y��x� � y���
�����

��



�b� if n � �m� ��

& �

� 
��

��� 

���� 
���

R �
p�� p��

x
 � �
x�y� � y
� x�y��x� � y���
�����

�compare �		��� Here p�� � x�� � ��x��y� � ���x�y
 � ��x
y��� p�� � x�� � ���x�
y
 �

����x��y�� � ��
x�y���

Codes� The code g�� is the cyclic version of g�� obtained by deleting any coordinate�

Ring Codes

���	� i�� e
� z�� e�
����� e
� g��� e�� g��
����� e
� g��� z�� �d��e��

�

There are analogous results for ternary codes� see ��	���

�� Upper bounds

Of course� we are interested not just in codes per se� but also in good �or� at the very least�

interesting� codes� that is� codes with large minimal distance �Hamming� Lee� or Euclidean�

as appropriate�� In order to know if a particular code is good� it is necessary to know how

good comparable codes could be� that is� for a given length and dimension� what is the optimal

minimal distance% For general codes� this question was studied in Chapters xx �Levenshtein��

yy �Brouwer� and zz �Litsyn�� we are� of course� interested in self�dual codes� As one might

imagine� the constraint of self�duality usually leads to stronger bounds�

We will concentrate most of our attention on binary codes �family ��� pointing out analogues

to other families as they arise�

Essentially all of the bounds we will be discussing are special cases of the linear program�

ming �or LP� bound �Section ��� of Chapter yy �Brouwer��� that is� they rely on the fact that

both the weight enumerator of the code and the weight enumerator of its dual are nonnegative�

For a self�dual code� these weight enumerators are� of course� equal� So for Type II self�dual

binary codes� for instance� we have the following�

Theorem ��� If there exists a Type II self�dual binary code of length n and minimal distance

d� then there exists a homogeneous polynomial W �x� y� with nonnegative �integer� coe	cients

��



such that

�n��W �x� y� x� y� � W �x� y�

W ��� y� � � �O�yd�

W �x� iy� � W �x� y��

These conditions assert that the code is self�dual� that it has minimal distance d� and that it

is of Type II� respectively�

The analogues for other classes of codes should be clear� in each case� the appropriate enu�

merator �Hamming� symmetrized� complete� is nonnegative� invariant under the appropriate

transformations �see Section ��� and is zero on all terms of low weight� In some cases� we can

add further constraints from shadow theory �Section ��� since the weight enumerator of the

shadow of the code is also nonnegative� For instance�

Theorem �	� If there exists a Type I self�dual binary code of length n and minimal distance

d� then there exist homogeneous polynomials W �x� y� and S�x� y� with nonnegative �integer�

coe	cients such that

W �x� y� � ��n��W �x� y� x� y�

W ��� y� � � � O�yd�

S�x� y� � ��n��W �x� y� i�x� y���

Again there are analogues for each family for which shadows are well�de�ned ��� 
H�� 
Z��

Remark� For a code C from family qH �linear over Fq� q a square� with Hermitian inner

product�� it can be shown that the polynomial

S�x� y� � q�n��W ��
p
q � ��x� �pq � ��y� y � x�

has nonnegative �but not necessarily integral� coe!cients� note that this agrees with the shadow

enumerator for q � 
� This can be used to strengthen the LP bound in those cases� The known

proof that this is nonnegative involves constructing a quantum code Q from C ���
���� S�x� y�

is then the shadow enumerator of Q ������� proved nonnegative in ������� There is surely a

more direct proof�

One way to apply the linear programming bound is to ignore the constraint that the coe!�

cients of W �x� y� be nonnegative� and simply ask that the low order coe!cients be as speci�ed�

�	



This gives a surprisingly good bound for Type II binary codes� Recall from Theorem �
 that

for C of Type II� W �x� y� lies in the ring

R � C �x
 � �
x�y� � y
� x�y��x� � y�����

and if C has length n� W �x� y� has degree n� The subspace of R of degree n has dimension

D � � n�� ���� This lets us set the �rst D coe!cients of W �x� y� arbitrarily� in particular� there

exists a unique element W ��x� y� of R such that W ���� y� � � � O�y�D�� This is known as

the extremal enumerator� since W � has the largest minimal distance of any Type II self�dual

enumerator� It follows immediately that the minimal distance of any Type II code of length n

is bounded above by the minimal distance of W ��

Theorem �
� ��	�� The �rst nonzero coe	cient of W ���� y� occurs precisely at degree 
D�

in particular� the minimal distance of a Type II self�dual binary code of length n is at most


�n��
� � 
�

In fact it is possible to use the B*urmann�Lagrange theorem �Theorem 
�� to derive an

explicit formula for the number of words of weight 
D in the extremal enumerator� Let

� � �n��
�� so that D � � � �� Then we have

Theorem ��� �Mallows and Sloane ��	���� A��
��� the number of codewords of minimal

nonzero weight 
D � 
�� 
 in the extremal weight enumerator� is given by��
n

�

��
��� �
� � �

�$�
�� 

�

�
� if n � �
� � �����

�



n�n� ���n� ���n� 
� �����

���
�� 
��
� if n � �
�� � � ���
�




�
n�n � �� ���� ���

���
�� 
��
� if n � �
�� �� � ���
�

and is never zero�

For the proof� see ��	�� or ���	�� Chapter �	� There is a similar formula for Type I binary

codes � see ���	�� Chapter �	� Problem �����

Results similar to Theorem �� hold for other families�

Theorem ��� The minimal distance of a Type I binary self�dual code is at most ��n��� � ��

The minimal distance of a Type II binary self�dual code is at most 
�n��
� � 
� The minimal

��



distance of a self�dual code from family 
 is at most 
�n���� � 
� The minimal distance of a

self�dual code from family 
H is at most ��n������ The minimal distance of a Type II self�dual

code from family 
H� is at most ��n��� � �� The minimal distance of a self�dual code from

families 
E� 
H�� qH or qE is at most �n��� � ��

Note that the last bound is simply the Singleton bound� obtained from the ring C �x� ��q�
��y�� y�x � y�� of ��

�� As we have already remarked in Section ���� this is not the correct

ring �that is� the smallest ring containing all Hamming enumerators of self�dual codes�� In

some cases �q � 
 or q � ��� we know a smaller ring� however� since the ring is no longer

free� it is much more di!cult to use� In particular� it is no longer the case that we may set

the leading coe!cients arbitrarily� This leads to the extremal enumerator not being unique�

making it di!cult to determine its �rst nonzero coe!cient� Similarly� any attempt to make an

analogous argument for families 
Zor mZwill have the problem that� in those cases� we are

primarily interested in Lee weight or Euclidean norm� forcing us to work with the symmetrized

weight enumerator� This is� of course� much more di!cult to deal with than the Hamming

enumerator� A partial solution to this problem is provided by Theorem 

 below�

In each case it can be shown �cf� ��	��� that the bounds of Theorems �� and �� can be

met for at most �nitely many n� in fact� the next coe!cient �A��
�
� after the leading nonzero

coe!cient in the extremal enumerator becomes negative for su!ciently large n� Furthermore�

for any constant �� the minimal distance can be within � of the bound only �nitely often�

For Type II binary codes� for instance� it was shown in ��	�� that the A��n�
 term �rst goes

negative when n is around 
���� Ma and Zhu ���
� and Zhang �

�� have recently determined

precisely when the A��n�
 term �rst goes negative� and have obtained similar results for several

other families� The following result incorporates the work of several authors�

Theorem ��� �

�� Let C be a self�dual code of length n from one of the families �I� �II� 
�


H� and let c � �� 
� 
� �� respectively� and � � �n���� �n��
�� �n����� �n���� Then the coe	cient

A�c�
��	 in the extremal Hamming weight enumerator is negative if and only if�

��I�� n � �i �i � 
�� �i� � �i � ��� �i� 
 �i � ��� �i� � �i � ���
��II�� n � �
i �i � ��
�� �
i� � �i � ��	�� �
i� �� �i � ��
��
�
�� n � ��i �i � ���� ��i� 
 �i � ���� ��i� � �i � ����
�
H�� n � �i �i � ���� �i� � �i � ���� �i� 
 �i � ����

In particular� the �rst time A��
�
 goes negative for Type II codes is at �
� ��
 � 
�	��

��



Of course other coe!cients in the extremal weight enumerator may go negative before this�

In the case of ternary self�dual codes� for example� family 
� the extremal Hamming weight

enumerator contains a negative coe!cient for lengths ��� 	�� ��� and all n � �

�
The best asymptotic bound presently known for Type II codes is the following�

Theorem ��� �Krasikov and Litsyn ������� The minimal distance d of a Type II binary code

of length n satis�es

d � �����
�� � � �n� o�n�� n�� �

The constant in this expression is the real root of �x
 � �
x� � 
�x� � 
�x� � ��x� ��

The proof uses a variant of the linear programming bound�

For Type I binary codes� the bound of Theorem �� is especially weak� Ward �
��� has

shown that the minimal distance can be ��n��� � � precisely when n is one of �� 
� �� �� ���

�
� �� or �
� This suggests that the bound can be greatly strengthened� which is indeed the

case� Conway and Sloane ��	� showed that d � ���n� ������ for n � ��� and Ward ��
���� see
also Chapter �Ward�� established d � n���O�logn�� It turns out� in fact� that the �correct�

bound is 
�n��
� � 
 �except when n � � is a multiple of �
�� just as for Type II codes� The

key to proving this fact is the observation that we have not yet used the shadow enumerator�

Theorem ��� �Rains ��
	��� Suppose C is a �n� n��� d� self�dual binary code� Then d �

�n��
��
� except when n � �� �mod �
�� when d � 
�n��
���� If n is a multiple of 

� any

code meeting the bound is of Type II� If n � �� �mod �
�� any code meeting the bound can be

obtained by shortening a Type II code of length n� � that also meets the bound�

Proof �sketch�� From �	���W �x� y� lies in the ring C �x� � y�� x�y��x�� y����� consequently

we can write

W ��� y� �
X
j

ajy
�j

�
X
i

ci�� � y��n����i�y���� y����i�

Applying the shadow transform� we have

S��� y� �
X
j

bjy
�j�t

�
X
i

ci��y�
n����i����� y�����i�

��



where t � ��n��� mod 
�� Suppose C had minimal distance 
�n��
� � �� This fact determines

ci for � � i � ��n��
� � �� and in particular c��n������� On the other hand� we can also

express c��n������ as a linear combination of the bj for small j� It turns out that these two

expressions for c��n������ are incompatible� in particular� we �nd that a certain nonnegative

linear combination of the bj is negative�

Rather than give the �somewhat messy� details of the proof� we will simply show how one

can compute the coe!cients in these linear combinations� This uses the B*urmann�Lagrange

theorem�

Theorem ��� �B*urmann�Lagrange�� Let f�x� and g�x� be formal power series� with g��� � �

and g���� �� �� If coe	cients �ij are de�ned by

xjf�x� �
X
��i

�ijg�x�
i�

then

�ij �
�

i
�coe�� of xi�� in �jxj��f�x� � xjf ��x��

�
x

g�x	


i
��

For proof and generalizations� see �
��� p� �

�� ������ ������ ���
�� ���
��

For instance� to compute c��n������� we note that

X
i

ci�� � y��n����i�y���� y����i � � �O�y��n��������

Dividing both sides by �� � y��n�� and substituting y �
p
Y � we get�

X
i

ci

�
Y ��� Y ��

�� � Y ��

�i

� �� � Y ��n�� �O�Y ��n��������

We can then apply B*urmann�Lagrange� with

f�Y � � �� � Y �n��� g�Y � � Y ��� Y ���� � Y ���

to obtain

ci �
�

i
�coe�� of Y i�� in � ddY �� � Y ��n���

�
�� � Y ����� Y ���

�i
�

�
�n
�i
�coe�� of Y i�� in �� � Y ��n������i��� Y ���i�

�
�n
�i
�coe�� of Y i�� in �� � Y ��n������i��� Y ����i��

In particular� for i � ��n��
� � ��

c��n������ �
�n


�n��
� � 

�coe�� of Y ��n������ in �� � Y ��n������n���������� Y �����n��������

�




It follows that c��n������ � �� with equality only when n � �� �mod �
�� since all coe!cients
of any power series of the form �� � Y �a��� Y ���b are positive whenever a� b � ��

Similarly� we �nd that the coe!cients of the expansion of c��n������ in terms of the bj are

positive� This proves the bound� except when n � �� �mod �
�� the proof that the bound

holds in that case and that a code meeting the bound is even if n � � �mod �
� is left to the
reader�

This bound agrees with the full linear programming bound for n � ���� and� most likely�
for much larger n� However� it is likely that again it can only be attained for �nitely many n�

There is also an analogue of this bound for Type I codes from family 
H��

Theorem ��� If C is an additive self�dual code of length n and minimal distance d from

family 
H�� then d � ��n��� � �� except when n � � �mod ���� when d � ��n��� � 
� If n is a

multiple of �� then any code meeting the bound is even�

We will call a code extremal if it meets the strongest of the applicable bounds from Theo�

rems ��� 
�� and 

� For Type II binary codes� ternary codes� and linear codes over GF �
� this

agrees with the historical usage� For Type I binary codes� however� �extremal� has generally

been used to mean a code meeting the much weaker bound of Theorem ��� in the light of

Theorem 
�� it seems appropriate to change the de�nition�

Concerning codes over Z�� Bonnecaze� Sol'e� Bachoc and Mourrain ���� show�

Theorem ��� Suppose C is a Type II self�dual code over Z� of length n� Then the minimal

Euclidean norm of C is at most

�

�
n

�


	
� � � �����

The proof uses C to de�ne an even unimodular n�dimensional lattice +�C� � f��u � Rn �

u �mod 
� � Cg� and examines its theta series�
As usual� one can derive an analogue for Type I codes�

Theorem �	� ����� Suppose C is a Type I self�dual code over Z� of length n� The minimal

Euclidean norm of C is at most

�

�
n

�


	
� � � �����

except when n � �
 �mod �
�� in which case the bound is

�

�
n

�


	
� �� � �����

If equality holds in ����� then C is a shortened version of a Type II code of length n� ��

�




We say that codes meeting either of these bounds are norm�extremal� For Type II codes

this agrees with the de�nition given in �����

There should be an analogous concept of Lee�extremal� but at present we do not know what

this is� Of course� the bounds ����� and ����� also apply to Lee weight� But this is not a

satisfactory bound� since it is not even tight at length �
� where the highest attainable Lee

weight is �� rather than �� �see Table XVI��

The fact that� from Theorem 
�� an extremal binary code of length a multiple of �
 must

be doubly�even suggests that these codes are likely to be particularly nice� Indeed� we have the

following result� which is a consequence of the Assmus�Mattson theorem �see ���	� Chap� ���

Theorem ����
 of Chapter �� Section � of Chapter xx �Tonchev���

Theorem �
� Let C be an extremal binary code of length �
m� Then the codewords of C of

any given weight form a ��design�

Similarly� the supports of the minimal codewords of an extremal ternary code of length

��m form a ��design� For codewords of larger weight� the natural incidence structure is almost

a ��design� except that it may have repeated blocks� Similarly� for an extremal additive code

over F� of length �m� the supports with multiplicities of the codewords of any �xed weight form

a ��design with repeated blocks� Harada ����� has shown that the Z��lift of the Golay code g��

also yields ��designs� More generally� one can show that the words of any �xed symmetrized

type� in any of the �
 Lee�optimal self�dual codes of length �
 overZ�� form a colored ��design�

possibly with repeated blocks ����� See also ������

��� Lower bounds

There are two ways to obtain lower bounds on the optimum minimal distance of a code

of length n� The �rst way� naturally� is simply to construct a good code� Just as for general

linear codes� there is also a nonconstructive lower bound� analogous to the Gilbert�Varshamov

bound �cf� Theorems 
��� 
�
� 
�� of Chapter ���

We �rst consider the case of self�dual binary codes �family ���

Theorem ��� ��	��� ��	�� Let n be any positive even integer� Let dGV be the largest integer

such that X
��i�d
�ji

�
n

i

�
� �n���� � �� �����

��



Then there exists a self�dual binary code of length n and minimal distance at least dGV �

Proof If we can show that the expected number of nonzero vectors of weight less than dGV

in a random self�dual code of length n is less than �� it will immediately follow that there exists

some self�dual code of length n with no such vectors�

Let us therefore compute the average weight enumerator of the set of self�dual codes�

Consider the group G of binary matrices that preserve the quadratic form I � On the vector

space of even weight vectors� modulo the all ��s vector� the quadratic form becomes symplectic�

and the group acts as the full symplectic group� In particular� it is therefore transitive on

nonzero vectors of even weight� modulo �n� It follows that the expected number of vectors of

weight �i in a random code must be proportional to
�n
�i

�
� except for i � � or i � n��� Thus

the average weight enumerator has the form�

W �x� y� � axn � b
X

��i�n����

�
n

�i

�
xn��iy�i � cyn

� axn � cyn � b�
�

�
�x� y�n �

�

�
�x� y�n � xn � yn��

Since every self�dual binary code contains the � vector and the all ��s vector� W ��� �� �

W ��� �� � �� since every self�dual code contains a total of �n�� vectors� W ��� �� � �n���

Solving for a� b� and c� we �nd�

W �x� y� � xn � yn �
�

�n���� � �

X
��i�n����

�
n

�i

�
xn��iy�i �

Thus the average number of nonzero vectors of weight less than d is

�

�n���� � �

X
��i�d
�ji

�
n

i

�
�

Corollary �� ��	��� ��	�� There exists an in�nite sequence of self�dual �ni� ni��� di� binary

codes� such that ni tends to in�nity� and

lim inf
i�	

di
ni
� ��

where � 	 ��������� is the unique solution less than �
� of

H���� � �� log����� ��� �� log���� �� �
�

�
�

��



Proof� Take the logarithm of both sides of ������ divide by n� and let n tend to in�nity� The

resulting inequality is

H���� � �

�
�

as desired�

Similar results hold if one restricts ones attention to codes of Type II�

Theorem ��� ��	��� ��	�� Let n be any positive multiple of �� Let dGV be the largest integer

such that X
��i�d

�ji

�
n

i

�
� �n���� � � ���	�

Then there exists a doubly�even self�dual binary code of length n and minimal distance at least

dGV �

Proof� Again we compute the average weight enumerator� The key observation is that the

function �
�wt�v� induces a quadratic form on the space of even weight vectors modulo the all

��s vector� The group of matrices that preserve this quadratic form is transitive on the kernel

of this quadratic form� that is� vectors of weight divisible by 
� modulo �n� This allows us to

write down the average weight enumerator�

W II�x� y� � xn � yn �
�

�n���� � �

X
��i�n��

�
n


i

�
xn��iy�i�

Asymptotically� this agrees with Corollary � �as well as the Gilbert�Varshamov bound��

For �nite n� it is actually �slightly� stronger� That is� the constraint that the code be Type II

makes it easier to �nd good codes�

Similar arguments prove�

Theorem ��� In each family from the list �I� �II� 
� 

H� 
E� 
H�I � 
H�II � qH and qE there exists

a sequence of self�dual codes with length tending to in�nity satisfying

lim inf
i�	

di
ni
� ��

where

Hq��� � � logq�q � ��� � logq���� ��� �� logq��� �� �
�

�
�

The result for families qH and qE was �rst given by Pless and Pierce ��
	��

Similar results hold for self�dual codes over Z��

��



Theorem ��� There exists a family of Type II self�dual codes over Z�� with length tending to

in�nity� such that

lim inf
i�	

li
�ni

� ��

where li is the minimal Lee weight of the ith code and � � H��
� ������ as before�

Theorem ��� There exists a family of Type II self�dual codes over Z�� with length tending to

in�nity� such that

lim inf
i�	

Ni

ni
� �

�
���
 � � � �

where Ni is the minimal Euclidean norm of the ith code�

��� Enumeration of self�dual codes

����� Gluing theory

Gluing is a technique for building up self�dual codes from smaller codes� and is especially

useful when one is attempting to classify all self�dual codes of a given length� Typically one

�nds that there are many codes with low minimal distance and only a few with high minimal

distance� Gluing theory is good at �nding all the codes of low distance�

The �rst formal description of gluing theory appeared in ����� It has also been used in ��
��

����� ����� ���	�� ������ etc�

The theory applies to codes from any of the families that we have discussed in this chapter�

Let C�� � � � � Ct be self�orthogonal codes of lengths n�� � � � � nt with generator matricesG�� � � � � Gt�

If C is a self�dual code with the generator matrix shown in Fig� � then we say that C is formed

by gluing the components C�� � � � � Ct together� and we write

C � �C�C� � � �Ct�
� �����

to indicate this process� �Whenever possible the subcodes are chosen so that every minimal

weight codeword of C belongs to one of the Ci�� The codewords in C which contain a nonzero

linear combination of the rows of the matrix X are called glue words� since these hold the

components together� A glue word has the form

u � u�u� � � � ut � �����

where each glue element ui has length ni� Since C is self�dual� ui is in C
�
i �

��



X

�

�
Gt

G�

G�

Figure �� Generator matrix G for a code formed by gluing components C�� � � � � Ct together�
Gi is a generator matrix for Ci� and X denotes the rest of the generator matrix for C�

Let us choose coset representatives a� � �� a�� � � � � as�� for Ci in C�i � where s � jC�i j�jCij�
so that

C�i �
s���
j��

�aj � Ci� �

Then we can assume that each ui in ����� is one of a�� � � � � as���

As illustrations we give the two indecomposable binary Type I self�dual codes of length ��

�see Tables II and VI�� using the components from the list in Section ���
� The �rst code is

formed by gluing three copies of the component d� together�

����
����

����
����

����
����

������ ������ ������
������ ������ ������
������ ������ ������

�����

The three glue vectors shown are abc� cab and bbb�

The second code is formed by gluing together d��� e� and a �free� �or empty� component

�	



f��
����
����
����
����

�������
�������
�������

���������� ������� �
���������� ������� �

���
�

The two glue vectors shown are a�A and cd��

Of course a self�dual code has no �nonzero� glue� If a self�orthogonal code C has a com�

ponent B� say� which is self�dual� then C is a direct sum C � B 
 C�� where C� is again

self�orthogonal�

It may happen that there is a glue word in which only one ui is nonzero� in which case we

say that the component Ci has self�glue� and that u is a self�glue vector� So if C has a single

component C� �say� with self�glue� we write C � C�
� �compare �������

A basic result of gluing theory is the following�

Theorem ��� If a self�dual code C is formed by gluing together two codes C� and C� in such

a way that there is no self�glue� then the quotient groups C�� �C� and C�� �C� are isomorphic�

We omit the easy proof� The isomorphism is given by u� � C� � u� � C� whenever there

is a glue vector u�u��

����� Automorphism groups of glued codes

One advantage of the gluing method is that it makes it much easier to �nd the automor�

phism group of a self�dual code C� We will denote the group by G�C� rather than Aut�C� in

this section� It is essential that every automorphism of C takes the set of component codes

C�� � � � � Ct to itself� We will always choose the components so that this is true�

This being the case� any automorphism in G�C� will e�ect some permutation of the Ci� so

that G�C� will have a normal subgroup G�� consisting of just those elements for which this

permutation is trivial� The group of permutations of the components that are realized in this

way we call G��C� � it is isomorphic to the quotient group G�C��G���

Let G��C� be the normal subgroup of G�� consisting of those automorphisms which� for

every i� send each glue element ui into a vector in the same coset ui � Ci� i�e� which �x the

glue elements modulo the components� Then G���G��C� is isomorphic to a group acting on

��



Table I� Numbers of self�dual codes of length n� �a� Indecomposable Type II� �b� total Type
II� �c� indecomposable self�dual� �d� total self�dual�

n � � 
 � � �� �� �
 ��

a � � � � � � � � �
b � � � � � � � � �
c � � � � � � � � �
d � � � � � � 
 
 �

n �� �� �� �
 �� �� 
� 
�

a � � � � � � � �

b � � � 	 � � � ��
c � � � �� 
� �
� 
��
d 	 �� �� �� ��
 ��� �
�

the glue elements of each component� we call this group G��C�� Thus the full group G�C� is

compounded of the groups G��C�� G��C� and G��C�� and has order

jG�C�j � jG��C�jjG��C�jjG��C�j � ���
�

Also G��C� is the direct product of the groups G��Ci�� But in general G��C� is only a subgroup

of the direct product of the G��Ci�� and therefore must be computed directly for each C�

����� Family �	 Enumeration of binary self�dual codes

The enumeration of binary self�dual codes of length n � 
� has been carried out in a series
of papers� Pless ����� for n � ��� Conway �unpublished� for Type II of length �
� Pless and

Sloane ��
�� for n � ��� �
� Conway and Pless ���� for n � �� to 
� and Type II of length 
�

�see also Pless ��
���� Some errors in the last two references were corrected in Conway� Pless

and Sloane ����� The results are summarized in Table I�

In this section we describe these codes� drawing heavily from the tables in �����

Since �from �
�� there are at least ��
	
 inequivalent Type II codes of length 
�� length 
�

is probably a good place to stop�

Although the Type I codes of length 
� have not been classi�ed� it is shown in ��	� that

there are precisely three inequivalent �
�� ��� �� extremal Type I codes�

The following self�orthogonal codes will be used as components�

d� � ������� glue� a � ����� b � ����� c � ����� jG�j � 
� G� � S�
� on fa� b� cg� jG�j � ��
d�n�n � 
��

������� � � � � �������� � � � � � � � � � � �������� � �����

��



glue� a � ���� � � ���� b � ���� � � ���� c � ���� � � ���� jG�j � �n��n�� jG�j � � �swap a and c�
e� � ������������ glue� a � �������� G� � L����� jG�j � ���� jG�j � ��
e
 is the ��� 
� 
� Hamming code� see Section 
���

fn � If some coordinate positions contain very few codewords� it is often best to regard

these places as containing the free �or empty� component fn � f�ng� In this case we label
the coordinate positions by A� B� C� � � �� and use ABD for example to denote the glue word

������ � � � � Also jG�j � ��
The above components are important in view of the following decomposition theorem for

binary codes with low minimal distance�

Theorem ��� �a� If a self�orthogonal code C has minimal distance 
 then C � ik�
C�� where

C� has minimal distance at least 
� �b� If a self�orthogonal code C is generated by words of

weight 
 then C is a direct sum of copies of the codes d�m �m � ��� e� and e
�

Proof� �a� Suppose C contains a word of weight �� say u � ���� � � � � Then any other word

v � C must meet u evenly� so begins �� � � � or �� � � � � Hence C � B
C� where B � ����� �b� A
set of mutually self�orthogonal words of weight 
 whose supports are linked is easily seen to

be either a d�m for some m � �� or an e� or e
�

Remarks� ��� Suppose C is a self�dual code with minimal distance 
� and let C� be the

subcode generated by words of weight 
� Then C� is as described in part �b� of the theorem�

and C can be regarded as being obtained by gluing C� to some other subcode C�� �the latter

may be the free component fn��

��� Generalizing Part �a� of the theorem� it is easy to show that any self�orthogonal code

over a �eld Fq with length n � � and minimal distance � is decomposable ���
�� Theorem 
��

The following are some additional components that will be used in Table II�

The code g���m �m � �� �� 
� 
� �� �� is obtained by taking the words of the Golay code

g�� that vanish on m digits �and then deleting those digits�� For the �������� �rst�order Reed�

Muller code g�� the � digits must be a special octad� while for g�
 they must be an umbral

hexad �see ���� for terminology�� For � � m � �� g���m is a ��
�m� ���m� �� code�

The ��
������ half�Golay code h�� consists of the Golay codewords that intersect a given

tetrad evenly�

The odd Golay code h��� is the ��
� ��� �� Type I code generated by h�� and an appropriate

��



vector of weight �� Alternatively� the odd Golay code may be obtained as follows� Let v � F ���
be a �xed vector of weight 
� say v � ������ Then h��� � fu � g�� � wt�u � v� evengSfu� v �

u � g��� wt�u � v� oddg� with generator matrix
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

This code has weight enumerator x����
x�
y��
��x��y
�	��x��y�����	�x��y���	��x��y���


��x
y�� � �
x
y�
 � y��� and Aut�h���� is the �sextet group� �
��
�S���� of order ����
��� �

�
��
� ���
��� ���� p� 
�	���

The �rst �� rows of the above matrix generate h��� if the last row is replaced by

� � � � � � � � � � � � � � � � � � � � � � � �

we get the Golay code g�� itself� and if the last row is replaced by

� � � � � � � � � � � � � � � � � � � � � � � �

we get �d���
��

Under the action of Aut�g��� there are two distinct ways to select tetrads t � fc� d� e� fg�
u � fa� b� e� fg� v � fa� b� c� dg so that t � u � v � �� depending on whether fa� b� � � � � fg
is a special hexad or an umbral hexad �see Fig� ��� Correspondingly there are two ��
������

quarter�Golay codes q���� q
�
��� consisting of the codewords of g�� that intersect all of t� u� v evenly�

We refer to ���� and ���� for a description of the glue vectors for these codes�

Our �rst table �Table II� lists all indecomposable binary self�dual codes of length n � ���
together with the indecomposable Type II codes of length �
� using the � notation of ������

For these codes �and for most of those in the following tables� there is only one way to glue

the speci�ed components together without introducing additional minimal�weight words� We

have therefore omitted the glue words from the table� �However� more information about these

codes� including the glue words� will be given in Table VI��

�




Figure �� Two choices for a hexad �special or umbral�� used to de�ne the two ��
� ��� �� quarter�
Golay codes q��� and q

�
���

a b

c d

e f

a b c d e f

Table II� Indecomposable binary self�dual codes of length n � �
 �x indicates a Type II code�
For length �
 only Type II codes are listed��

Length n Components

� i�
� ex

�� d���
�
 e���
�� dx��� d

��



�� �d��e�f��
�� d���

�� d���� �d��d
�
�� �d�
d��

�� �e��d��
�� �d��f��

�� d
��
�� g���� �d��e�f��

�� �d���f��
�� �d��d

�
��

�� �d
e�d�f��
��

�d
d��f��
�� �d��d

�
�f��

�� �d��f
�
� �

�

�
x g��� d
�
��� d

��
�� � �d��e

�
��

�� d��
 � d��� � d���

The next table �Tables III and IV� gives the full list of all �� �decomposable or indecom�

posable� Type II codes of length 
�� This table is taken from ����� and is a corrected version

of the table in ����� The codes are labeled from C� to C�� in the �rst column �using the same

order as in ���� and ������ The second column gives the components �omitting the superscripts

��� to save space��

The third and fourth columns give the orders of the groups G��C� and G��C�� and the

�fth column gives the order of the full group� using ���
�� where jG��C�j is the product of the
orders of the G��Ci� for the components� The latter are given in Table V� The next column

gives A�� the number of codewords of weight 
� The weight enumerator of the code is then

�from Theorem �
�

�x
 � �
x�y� � y
�� � ���� A��x
�y��x� � y����x
 � �
x�y� � y
� �

The last four columns give the number of self�dual codes �the �children�� cf� Chapter xx

�Pless�� of lengths 
�� ��� ��� �
 that arise from the code�

To save space� we have omitted the glue vectors from Tables III and IV� In many cases

�




they are uniquely determined by the components� and in any case they can be found in full in

����� with corrections in �����

The enumeration in Tables III and IV has been subjected to many checks� including the

veri�cation of the mass formula

X �

jAut�C�j �

	��������	�
�
��


�
���
�
�
�
������
��

�in agreement with �
���

Remark� There are just �ve Type II codes of length 
� with minimal distance �� the

quadratic residue code C�� � q��� generated by

���������������������������������� �

the second�order Reed�Muller code C�� � r��� generated by

���������������������������������� �

and the three codes C�
 � g���� � C�
 � f
�� and C�� � f���� � Explicit generator matrices for

the last three are shown in Fig� 
�

Subtraction� Suppose for concreteness that C is a Type I code of length �� with doubly

even subcode C�� Then we obtain a Type II code B �say� of length 
� by gluing C� to d�� as

follows� Write C�� � C� � C� � C� � C�� as in Section �� where C � C� � C�� the shadow of C

is C� � C�� and Ci � ui � C� for i � �� �� 
� Then B is generated by

C�

d�
u� a

u� b

u� c

�����

This is a special case of the following construction� Let C� D be any strictly Type I codes�

of lengths n� and n�� respectively� with C�� � ��i��Ci� D�
� � ��i��Di� Then B � ��i��Ci �Di

is self�dual if n� � n� � � �mod 
�� and is Type II if n� � n� � � �mod ��� The weight

enumerator of B is then
�X

i��

WCi�x� y�WDi
�x� y� �

Several constructions in the literature ��
��� Theorems � and �� ��
�� Theorem 
��� for example�

are special cases of this construction� In ����� we have D � i���

��



In this way any Type I code of length �� leads to a unique �up to equivalence� Type II

code of length 
��

Conversely� all Type I codes of length �� can be obtained by choosing a d� inside a Type

II code of length 
� and inverting the above process�

More generally� suppose B is a Type II code of length n� We choose a copy of D � im� so

that D� � d�m � B� Then we obtain a Type I code of length n � �m by taking the vectors

v such that vw � B for some w � D� We call this process subtraction� Every Type I code

of length n � �m can be obtained in this way by starting with a unique Type II code and

subtracting an appropriate d�m� Of course any Type II code of length n � �m is a direct

summand of some Type II code of any greater length�

Table VI shows all �decomposable or indecomposable� codes of lengths n � �� with minimal
distance d � 
� as obtained by subtracting suitable codes d�m from one of the codes in Tables III
and IV� The second column indicates the parent code in Tables III and IV and the d�m to be

subtracted� The next two columns gives the components� with a x to indicate a Type II code�
and the name �if any� given to this code in ����� or ��
��� The remaining columns give the

orders of the glue groups G� and G�� the weight distribution� and generators for the glue�

Table VII gives the self�dual codes �both Type I and Type II� of length �
 and minimal

distance d � 
�
A complete list of all Type I or Type II self�dual codes of lengths n � �
 can be obtained

by forming direct sums of the codes in Tables VI and VII in all possible ways with the codes

im� �m � �� �� � � ���

There are over ���� self�dual codes of lengths ���
� �see Table I� ����� ������ The highest

minimal distance is �� and there are respectively �� 
 and �
 codes with d � � of lengths ���

�� and 
��

����� Family �	 Enumeration of ternary self�dual codes

Ternary self�dual codes of lengths n � �� �and the maximal self�orthogonal codes of lengths
n � �	� n �� � �mod 
� have been enumerated by Pless ����� and Mallows� Pless and Sloane

��	
� for n � ��� Conway� Pless and Sloane ��
� for n � ��� and Pless� Sloane and Ward ��
��
for n � ��� Leon� Pless and Sloane ���	� give a partial enumeration of the self�dual codes of

length �
� making use of the complete list of Hadamard matrices of order �
� and show that

there are precisely two codes with minimal distance 	 �cf� Table XII below��

��



We will make use of the following components�

e�� ������ glue� 
a� a � ���� If the coordinates are labeled �� �� 
 then G� is generated by

��� �� 
� and ��� �� diagf��������g and has order �� jG�j � ��
t� is the �
� �� 
�� tetracode� and g�� is the ���� �� ��� ternary Golay code� see Section 
���

g�� is the ���� 
� ��� code consisting of the vectors u such that ��u � g��� If x and y are

chosen so that ��x � g��� ��y � g��� then the glue words for g�� can be taken to be 
x� 
y�

x
 y� jG�j � 
��� jG�j � ��

p��� Let Q�� Q�� � � � � Q�� be the points of a projective plane of order 
� labeled so that the

�
 lines are represented by the cyclic shifts t�� t�� � � � � t�� of the vector t� given by

Q� Q� Q� Q� Q� Q
 Q� Q� Q
 Q� Q�� Q�� Q��

� � � � � � � � � � � � �

����	�� p� �	�� ������ The vectors t�� � � � � t�� generate a ��
� �� 
�� code p
�
��� The dual is p��� a

��
� �� ��� self�orthogonal code consisting of the vectors
P��

i�� aiti with ai � F� and
P
ai � ��

and having weight distribution A� � �� A� � ���� A� � 
	
� A�� � ��� G��p��� � PGL��
��

of order ����� jG��p���j � �� The glue words are 
t��
The indecomposable self�dual codes of lengths n � �� are shown in Table VIII� H
 denotes

a suitably normalized version of the Hadamard matrix of order ��

The analogue of Theorem 

 is� any self�orthogonal ternary code generated by words of

weight 
 is a direct sum of copies of e� and t�� A technique for classifying self�orthogonal codes

generated by words of weight � �using �center sets�� is given in ��
���

���
� Family �
H	 Enumeration of Hermitian self�dual codes over F�

These have been classi�ed for lengths n � �� ��
� � see Table IX�

We will make use of the following components�

d�n �n � ��� generated by ������ There are �� cosets of d�n in d��n� and as glue words we
choose �� ��a� ��b� ��c� ��d� ��e� � � f�� �� �g� where

a � ���� � � �����

b � ���� � � �����

c � ���� � � �����

d � ���� � � �����

e � ���� � � �����

��



Also jG�j � �n��n�� jG�j � 
� �n � ��� or �� �n � 
��
e
 � ������� ������� glue� �

��� � � f�� �� �g� G� � A���� of order ��� jG�j � ��
h� is the hexacode� e� � F�� e
 � F� are F��versions of the Hamming codes in Sections 
���

and �n is the �n� �� n�� repetition code�

Remarks� ��� The group orders di�er slightly form those in ��
�� since now we are allowing

conjugation in the group�

��� The dots and double�dots in the glue column indicate multiplication by � or ��� re�

spectively�

�
� The unique distance � code at length �
� q��� is the ��
� �� ��� extended quadratic residue

code generated by

���������������� �

�
� The analogue of Theorem 

 is� �a� any self�orthogonal code with minimal distance �

has i� as a direct summand� �b� any self�orthogonal code generated by words of weight 
 is a

direct sum of copies of d�� d�� d
� � � �� e
� h�� e� and e
�

����� Family �
E	 Enumeration of Euclidean self�dual codes over F�

Although even codes of length up to �
 were classi�ed in ������ the odd codes do not seem

to have been classi�ed�

����� Family �
H�	 Enumeration of trace self�dual additive codes over F�

These have been classi�ed up to length � �and Type II code up to length �� in �
	�� ��

��

The analogue of Theorem 

 is the following� Let dn be the code of length n generated by

all even�weight binary vectors �n � ��� and let i� � ���� ���� Then any trace self�orthogonal

additive code over F� generated by words of weight � is a direct sum of copies of i�� d�� d��

d�� � � ��

d�n �mentioned in Table XIV� is the code of length n� containing �n words� generated by

dn and �� � � ���

����� Family �
Z	 Enumeration of self�dual codes over Z�

These have been classi�ed for lengths up to �� in the following papers� Conway and Sloane

���� for n � 	� Fields� Gaborit� Leon and Pless �	�� for n � ��� and Pless� Leon and Fields

��
�� for Type II codes of length ���

��



In this section we will present enough component codes to state the analogue of Theorem 

�

The smallest self�dual code is i� � f�� �g� If a self�orthogonal code C contains a vector of

the form ���n�� then C � i� 
 C� is decomposable� The next�simplest possible vectors are

�tetrads�� of type 
���n��� We list a number of self�orthogonal codes that are generated by
tetrads� t denotes the total number of tetrads in the code�

The �rst four codes have the property that the associated binary code C��	 is the self�dual

code d�m of ������

D�m �m � �� is generated by the tetrads ���
� � � ��� �����
� � � ��� � � � � � � � �����
� jD�mj �

m��� jAut�D�m�j � ��
� �m � �� or ����m �m � ��� t � ��m � ��� D��m�D�m is a group of

type 
� with generators v� � ���� � � ���� v� � �� � � ������

DO
�m �m � �� is generated by D�m and the tetrad �
�� � � ����� �or equivalently the vector

���� � � ����� jDO
�mj � 
m���� jAut�DO

�m�j � ���� �m � �� or ���m����m �m � ��� t � �m�

�DO
�m�

��DO
�m is a cyclic group of order 
 generated by v� �if m is odd�� or a 
�group generated

by v� and �v� �if m is even��

D�
�m �m � �� but note that D�

� � DO
� � is generated by D�m and �v�� jD�

�mj � 
m����

jAut�D�
�m�j � �m��m��� t � 
�m� ��� �D�

�m�
��D�

�m is a 
�group generated by �v� and v��

D
�m �m � �� is the self�dual code generated byDO
�m andD�

�m� jD
�mj � 
m����� jAut�D
�m�j �
���
� �m � �� or �m��m��m �m � ��� t � 
m� For use in ����� we note that there are two

permutation�inequivalent versions of D
� � with generator matrices

�a�

�
� � � � �
� � � �
� � � �

�
� � �b�

�
� � 
 
 

� � � �
� � � �

�
� � �����

D
� �in either version� has swe � x� � �x�z� � z� � �y��

E� is generated by ���
���� �����
�� ������
� jE�j � 
�� jAut�E��j � ��
�� t � �� E�� �E� is
a cyclic group of order 
 generated by 
�������

E�� is the self�dual code generated by E� and ������� �or equivalently by all cyclic shifts of

�������� jE�� j � 
��� jAut�E�� �j � ������ t � �
� swe � x� � z� � �
y��x� � z�� ��x�z��x �

z� � 
�xy�z�x� z�� For both E� and E�� the associated binary code C��	 is the Hamming code

e��

E
 is the self�dual code generated by �u� u � E� and 
�������� An equivalent generator
matrix has already been given in �
��� jE
j � 
�� g � ����
� � 
�
� t � ��� swe � x
 � ��y
 �

z
 � ��y��x� � z�� � �
x�z�� 
�xy�z�x� � z�� �	�x�y�z��

�	



Theorem ��� Any self�orthogonal code over Z� generated by vectors of the form 
���n�� is

equivalent to a direct sum of copies of the codes

D�m� DO
�m� D�

�m� D
�m�m � �� �� � � ��� E�� E�� � E
 �

The �somewhat complicated� inclusions between the codes mentioned in the theorem can

be seen in Fig� � of �����

��� Extremal and optimal self�dual codes

Recall from Section 	 that we have de�ned a self�dual code from any of the families � through

qE to be extremal if it meets the strongest of the applicable bounds from Theorems ��� 
� and



� that is� if its minimal distance d is equal to

��I� 

%
n
��

&
� 
 � �� where � � �� if n � �� 
 or �� � � � if n � �� �mod �
�� and � � �

otherwise�

��II� 

%
n
��

&
� 
�

�
� 

%
n
��

&
� 
�

�
H� �
%n
�

&
� ��

�
E�
%
n
�

&
� ��

�
H�I � �
%
n
�

&
� �� ��� where �� � �� if n � �� �� � � if n � � �mod ��� and �� � � otherwise�

�
H�II � �
%n
�

&
� ��

�qH�� �qE�
%
n
�

&
� ��

We also de�ned a code over Z� to be norm�extremal if its minimal norm is

�
Z� �
% n
��

&
� � � ���

where ��� � 
 if n � �
 �mod 
�� ��� � � otherwise�
It is very likely �although we do not have a proof� that the above bounds for families �

through qE are the highest minimal distance that is permitted by the pure linear programming

bound applied to the Hamming weight enumerator and �when relevant� the shadow enumerator�

In contrast� we call a code optimal if it has the highest minimal distance of any self�dual

code of that length� An extremal code is automatically optimal�

In this section we will summarize what is presently known about extremal and optimal

codes in the families we are considering� Earlier summaries of extremal codes and lattices have

appeared in Chapter � of ����� ��
��� In the tables we have tried to list all known codes with

the speci�ed minimal distance �a period indicating that the list is complete�� or else to indicate

	�



how many extremal codes are known� Whenever possible we have attempted to name at least

one extremal code�

����� Family �	 Binary codes

Type I codes meeting the d � ��n��� � � bound of Theorem �� �the old de�nition of

extremal� were completely classi�ed by Ward �
��� ��nishing the work begun in ��	��� ������

��
���� such codes exist if and only if n is � �i��� 
 �i
�
��� � �i

�
��� � �e
�� �� �d

�
���� �
 �e

��
� �� �� �g

�
���

or �
 �g��� � compare Tables II and VI� In each case the code is unique�

However� there are many more Type I codes that are extremal in the new sense� and they

have not yet been fully classi�ed� It is known �Theorem �	� that extremal Type II codes do

not exist for lengths � 
	�� and presumably a similar bound applies to extremal Type I codes�
Table X shows the highest possible minimal distance for binary self�dual codes of lengths

n � ��� This is based on earlier tables in Fig� �	�� of ���	�� ��	� and ��
�� In the table dI �resp�
dII� denotes the highest minimal distance of any strictly Type I �resp� Type II� self�dual code�

Remarks on Table X

The fourth column of the table gives the known codes having the indicated minimal dis�

tance� As mentioned above� a period indicates that the lists of codes is complete� �The

enumeration for lengths n � 
� has already been discussed in Section ���
�� When n is a

multiple of � a semicolon separates the Type I and Type II codes�

In the years since the manuscript of ��	� was �rst circulated� a large number of sequels

have been written� supplying additional examples of self�dual codes in the range of Table X�

The bibliography includes all the manuscripts known to us� even though inevitably not all of

them will be published� It was not possible to mention all these references in the table� so

instead we list them here� This list also includes a number of older papers� Readers interested

in extremal self�dual codes� especially of Type I� in the range of the table should therefore

consult the following� �
��� �
��� �
	�� �
��� �
��� �
��� �

�� ����� ��
�� ��
�� ����� ����� ����� ������

������ ���	�� ������ ������ ���
�� ������ ������ ������ ������ ���	�� ������ ������ ��
��� ��
��� ������

������ ������ ������ ������ ������ ������ ��

�� ��
��� ��
��� ������ ������ ������ �
�
�� �
���� �
����

�
�	�� �
���� �
���� �

��� �

��� �


�� �


�� �

��� �

���

Note that if we don�t distinguish between Type I and Type II codes� but just ask what

is the highest minimal distance of a binary self�dual code� then the answer is known for all

	�



n � ���
The symbol XQm in any of these tables indicates an extended quadratic residue code of

length m��� Both quadratic residue codes and double circulant codes provide many examples

of good self�dual codes �cf� Section �� of Chapter �� Chapter xx �Ward�� Chapter yy �Pless��

���	� Chapter ����� There are two basic types of binary double circulant codes� having generator

matrices of the form
� � � � � �
� �
� � R

� �
� �

�����

or
�
�
� R
�
�

� ���	�

where R is a circulant matrix with �rst row r �say�� ����� is used only when the length is a

multiple of 
� Such codes and their generalizations to other �elds have been studied by many

authors� including ����� ����� ������������ ��
��� ������ ������ ������ ������ ���	� Chap� ���� ��
���

������ �
���� �
���� �

����


�� Table XI� based on ��	� and ���
�� gives a selection of double

circulant binary codes� Code H�� �from ��
�� is the shortest Type I self�dual code presently

known with d � ��� The �rst column gives the name of the codes� following ��	�� and the last

column gives r� the initial row of R� in hexadecimal� The codes marked ��� are not necessarily
optimal� The minimal distance of the last two codes in the table was determined by Moore

������ ���
�� For these two codes r has ��s at the squares modulo 

 and ��� respectively� Moore

remarked that the analogous code of length ���might also have been extremal� However� Aaron

Gulliver �personal communication� Nov� �		�� has shown that the minimal distance of this

code is at most ���

We see from Table X that there are extremal Type I codes �in the new sense� that are not

also Type II codes at lengths

�� 
� �� ��� �
� ��� ��� ��� ��� 
�� 
�� 
�� 
�� 
�� 

� 
�� ��� �
� ��� ��

that such codes do not exist at length

�� ��� �
� ��� ��� 
�� 

� 
�� ��� ��� �
� �� �����

	�



and that their existence at lengths

��� ��� ��� �� �����

is at present an open question� The nonexistence of the Type I codes of lengths in ����� is

established by imposing the extra condition that the shadow enumerator must have integral

coe!cients�

Concerning extremal Type II codes� with d � 
�n��
� � 
� these exist for the following

values of n�

�� ��� �
� 
�� 
�� 
�� ��� �
� ��� ��� ��
� �
�

but their existence at lengths �� and 	� and all greater lengths is open� For lengths �� �
� 
��


�� �� and ��
 we can use extended quadratic residue codes� and for lengths 
�� ��� �
� ���

�
� we can use double circulant codes �see Table XI��

Only one �
�� �
� ��� code is presently known� XQ��� which is generated by � and

��������������������������������������������������

�with ��s at the nonzero squares modulo 
��� Hu�man ��
�� has shown that any Type II

�
�� �
� ��� code with a nontrivial automorphism of odd order is equivalent toXQ��� Houghten�

Lam and Thiel �cf� ��
��� are attempting to establish by direct search that XQ�� is unique�

As Table X shows� if n � 
� is congruent to � or �� �mod �
� there are often large numbers
of extremal codes� It is easy to �nd ���� 
�� ��� Type II codes� for example XQ��� ��
� shows

that there are at least 

 inequivalent codes with these parameters�

Concerning the existence of self�dual codes with a speci�ed minimal distance� the following

results were established in ��	�� Self�dual codes with minimal distance

d � � exist precisely for n � ���
d � � exist precisely for n � �
� 
�� and n � 
��
d � �� exist precisely for n � 
��
d � �� exist� for n � 
�� ��� �� and n � �
� perhaps for n � ��� and do not exist for all

other values of n� �As pointed out in ��	�� the ���� �	� ��� self�dual code claimed in ���� is an

error��

Dougherty� Gulliver and Harada ��
�� extending work in ��	�� show that codes with

	The existence of a ���� 	
� ��� was not known when ���� was written� but such a code was later found by
Scharlau and Schomaker ���
��

	




d � �
 exist for n � ��� perhaps for n � ��� ��� �
� ��� and do not exist for all other values
of n�

d � �� exist for n � ��� ��� ��� 	�� ������
� ��� and n � ��� �and possibly for other values
of n��

����� Family �	 Ternary codes

Table XII shows the highest possible minimal distance for ternary self�dual codes of lengths

n � ���

Remarks on Table XII

For the entries at lengths n � �
� see the discussion in Section ���
�
Extremal codes exist at lengths 
� �� ��� ��� ��� �
� ��� 
�� 
�� 
�� 

� 
�� ��� �� and �
�

Extremal codes do not exist at lengths ��� 	�� ��� and all n � �

� because then the extremal
Hamming weight enumerator contains a negative coe!cient� The existence of extremal codes

in the remaining cases �n � ��� ��� ��� � � �� �
�� is undecided�

In Table XII� XQn denotes an extended quadratic residue code of length n� �� and S�n�

denotes a Pless double circulant �or �symmetry�� code of length n �see Section � of Chapter

�coding�constructions�� ����� ��	�� ��	
�� ������ ���	��� A ���� �
� 	�� code was discovered by

Cheng and R� Scharlau ����� Another such code was given by Kschischang and Pasupathy

���
�� namely the negacyclic code generated by the polynomial �x��x� ���x��x��x��x��
���x� � x
 � x� ��� i�e� by the vectors

������������������������������� �

where the subscript � indicates that the code is negacyclic� Hu�man ��
�� shows that there

are at least �
 inequivalent ���� �
� 	�� codes with nontrivial automorphisms of odd order�

Ward �
��� and Dawson ���� independently discovered that �
�� ��� ���� codes can be con�

structed using generator matrices of the form �I��H���� where H�� is a Hadamard matrix of

order ��� There are three distinct Hadamard matrices of this order� and Dawson shows that all

three produce �
�� ��� ���� codes� Harada ���
� shows that these three codes are inequivalent�

Dawson also shows that the same construction using the Paley�Hadamard matrix of order 
�

leads to a ��
� 
�� ���� self�dual code� A ��
� 
�� ���� code B�� �equivalent to Dawson�s� had

been constructed earlier by Beenker �����

	




The codes of length 
�� 

� ��� �� and �� can be obtained by �subtracting� �see Section ���
�

a copy of t� from a code of length 
 greater�

Other constructions for ternary self�dual codes can be found in Harada ���
� and Ozeki

���
��

����� Family �
H	 Hermitian self�dual codes over F�

Table XIII shows the highest possible minimal distance for Hermitian self�dual codes over

F� of lengths n � 
��

Remarks on Table XIII

A period in the �Codes� column indicates that the list is complete�

For the entries at lengths n � ��� see the discussion in Section �����
Extremal codes exist at lengths �� 
� �� �� ��� �
� ��� ��� ��� ��� �� and 
�� They do not

exist at lengths ��� �
� ���� ���� ��
� ���� ��� and all n � ��� �the larger n being eliminated
by the presence of negative coe!cients in the extremal Hamming weight enumerator�� The

remaining lengths ���� 
�� 

� � � �� are undecided�

The ���� 	� ��� code S�
 generated by

��������������������

has a number of interesting properties �see ������ ����� ��	�� ��

��� It has automorphism group


� �PSL������
�� of order 
�	�� ��	� and is the unique ���� 	� ��� code ��
���

The long�standing question of the existence of a ��
� ��� ���� code was settled in the negative

by Lam and Pless ����� �see also ��
���� The code g��� F� is an example of a ��
� ��� ��� code�

����� Family �
H�	 Additive self�dual codes over F�

Table XIV� taken from �
	�� shows the highest possible minimal distance for additive codes

over F� of lengths n � 
� that are self�dual with respect to the trace inner product�

Remarks on Table XIV

A period in the �Codes� column indicates that the list is complete�

Extremal Type I codes exist at lengths ���� ����� �
���� ����� and ���
�� and do not exist

at lengths �� �
 and ��� Lengths �	� �
� �
� ��� �� are undecided�

	�



Many of the entries are copied from the table of Hermitian self�dual codes� Table XIII� The

codes d�n are de�ned in Section ����� h� is the hexacode� and h
 is the ��� ���� 
��� shortened

hexacode� generated by �������� with weight enumerator x
 � ��x�y� � ��xy� � �y
 and

jAut�h
�j � ���� Also� c�� c�
� c��� c��� c�
 are cyclic codes with generators shown in Table XV�
If no name is given� the code can be obtained by shortening a code of length one greater�

���
� Family �
Z	 Self�dual codes over Z�

Table XVI gives the highest possible Hamming distance� Lee distance and Euclidean norm

for codes overZ� of lengths n � �
� This is based on ����� ����� �	��� ��
��� ��
�� and ���
�� The
columns headed ( give the number of extremal codes�

Remarks on Table XVI

The length �� code C�� is given in ��
��� where it is called � f�� It has jAut�C���j �
�
���
���� and generator matrix�
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�
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The codes C�� and C�
 mentioned in the table have generator matrices�
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and automorphism groups of orders ��� and �

� respectively�

G�� was de�ned in �
��� and G�� through G�� are shortened versions of it�

Besides the norm�extremal codes of length �� ��� �
��
 shown in the table� there are also

norm�extremal codes of lengths 
� and 
� obtained by lifting binary extended quadratic residue

codes to Z�� The code of length 
� has minimal Lee weight �
 and minimal norm ��� Pless

and Qian ��
�� have shown that the code of length 
� has minimal Lee weight �� and minimal

norm �
�

Further examples of good self�dual codes overZ� may be found in ����� ��
�� ����� ����� �����

������ ������ ������ ���
�� ��
��� ��
��� ��

�� ���
��

��� Further topics

����� Decoding self�dual codes

The problem of decoding self�dual codes is an extremely important one for applications�

but we will not discuss it here� Decoding the binary Golay code� in particular� has been studied

in many papers � see ���� ����� ����� ���� Chapter ���� ��
��� ��
��� ������ ��	��� �
�
�� �
���� See

also ������ �
�
�� and Section � of Chapter �codes�and�groups��

����� Applications to projective planes

There is a very nice application of self�dual codes to projective planes� If n is congruent to �

�mod 
� then the incidence matrix of a projective plane of order n generates a self�orthogonal

code Cn� which when an overall parity�check is added becomes an �n
��n��� ���n

��n���� n���

Type II self�dual binary code �see �
�� ��	�� or Chapter �assmus� for the proof��

It was a famous unsolved problem to decide if a projective plane of order �� could exist�

The weight enumerator of C�� was initially studied in ��	�� �see also ��	���� Finally� after

	�



many years of work� Lam� Thiel and Swiercz ����� �see also ���
�� succeeded in completing this

project and showed that C�� �and hence the putative plane of order ��� does not exist�

The possibility of the existence of a plane of order �� �or ��� but then we do not obtain a

self�dual code� remains an open question�

����� Automorphism groups of self�dual codes

Various topics concerning the automorphism groups of self�dual codes are discussed in

chapter �codes�and�groups�� e�g� the full automorphism groups of extended quadratic residue

codes� the occurrence of self�dual codes with a trivial group �see �
	�� ��	�� ������ ���	�� ������

�
�
��� and the existence of self�dual codes with any prescribed symmetry group ��������

����� Open problems

Do there exist ���� 
�� ��� or �	�� 
�� ��� Type II self�dual binary codes% �Cf� ��
�� �	
�� ������

��

�� �������

Fill in the other gaps in Tables X� XII� XIII� No extremal Hermitian self�dual codes over

F� of any length greater than 
� are presently known�

There is an interesting open question concerning self�dual codes of length �
� There exists

a unique ��
� ��� �� binary code� exactly two ��
� ��� 	�� ternary codes� and no ��
� ��� ����

Hermitian or Euclidean self�dual code over F� �������� But the possibility of an additive trace�

self�dual code of length �
 over F� with minimal distance �� remains open �see Table XIV��

From Theorem 

� if such a code exists then it must be even� However� all our attempts so far

to construct this code have failed� so it may not exist�

When is the �rst time a Type I binary code has a higher minimal distance than the best

Type II code of the same length% �No such example is presently known��

In this regard it is worth mentioning that there is a �
�� ��� �� binary code ����� which has

the same minimal distance as the best self�dual codes of length 
�� yet contains twice as many

codewords� There are similar examples in the ternary case � see Chapter �Brouwer��

The Nordstrom�Robinson code �see Chapter �� is an example of a nonlinear code that has a

higher minimal distance than any self�dual �or even linear� code of the same length� However�

as mentioned in Section 
��� the Nordstrom�Robinson code should really be regarded as a self�

dual linear code over Z� �the octacode o
�� When is the �rst time a non�self�dual �n� n��� d�

binary linear code has a higher minimal distance than any �n� n��� d�� self�dual code% This

	�



certainly happens at length 
�� but may happen at length 
� or 
��

Is there any di�erence asymptotically� as n � �� between d�n for the best binary codes�
the best binary linear codes and the best binary self�dual codes%

Let ,n denote the collection of binary self�dual codes that have the highest possible minimal

distance at length n� and let Ln� Un be respectively the smallest and largest orders of Aut�C��

C � ,n� When �if ever� is the �rst time that Ln � Un � �% Is there an in�nite sequence of

values of n with Un � �% Show that Ln � � for all su!ciently large n�

��� Self�dual codes and lattices

There are many connections and parallels between self�dual codes and lattice sphere pack�

ings� Our original intention was to end the chapter with an account of these connections� but

constraints of space and time have not permitted this� Instead� we give a brief list of some

of the parallels� to whet the reader�s appetite� For more information about the relationship

between the two �elds� see �
��� �

�� �	��� �	��� �	��� ���
�� ���
�� ����� and especially ����� ��
��

Coding concept Lattice concept

Binary linear code Lattice
Dual code Dual lattice
Self�orthogonal code Integral lattice
Self�dual code Unimodular lattice
Doubly�even self�dual code Even unimodular lattice
Hamming code e
 Root lattice E
 ������ p� ����
Hexacode h� Coxeter�Todd lattices K�� ������ p� ����
Binary Golay code g�� Leech lattice +�� ������ p� �
��
Minimal distance Minimal norm
Number of minimal weight words Kissing number
Weight enumerator W �x� y� Theta series
MacWilliams identity �Eq� �

�� Jacobi identity ������ p� ��
�
�weight enumerator of dual code in terms �theta series of dual lattice in terms
of weight enumerator of code� of theta series of lattice�

Gleason�s theorem �Theorem ��� Hecke�s theorem ������ p� ����
�weight enumerator of doubly�even �theta series of even unimodular
code is polynomial in weight enumerators lattice is polynomial in theta series
of e
 and g��� of E
 and +���

The similarity between the theorems of Gleason and Hecke is particularly striking� and we

will end the chapter by saying a little more about this� Suppose C is a binary code of length

n� Construction A produces an n�dimensional sphere packing +�C�� consisting of the points

�p
�
x for x � Zn� x �mod �� � C� If C is linear� +�C� is a lattice� if C is self�dual� +�C� is

unimodular� and if C is Type II� +�C� is an even unimodular lattice�

		



If C is a linear code with weight enumeratorWC�x� y�� then WC�����z�� ����z�� is the theta

series of +�C�� where

���z� �
	X

m��	
qm

�

� ���z� �
	X

m��	
q�m����	� �

where q � e�iz � Im�z� � �� This map gives an isomorphism between �a� the ring of weight

enumerators of Type I self�dual codes� C �	� � �
� �see Eq� 	��� and the ring of theta series of

even�dimensional unimodular lattices� C ���� �#
�� where

#
 � q
	Y

m��

f��� q�m������ q�m�g
 �

and �b� the ring of weight enumerators of Type II self�dual codes� C �	
 � 	
�
��� �Theorem �
��

and the ring of theta series of even unimodular lattices� C �-E�
�#���� where

-E�
�z� � � � �
�

	X
m��

���m�q
�m �

#�� � q�
	Y

m��

��� q�m��� �

and ���m� is the sum of the cubes of the divisors of m� For further information see ����

Chapter ���

The bibliography also contains a number of references that are concerned with particular

constructions of lattices from self�dual codes� or of properties of lattices that are analogous to

properties of self�dual codes mentioned in this chapter� ���� �	�� ����� ��
�� ����� ����� ����� �����

����� ����� ����� ������ ������ ������ ������ ���
�� ��	��� ������ ���	�� ������ ������ ���
�� ������ ������
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Table III� Doubly�even self�dual �or Type II� binary codes of length 
� �Part ��

Code Components jG�j jG�j jGj A� n�� n�
 n�� n��
C� d�� � � ���
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Table IV� Doubly�even self�dual �or Type II� binary codes of length 
� �Part ��

Code Components jG�j jG�j jGj A� n�� n�
 n�� n��
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Table V� The groups G� for the components mentioned in Tables II� III and IV�

Component G� jG�j
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Figure 
� Generator matrices for the �
�� ��� �� Type II codes C�
 � g���� � C�
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Table VI�

Binary self�dual codes with n � ��� d � 

n Code Compts� Name jG�j jG�j A� A� A
 A�� A�� Generators for glue

� C��d��� i� � � � �
� C��d��� e
 A
 � � �
 � � �
�� C
�d��� d�� B�� � � �� 
� �� � � a

�
 C
�d�
� e�� D�� � � �
 
	 
	 �
 � dd
�� C��d��� d�� E�� � � �� � �	� � �� a

C��d��� e�
 A
 
 A
 � � �� � �	� � �� �
C��d��� d�
 F�� � � �� �
 ��� �
 �� �ab�

�� C��d��� d��e�f� I�
 � � �� �� ��� ��� �� aoA� cd�
C	�d��� d�� H�
 � � 	 �� ��� ��� �� �abc�� bbb

�� C
�d��� d�� J�� � � 
� � ��� ��� ��� a
C���d��� d��e
 A
 
 B�� � � �	 
� ��� 

� ��� a�
C���d��� d��d
 K�� � � �� 
� �

 
�� �

 �ab�
C���d��� d�
d� S�� � � �
 �
 �
� 
�
 �
� �ab�x� bby
C�
�d��� e��d� L�� � � �� �� �
� 
�� �
� doa� ddb

C�
�d��� d��f� R�� � � 	 �� �
� 
�� �
� aaaA� cccB� �abc��
C���d��� d
� M�� � ��� � �� ��� 
�� ��� �ooxyx�

�� C��d��� d��e�f� N�� � � �� 
	 �
� ��� ��� aoA� bdA
C���d��� d���f� P�� � � �� �� ��� ��� ��� �ao��� cc�
C���d��� d��d

�
� Q�� � � �� �� ��� ��
 ��
 aoc� oaa� bbb

C���d��� e
e
�
� E
 
D�� � � �� 
	 �
� ��� ��� �dd

C�	�d��� d
e�d�f� R�� � � �� �� ��� ��
 ��
 odbA� boaA� aob�
C���d��� d
d

�
�f� S�� � � �� �� �	
 ��� ��� baoA� aooAB� abb��

occ�
C���d��� d��d

�
�f� T�� � 
 � �	 
�� �
� �
� aoxoA� ooyyAB�

aayo�� bozx�� obxz�
C���d��� d��f� U�� � �
 
 �
 
�� ��� ��� oxyzBC� ozxyAC�

ooxxAE� oyoyAD�
ozzoAF� xxxx��
yyyy�

C�
�d��� g�� G�� � � � �� 

� ��� ��� the all�ones vector
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Table VII�

Binary self�dual codes with length �
 and d � 

Code Components Name d Code Components Name d

C��e
� d�� x E�� 
 C
��d
� d
e
�
�f� J�� 


C��e
� d��e
 x � 
 C

�d
� d
d
�
�f� R�� 


C��d
� d��d
 H�� 
 C

�d
� d
d
�
� T�� 


C���e
� d��� x A�� 
 C
��d
� e�d
�
�d�f� P�� 


C���d
� d��� � 
 C���e
� d�� x D�� 

C���d
� d��d
d� I�� 
 C
��d
� d�� Q�� 

C���e
� d��e

�
� x B�� 
 C
��d
� d��d�d�f� S�� 


C�	�d
� d��e�d�f� K�� 
 C
��d
� d��d
�
�f� U�� 


C���d
� d��d
�
�f� N�� 
 C
	�d
� d�d

�
�f� W�� 


C�
�e
� e�
 x � 
 C���e
� d�� x F�� 

C���d
� e
d

�

 � 
 C
��d
� d�� V�� 


C���e
� d�
 x C�� 
 C
��d
� d��f
 X�� 

C�	�d
� d�
 L�� 
 C
��d
� d��g�� Y�� 

C
��d
� d�
 M�� 
 C

�d
� h�� Z�� �
C
��d
� d�
d

�
� O�� 
 C���e
� g�� x G�� �

Table VIII� Indecomposable ternary self�dual codes of lengths n � ��

n Components jG�j jG�j jG�j d glue
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� � � 
 �
� �
�� e��� �� � �
 
 aaa�� �.aaa

g�� �	���� � � � �
�� �e��f��
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� ���
�� 
 � 
 a�x� �ay
�e�p���� ������ � � 
 at�
f��
 �� ������ � � �I jH
�

�� �� codes
� see ��
��

���



Table IX� Indecomposable Hermitian self�dual codes over F� of lengths n � ��

n Components jG�j jG�j jG�j d Glue

� i� �� � � � �

 � � � � � �
� h� ���� � � 
 �
� e
 ���
 � � 
 �
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 d
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 ��
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�e�e
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 ��
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� � � 
 �bd�
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� �
 � 
 ��de�
�
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 d

e��� ���� � � 
 ��
�d
e
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��� � � 
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�e�
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 ��d� ��e
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� � � 
 ab� bd
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 �d����� bb��

�d�d���
� 
���
� �� � 
 bbb� a�d� cd�

�d��f��
� 
� � � 
 aa���� �aa��� /b*b���� �/b*b��

�d�����
� 
� ��� � 
 b�������� a��������

�b������� �a������
q�� ���� � � � �

�� 
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�see ��
��
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Table X� Highest minimal distance of binary self�dual codes

n dI dII Codes

� � i��

 � i���
� � i���
� � 
 i��� e
�
�� � i
�� e
i��
�� 
 d����
�
 
 e��� �

�� 
 
 d��
 � d
�
��� e

�

�

�� 
 d��� � �d��e�f��
��

�� 
 � codes �Table II��
�� � g���
�
 � � h���� g���
�� � f��� �����
�� � 
 codes �����

� � �
 codes ����� �����

� � � 
 codes ��	�� � codes �Table III��


 � � ���

� � � �

� � � 
 ��	�� �����

� � � � ��� � ���� �see text for references�

� � � 
� ��
�


 � � ��� ��
�

� �� � � ��	�

� �� �� � �� � � �XQ���
�� �� � �
�� �� � 
		 �����
�
 �� � �

�� �� or �� �� %� � ���
�� �� � �� ��
�
�� �� � �
�� �� or �� %
�
 �� �� � �� � 
��� ��
�
�� �� � 

�� �� � ��
�� �� or �
 % ������ �����
�� �� or �
 �� or �� %� %

���



Table XI� Double circulant binary codes

Name n k d Type Form r �hexadecimal�

g�� �� �� � I ���	� 	�
g�� �
 �� � II ����� B�

A�� � f���� �� �
 � I ���	� �F�
A�
 �D� �� �
 � I ����� �D
D� 

 �� � I ���	� �ECE
D
 
� �� � I ����� �C�B
D
 
� �	 � I ���	� ��	

D� 
� �� � II ���	� ��EB
D� 
� �� � I ���	� ��E
�
D� 
� �� � I ���	� B
	

D� 

 �� � I ����� �E�B�
D	 �� �� �� I ���	� 
�C
D
D�� �� �� �� I ����� ��F�	D
D�� �� �� �� II ����� ADF�FF
D�� �� �	 �� I ���	� D�A�	B
D��a �� �	 �� I ���	� �DD�D

D�
 �� 
� �� I ����� 
EF�B��
D�
 �
 
� �� II ����� 
��BD�B
D�� �
 
� �� I ���	� �EF
DD��
D�� �� 

 �� I ���	� B�D	�D	
D�� �� 

 �� I ���	� �F�C���F
D��� �� 
� �� I ���	� �B��	�E�
D�	� �
 
� �� I ���	� �

	
��C�
D��� �� 
� �� I ���	� A
�
B	�	B
H�� �� 

 �� I ���	� �F�������E�
M�� �� 

 �� II �����
M�
� �
� �� �
 II �����

��	



Table XII� Highest minimal distance of ternary self�dual codes

n d Codes


 
 t��
� 
 t���
�� � g���

�� � f��
 �
�� � � codes ��
���
�
 	 XQ��� S��
� ���	��
�� 	 � 
� ����� ���
�� ���
�� ��
��

� 	 � �
	 ��
��

� �� � � �S�
���

� �� � �� �
���� ����� ���
�� ��
��


 �� � � ���
�

� �� � � �XQ��� S�
���
�� �� or �� %
�� �� � �
�� �� � � �XQ
�� S�����
�
 �� � � ����� ����
�� �� or �� %
�� �� � � �XQ����
��

Table XIII� Highest minimal distance of Hermitian self�dual codes over F�

n d Codes

� � i��

 � i���
� 
 h��
� 
 e
�
�� 
 d���� e

��

 �

�� 
 � codes �Table IX��
�
 � q���
�� � 
 codes ��
��
�� � S�
 ��
���
�� � � codes ��
���
�� � � 
� codes ��
��� ��

�
�
 � � � code
�� � or �� %
�� �� � 
 codes ��
��� ��

�

� �� XQ�� �����

� % %

���



Table XIV� Highest minimal distance of additive self�dual codes over F�

n d Codes n d Codes

� � i�� �� � � 
 codes ��
�
� � i�� �� �

 � d�� � �� � S�


 � 
 codes� �	 �
� 
 h
� �� � � � codes ��
��
� 
 h�� �� � c��
� 
 �� � � 
� codes ��
��
� 
 e
 �
 ��	 c��
	 
 c� �
 ���� g�� � F�
�� 
 d��� � e

��

 �� ��	 c�


�� � �� ����
�� � z��� �� 	���
�
 � �� ��
�
 � q�� �	 ��
�� � c�
 
� �� XQ��

Table XV� Generators for cyclic additive codes over F�

c� �����������
c�
 �����������������
c�� ������������������������ �����������������������
c�� �������������������������
c�
 ���������������������������

���



Table XVI� Highest Hamming distance �dH�� Lee distance �dL� and Euclidean norm �Norm�
of self�dual codes over Z�

Length Hamming Lee Norm
n dH code ( dL code ( Norm code (
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