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ABSTRACT

A survey of self�dual codes� written for the Handbook of Coding Theory�

Self�dual codes are important because many of the best codes known are of this type and
they have a rich mathematical theory� Topics covered in this chapter include codes over F�� F��
F�� Fq � Z�� Zm� shadow codes� weight enumerators� Gleason�Pierce theorem� invariant theory�
Gleason theorems� bounds� mass formulae� enumeration� extremal codes� open problems� There
is a comprehensive bibliography�
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�� Self�dual codes over rings and �elds

���� Inner products

There are several di�erent kinds of self�dual codes� Let F be a �nite set called the alphabet

�e�g� F � f�� �g for binary codes�� A code C over F of length n is any subset of Fn � If F has the

structure of an additive group then C is additive if it is an additive subgroup of Fn � If F has a

ring structure then C is linear over F if it is additive and also closed under multiplication by

elements of F� �We will always assume that multiplication in F is commutative��

In order to de�ne dual codes we must equip F with an inner product �cf� ������ ������� We

denote this by � � � and require that it satisfy the following conditions�

�x� y� z� � �x� z� � �y� z� �
�x� y � z� � �x� y� � �x� z� �
if �x� y� � � for all x then y � � �
if �x� y� � � for all y then x � � �

To de�ne the dual of a linear code we impose the further condition that F has a conjugacy

operation� or �involutory anti�automorphism� �which may be the identity�� denoted by a bar�

which satis�es

x � x� x� y � x� y� xy � x y �

The inner product must then satisfy

�x� y� � �y� x�� �ax� y� � �x� ay� �

The inner product of vectors x � �x�� � � � � xn�� y � �y�� � � � � yn� in F
n is de�ned by

�x� y� �
nX
i��

�xi� yi� �

���� Families of self�dual codes

Families ��� through �mZ� include the most important families of codes we will consider in

this chapter�

��� Binary linear codes� F � F� � f�� �g� with inner product �x� y� � xy� C � subspace of Fn� �

�
� Ternary linear codes� F � F� � f�� �� �g� �x� y� � xy� C � subspace of Fn� �



�
H� Quaternary linear codes� F � F� � f�� �� �� ��g� where �� � � � � � �� �� � �� x � x�

for x � F�� with the Hermitian inner product �x� y� � xy� C � subspace of Fn� � Note that for

x� y � F�� �x� y�� � x� � y�� x� � x�

�
E� Quaternary linear codes� F � F�� but with the Euclidean inner product �x� y� � xy�

�
H�� Quaternary additive codes� F � F�� with �x� y� � xy�� x�y � trace�xy� �the trace from

F� to F��� C � additive subgroup of F
n
� �

For completeness we should also mention family 
E�� quaternary additive codes with the

Euclidean trace inner product� F � F� � with �x� y� � xy � �xy�� � trace�xy� �the trace from

F� to F��� C � additive subgroup of F
n
� � However� the map

x � �x� � �x� � Fn� � x�x� � F �n�

shows that these codes are equivalent to binary codes from family � with a particular pairing

of the coordinates� Since we don�t know any interesting examples of this family other than

linear codes� we shall say no more about them�

�qH� Linear codes over Fq �or q�ary linear codes�� where q is an even power of an arbitrary

prime p� with x � x
p
q for x � Fq � �x� y� � xy� C � subspace of Fnq � Note that for x� y � Fq �

�x� y�
p
q � x

p
q � y

p
q� xq � x�

�qE� Linear codes over Fq � but with �x� y� � xy� If q is a square� family qH is generally preferred

to qE�

�
Z� Z��linear codes� F � Z� � f�� �� �� 
g� with �x� y� � xy �mod 
�� C � linear subspace� of

Zn��

�mZ� F � Zm � Z�mZ� where m is an integer � �� with �x� y� � xy �mod m�� C � linear

subspace� of Znm�

Note that for the families �� 
� 
Z� mZ� an additive code is automatically linear�

The following families are less important for our present purposes�

�F�� Linear codes over Fq �u���u��� where u is an indeterminate� with u � �u� �x� y� � xy�

�References ��� and ����� consider such codes� as well as a noncommutative variant��

�F�� Additive codes over F�� with �x� y� � xy�

If we relax the requirement that F be commutative and �nite� we can add�

�F
� Linear codes over the p�adic integers�

�F
� Codes over Frobenius rings�

�Strictly speaking� a Z��submodule�
�Strictly speaking� a Zm�submodule�

�



�F�� Lattices in Rn �see Section �
��

���� The dual code

Once we have speci�ed a family of codes by giving F and an inner product we can de�ne

the dual of a code C to be

C� � fu � Fn � �u� v� � � for all v � Cg �

The dual of a binary linear code �family �� is again a binary linear code� Similarly� the dual of

a code in any of families 
 through mZis again a code of the same family� For family 
H�� the

dual of an additive code is additive� if C is also linear so is C�� and then C� coincides with

the dual in family 
H� The dual in family 
E is the conjugate of the dual in family 
H�

For families � through mZit is easily checked that we have

jCj jC�j � jFjn � ���

which implies

�C��� � C � ���

In general� however� we can say only that

C � �C��� �

In particular� ��� does not necessarily hold for family F� �consider� for example� the code

f��� ��g which has dual f��� ��� ��� ��g� containing only 
 words��

���� Self�dual codes

If C � C� then C is said to be self�dual� If C � C�� C is self�orthogonal� �In the past� some

authors have used �self�orthogonal� and �weakly self�orthogonal� for these two concepts��

In families � through mZ� if C is self�dual then

jCj � jFjn�� � �
�

and if jFj is not a square then n must be even� In particular� if C is linear over a �eld� then

n is even and C is a subspace of dimension n��� The only families from � through mZthat

contain self�dual codes of odd length are 
H�� 
Zand mZwith m a square�






Remarks about the �nal three families� �F
�� Let C be a code of length n over the

p�adic integers Zp� �such codes have been studied in �
��� ������ In general it is not clear how

one should de�ne C�� However� if when we reduce C mod p it has the same dimension over

Fp as C had over Fp� � then there is a natural way to de�ne the dual so that it satis�es

�C��� � C� dim C � dim C� � n �

Namely� let D � Qp� �C be the code over the p�adic rationals Qp� generated by C� Since D

is a linear code over a �eld� D� exists and satis�es �D��� � D� dim D � dimD� � n� Now

set C� � D� �Znp��
�F
�� J� A� Wood ��

��� see also �
���� has investigated codes over noncommutative �nite

rings F� and has shown that the two fundamental MacWilliams theorems �Theorem 
 below

and Theorems ���
 and ���� of Chapter �� hold precisely when F is a Frobenius ring� At present

however no interesting examples of self�dual codes over noncommutative rings are known�

�F��� Unimodular lattices are analogues of self�dual codes in Rn � see Section �
�

�� Equivalence of codes

���� Equivalent codes

Codes that di�er only in minor ways� such as in the order in which the coordinates are

arranged� are said to be equivalent� The transformations that we allow in de�ning equivalence

for the above families of codes are as follows �these are precisely the transformations that

commute with the process of forming the dual��

��� Permutations of the coordinates�

�
� Monomial transformations of the coordinates �that is� a permutation of the coordinates

followed by multiplication of the coordinates by nonzero �eld elements��

�
H� Monomials� global conjugation�

�
E� Permutations� global conjugation�

�
H�� Monomials� conjugation of individual coordinates�

�qH� Monomials over the subgroup

fx � Fq � xx � �g 	� F�q�F�pq �






where the star denotes the set of nonzero �eld elements� global multiplication by elements of

F�q � global action of Galois group Gal�Fq�Fp�

�qE� Monomials over f
�g� global multiplication by units� global action of Galois group�
�
Z� Monomials over f
�g�
�mZ� Monomials over square roots of unity� global multiplication by units of Zm�

���� Automorphism groups

In each case� the subset of such transformations that preserves the code forms the auto�

morphism group Aut�C� of the code�

Let G denote the full group of all transformations listed� The order of G in the above cases

is�

��� n�

�
� �nn�

�
H� ��
nn�

�
E� ��n�

�
H�� �nn�

�qH� logp�q��
p
q � ���pq � ��nn�

�qE� logp�q�
q��
� �

nn�

�
Z� �nn�

�mZ� For m � �� �� �� �� 	 the orders are

�� �
�
�nn�� �nn��

�� �
�
�nn�� 
nn�� 
��nn�

respectively�

The number of codes that are equivalent to a given code C is then

jGj
jAut�C�j �

In most cases it is possible to determine the total number Tn �say� of distinct self�dual codes

of length n in one of our families� Then

Tn �
X

inequivalent
C

jGj
jAut�C�j

where the sum is over all inequivalent codes� In other words

X
inequivalent

C

�

jAut�C�j �
Tn
jGj � �
�

�



Equation �
� is called a mass formula� The appropriate values of Tn are�

���
�
�
n��Y
i��

��i � �� �n � � �mod ��� ���

��II� �weights divisible by 
��

�

�
�
n��Y
i��

��i � �� �n � � �mod ��� ���

�
�

�

�
�
n��Y
i��

�
i � �� �n � � �mod 
�� ���

�
H�
�
�
n��Y
i��

���i�� � �� �n � � �mod ��� ���

�
E�
�
�
n��Y
i��

�
i � �� �n � � �mod ��� �	�

�
H��
nY
i��

��i � �� ����

�
H�II � �all weights even��

�
n��Y
i��

��i � �� �n � � �mod ��� ����

�qH�
�
�
n��Y
i��

�qi�
�
� � �� �n � � �mod ��� ����

�qE�

b

�
�
n��Y
i��

�qi � �� �n � � �mod ��� ��
�

where b � � if q is even� � if q is odd

�
Z�
n��X
k��

��n� k��k�k��	�� � ��
�

where ��n� k�� the number of binary self�orthogonal �n� k� codes with all weights divisible by


� is equal to � if k � �� and otherwise is given by

k��Y
i��

�n��i�� � ��
n
� ��i�� � �

�i�� � � � if n � 
� �mod �� �

�



k��Y
i��

�n��i�� � �
�i�� � � � if n � 
� �mod �� �

k��Y
i��

�n��i�� � ��n� ��i�� � �
�i�� � � � if n � 

 �mod �� �

�
k��Y
i��

�n��i�� � �
n
�
�i�� � �

�i�� � �

�
�
�
�

�k��
�
�n��k � �

n
�
�k � �

�k � �

�
� if n � � �mod �� �

�
k��Y
i��

�n��i�� � �n��i�� � �
�i�� � �

�
�
�
�

�k��
�
�n��k � �n��k � �

�k � �

�
� if n � 
 �mod �� �

There is a similar but even more complicated formula for Tn for self�dual codes over Z� with

Euclidean norms divisible by �� see ������

Formulae ������
� are based on various sources including ��

�� ��	��� ������ ���	� Chap� �	��

Equation ��
� is due to Gaborit ������

Here are two proofs of ���� �i� Let �n�k denote the number of �n� k� self�orthogonal codes C

containing �� Any such C can be extended to an �n� k��� self�orthogonal code D by adjoining

any vector of C� nC� and any D will arise �k�� times from di�erent C�s� So we have �n�� � ��
�n�k��
�n�k

�
�n��k � �
�k � � �

and �n�n�� gives ���� �ii� A more sophisticated proof can be obtained by observing that the

Euclidean inner product induces a symplectic geometry structure on the space of even weight

vectors modulo �� A self�dual code is then a maximally isotropic subspace� The number of

maximally isotropic subspaces of a symplectic geometry of dimension �k is  k
i����

i � �� �

�

x	�
�� and we obtain ��� by noting that our symplectic geometry has dimension n� ��
Similarly� a binary self�dual code with weights divisible by 
 is a maximally totally singular

subspace of the orthogonal geometry of dimension n�� induced by �
�wt�v�� which leads to ����

Equations ���� �	�� ����� ��
� are also obtained via orthogonal geometry� ���� via symplectic

geometry� and ��� and ���� via unitary geometry�

These mass formulae are useful when one is attempting to �nd all inequivalent codes of

a given length �compare Section ���� For example� suppose we are trying to �nd all binary

self�dual codes of length �� We immediately �nd two codes� i�
i�
i�
i�� where i� � ����� and
the Hamming code e
� and then it appears that there are no others� To prove this� we compute

the automorphism groups of these two codes� they have orders ��
� � 
�
 and ������
 � �


�

respectively� We also calculate T
�jGj � 
���	��� � 
��	� from ���� and see that indeed

�


�

�

�

�



�




�	�
�

�



verifying that this enumeration is complete� We will return to this in Section ���

There are also formulae that give the total number of self�dual codes containing a �xed

self�orthogonal vector or code � see ���	� Chapter �	��

���� Codes over Z�

Codes over rings are probably less familiar to the reader than codes over �elds� and so we

will add some remarks here about the �rst such case� codes over Z�� family 

Z�

Any code over Z� is equivalent to one with generator matrix of the form�
Ik� X Y� � �Y�
� �Ik� �Z

�
����

where X � Y�� Y�� Z are binary matrices� Then C is an elementary abelian group of type 

k��k� �

containing ��k��k� words� We indicate this by writing jCj � 
k��k� � The dual code C� has

generator matrix �
��Y� � �Y��tr � ZtrX tr Ztr In�k��k�

�X tr �Ik� �

�

and jC�j � 
n�k��k��k� �
There are two binary codes C��	 and C��	 associated with C� having generator matrices

�Ik� X Y�� and

�
Ik� X Y�
� Ik� Z

�
����

and parameters �n� k�� and �n� k��k�� respectively� If C is self�orthogonal then C
��	 is doubly�

even and C��	 � C��	 � C��	�� If C is self�dual then C��	 � C��	�� The next two theorems

give the converse assertions�

Theorem �� If A� B are binary codes with A � B then there is a code C over Z� with

C��	 � A� C��	 � B� If in addition A is doubly�even and B � A� then C can be made

self�orthogonal� If B � A� then C is self�dual�

Proof� Suppose A� B have generator matrices as shown in ����� Then�
I X Y
� �I �Z

�
����

is a generator matrix for a code C with C��	 � A� C��	 � B� To establish the second assertion

we must modify ���� to make C self�orthogonal� This is accomplished by replacing the �j� i�th

entry of ���� by the inner product modulo 
 of rows i and j� for � � i � k�� � � j � k� � k��

i � j�

�



In this way every self�orthogonal doubly�even binary code corresponds to one or more self�

dual codes over Z��

Theorem �� ����� A code C over Z� with generator matrix ���� is self�dual if and only if

C��	 is doubly�even� C��	 � C��	�� and Y� is chosen so that if M � Y�Y
tr
� � then Mij �Mji �

�
�wt�vi � vj�� where v�� � � � � vk� are the generators of C��	�

In contrast to self�dual codes over �elds� self�dual codes over Z� exist for all lengths� even

or odd� Furthermore� a self�dual code C over Z� of length n can be shortened to a self�dual

code of length n� � by deleting any one of its coordinates� This is accomplished as follows� If
the projection of C onto the ith coordinate contains all of Z�� the shortened code is obtained

by taking those words of C that are � or � in the ith coordinate and omitting that coordinate�

If the projection of C onto the ith coordinate contains only � and �� we take the words of C

that are � on the ith coordinate and omit that coordinate�

In this way all self�dual codes over Z� belong to a common �family tree�� with i� � f�� �g
at the root� The beginning of this tree� showing all self�dual codes of lengths n � �� is given
in Fig� � of �����

�� Weight enumerators and MacWilliams theorem

���� Weight enumerators

The Hamming weight of a vector u � �u�� � � � � un� � Fn � denoted by wt�u�� is the number
of nonzero components ui�

Two other types of �weight� are useful for studying nonbinary codes� For the codes in

families 
Z� mZ�and hence for �� 
� and� if q is a prime� qE� we de�ne the Lee weight and

Euclidean norm of u � F by

Lee�u� � minfjuj� jFj � jujg �
Norm�u� � �Lee�u��� �

For a vector u � �u�� � � � � un� � Fn � we set

Lee�u� �
nX
i��

Lee�ui� �

Norm�u� �
nX
i��

Norm�ui� �

	



Of course� if u is a binary vector� wt�u� � Lee�u� � Norm�u��

It is customary to use the symbol Ai to denote the number of vectors in a code C having

Hamming weight �or Lee weight� or Euclidean norm� depending on context� equal to i� Then

fA�� A�� A�� � � �g is called the weight distribution of the code� The Hamming weight enumerator

�abbreviated hwe� of C is de�ned to be

WC�x� y� �
X
u�C

xn�wt�u	ywt�u	 �
nX
i��

Aix
n�iyi � ����

�The adjective �Hamming� is often omitted�� There are good reasons for taking the Hamming

weight enumerator to be a homogeneous polynomial of degree n �see below�� However� no

information is lost if we set x � �� and write it as a polynomial in the single variable y�

There is an analogous de�nition for nonlinear codes� for v � Fn � let Ai�v� be the number

of codewords at Hamming distance i from v� The average Hamming weight distribution for a

nonlinear or nonadditive code is then

Ai �
�

jCj
X
c�C

Ai�c� �

with associated Hamming weight enumerator

WC�x� y� �
nX
i��

Aix
n�iyi �

Much more information about a code C is supplied by its complete weight enumerator

�abbreviated cwe� and de�ned as follows� Let the elements of the alphabet F be ��� ��� � � � � �a�

and introduce corresponding indeterminates x�� x�� � � � � xa� Then

cweC�x�� � � � � xa� �
X
u�C

x
n��u	
� x

n��u	
� � � �xna�u	a � ��	�

where n��u� is the number of components of u that take the value �� �

If there is a natural way to pair up some of the symbols in F then we can often reduce

the number of variables in the cwe without losing any essential information� by identifying

indeterminates corresponding to paired symbols� The result is a symmetrized weight enumer�

ator �abbreviated swe�� Some examples will make this clear� For linear codes over F� the

symmetrized weight enumerator is

sweC�x� y� z� �
X
u�C

xn��u	yn��u	zNw�u	 � cweC�x� y� z� z� � ����

��



where n��u�� n��u� are as above and Nw�u� is the number of components in u that are equal

to either � or �� For linear codes over Z�� the appropriate symmetrized weight enumerator is

sweC�x� y� z� �
X
u�C

xn��u	yn��u	zn��z	 � cweC�x� y� z� y� � ����

where n��u� is the number of components of u that are equal to either �� or ��� There is an
obvious generalization of ���� to linear codes over Zm�

The swe contains only about half as many variables as the complete weight enumerator�

and yet still contains enough information to determine the Lee weight or norm distribution of

a code�

All the weight enumerators mentioned so far can be obtained from the �full weight enu�

merator� of the code� This is a generating function� or formal sum �not a polynomial�� listing

all the codewords� X
u�C

zu�� zu�� � � �zunn �

where we use a di�erent indeterminate zi for each coordinate position� To obtain the sym�

metrized weight enumerator of a code over F�� for example� we replace each occurrence of z
�
i

by x� each z�i by y� and each z
�
i or z

�
i by z�

Still further weight enumerators that have proved useful can also be obtained from the full

weight enumerator� For example� the split Hamming weight enumerator of a code of length

n � �m is

splitC�x� y�X� Y � �
X
y�C

xm�l�u	yl�u	Xm�r�u	Y r�u	 �

where l�u� �resp� r�u�� is the Hamming weight of the left half �resp� right half� of u� Split

weight enumerators have been investigated in ��	��� for example� Of course� the split need not

be into equal parts� Multiply�split weight enumerators have been extensively used in ������

One may also de�ne weight enumerators for translates of codes� if C is a translate of a

linear or additive code� its weight enumerator is

WC�x� y� �
X
c�C

xn�wt�c	ywt�c	�

We will use such weight enumerators later in this chapter when studying the �shadow� of a

self�dual code�

The biweight enumerator of a code generalizes the weight enumerator to consider the over�

laps of pairs of codewords� and the joint weight enumerator of two codes C and D considers

��



the overlaps of pairs of codewords u � C and v � D� More generally� the k�fold multiple weight

enumerator of a code considers the composition of k codewords chosen simultaneously from

the code� Again there are generalizations of the MacWilliams and Gleason theorems �������

���	� Chap� ��� ���	��� The connections between multiple weight enumerators of self�dual codes

and Siegel modular forms have been investigated by Duke �	��� Ozeki ������ ������ ����� and

Runge ������������

Ozeki ����� has recently introduced another generalization of the weight enumerator of a

code C� namely its Jacobi polynomial� For a �xed vector v � Fn � this is de�ned by

JacC�v�x� z� �
X
u�C

xwt�u	zwt�u�v	 �

which is essentially a split weight enumerator� These polynomials have been studied in �����

����� ��
�� They have the same relationship to Jacobi forms �	
� as weight enumerators do to

modular forms �cf� the remarks in Section �
��

For future reference we note the following relations between inner products and weights or

norms for four of our families�

����

�u� v� �
�

�
fwt�u� v�� wt�u�� wt�v�g ����

�
H���

�u� v� � wt�u� v�� wt�u�� wt�v� ��
�

�
Z�� �mZ��

�u� v� �
�

�
fNorm�u� v��Norm�u�� Norm�v�g � ��
�

���� Examples of self�dual codes and their weight enumerators

The following are some key examples of self�dual codes of the di�erent families mentioned

in Section �� together with their weight enumerators� Some of these weight enumerators will

be labeled for later reference� Unless indicated otherwise� all the codes mentioned are self�dual

codes of the appropriate kind�

We write �n� k� d�q to indicate a linear code of length n� dimension k and minimal distance

d over the �eld Fq � omitting q when it is equal to �� �n� k� d��� indicates an additive code

over F� containing 

k vectors �so k � �

�Z�� Usually the subscript on the symbol for a code

�e�g� e
� gives its length� We adopt the convention that parentheses in a vector mean that all

��



permutations indicated by the parentheses are to be applied to that vector� For example� in the

de�nition of e
 below� ���������� stands for the seven vectors ��������� ��������� ���������

etc� The generators for the hexacode in �

� could have been abbreviated as �����������

The following codes are all self�dual�

��� The �rst example of a binary self�dual code is the ��� �� �� repetition code i� � f��� ��g�
with weight enumerator

Wi��x� y� � x� � y� � 	� �say� � ����

and jAut�i��j � ��
The ��� 
� 
� Hamming code e
 �see Section �� of Chapter �� ����� p� ��� generated by

����������� is self�dual with weight enumerator

We��x� y� � x
 � �
x�y� � y
 � 	
 � ����

and group GA���� of order ������
 � �


�

The ��
� ��� �� binary Golay code g�� �Section �� of Chapter �� ����� Chaps� 
� ���� generated

by

�������������������������� � ����

or equivalently by the idempotent generator

�������������������������� � ����

has weight enumerator

Wg���x� y� � x�� � ��	x��y
 � ����x��y�� � ��	x
y�� � y�� � 	�� � ��	�

Aut�g��� is the Mathieu group M��� of order �
��
����������
� � �

��
�
��

All three codes i�� e
� g�� are unique in the sense that any linear or nonlinear code with the

same length� size and minimal distance and containing the zero vector is linear and equivalent

to the code given above ����� �see also ��	����

�
� Self�dual codes over F� exist if and only if the length n is a multiple of 
 �this follows from

Gleason�s theorem� see ������ and is also a consequence of the argument used to prove ���

������� We use indeterminates x� y for the Hamming weight enumerator W �x� y� and x� y� z for

the cwe�

The �
� �� 
�� tetracode t�� generated by f����� ����g �Section � of Chapter �� ���� p� ���
has

Wt��x� y� � x� � �xy� �
��

�




and cwe xfx� � �y � z��g� Aut�t�� � ��S�
�� where S�n� denotes a symmetric group of order
n��

The ���� �� ��� ternary Golay code g�� �Section �� of Chapter �� ����� p� ���� generated by

��������������� has

Wg���x� y� � x�� � ��
x�y� � 

�x�y� � �
y�� �
��

and �assuming the all�ones codeword is present�

cwe�x� y� z� � x��� y��� z������x�y�� y�z�� z�x�������x�y�z��x�y�z��x�y�z�� � �
��

Aut�g��� � ��M�� �where M�� is a Mathieu group�� of order �	�����

These two codes are unique in the same sense as our binary examples ������

�
H� We use indeterminates x� y for the Hamming weight enumerator� x� y� z for the swe

and x� y� z� t �corresponding to the symbols �� �� �� �� for the cwe� so that swe�x� y� z� �

cwe�x� y� z� z��

The ��� �� ��� repetition code i� � f��� ��� ��� ��g has

Wi��x� y� � x� � 
y� �

swe � x� � y� � �z� �

cwe � x� � y� � z� � t� � �

�

and a group of order ���

The ��� 
� 
�� hexacode h� �Section �� of Chapter �� ���� p� ���� in the form with generator

matrix �
� � � � � � �
� � � � � �

� � � � � �

�
� �

�

has

Wh��x� y� � x� � 
�x�y� � ��y�� �
��

swe � x� � y� � �z� � ����x�y�z� � x�z� � y�z�� � �
��

cwe � x� � y� � z� � t� � ���x�y�z� � x�y�t� � x�z�t� � y�z�t�� �
��

and Aut�h�� � 
�S���� of order �����

Again these codes are unique�

�




Of course this i� is simply the F��span of the binary code i� de�ned above� In general� if

C is de�ned over an alphabet F� and F� � F is a larger alphabet� we write C � F� to indicate
this process�

If C is a binary self�dual code then C � F� is a self�dual code belonging to both families

H and 
E� Conversely� it is not di!cult to show that if C is self�dual over F� with respect to

both the Hermitian and Euclidean inner products� then C � B � F� for some self�dual binary
code B�

�
E� The �
� �� 
�� Reed�Solomon code �
� � � �
� � � �

	

has

W �x� y� � x� � ��xy� � 
y� �

swe � x� � y� � �z� � ��xyz� �

cwe � x� � y� � z� � t� � ��xyzt �

The automorphism group is 
�S�
�� of order ���

�
H�� The smallest example is the ��� �� � ���� code i� � f�� �g� with automorphism group of

order � �conjugation�� The ���� �� ���� dodecacode z�� can be de�ned as the cyclic code with

generator ������������ ��
	�� see also ��

��� Aut�z��� is a semi�direct product of Z�
�� with

S�
� �where Z�n� denotes a cyclic group of order n� and has order �
��

�qH� Since the norm map from Fq to Fpq is surjective� there is an element a � Fq with aa � ���
Then ��a� is self�dual�

�qE� As in family 
H� there is a restriction on n� if q � 
 �mod 
� then self�dual codes exist

if and only if n is a multiple of 
� for other values of q� n need only be even ������ Provided

q �� �
� �mod 
�� Fq contains an element i such that i� � ��� and then ��i� is self�dual�
�
Z� The smallest example is the self�dual code i� � f�� �g of length �� The octacode o
 ������
����� is the length � code generated by the vectors 
���������� or equivalently with generator

matrix �


�
� � � � � � � �
� � � � 
 � � 

� � � � 
 
 � �
� � � � 
 � 
 �

�
��� � �
��

having minimal Lee weight � and minimal norm ��

swe � x
 � ��y
 � z
 � �
x�z� � ���xy�z�x� � z�� �

��



and jAut�o
�j � ���


�
The most interesting property of the octacode is that when mapped to a binary code under

the Gray map

�� ��� �� ��� �� ��� 
� �� � �
	�

o
 becomes the Nordstrom�Robinson code� a nonlinear binary code of length ��� minimal

distance �� containing ��� words �Section �
 of Chapter �� Chapter xx �Helleseth�Kumar��

�		�� ���	��� The latter is therefore a formally self�dual binary code� see Section 
�
�

The octacode reduces mod � to the Hamming code e
� There is another lift of e
 to Z��

namely the code E
� with generator matrix�


�
� � � � � � � �
� � � � 
 � � 

� � � � 
 
 � �
� � � � 
 � 
 �

�
��� � �
��

but the minimal Lee weight and norm are now both only 
� However� not all binary self�dual

codes lift to self�dual codes over Z�� e�g� f��� ��g does not�

Theorem �� �a� Let C be a binary self�dual code of length n� A necessary and su	cient

condition for C to be lifted to a self�dual code "C over Z� is that all weights in C are divisible

by 
� �b� If this condition is satis�ed� "C can be chosen so that all norms are divisible by ��

�c� More generally� a self�dual code over Zm� m even� that reduces to a self�dual code mod �

lifts to Z�m precisely when all norms are divisible by �m� and in that case all norms in the

lifted code can be arranged to be divisible by 
m� Thus if a code lifts from Zm to Z�m then it

lifts to Z�km for all k� In particular� if a binary code lifts to Z� then it lifts to a self�dual code

over the 
�adic integers�

Proof� �a� �Necessity� Suppose v � C has weight wt�v� �� � �mod 
�� and let "v � "C be any

lift of v� Then Norm�"v� � Norm�v� �mod 
� because for integers x� y if x � y �mod �� then

x� � y� �mod 
��

�Su!ciency� Without loss of generality C has a generator matrix of the form �IA� where

AAtr � �I �mod ��� Let B be any lift of A to Z�� We wish to �nd "A � B � �M such that

"A "Atr � �I �mod 
�� since then we can take "C � �I "A�� We have

"A "Atr � BBtr � ��MBtr � BM tr� �mod 
� �

��



The condition on C implies that BBtr � I has even coe!cients and is zero on the diagonal�

But then there exists a binary matrix M � such that ��M � �M �tr� � BBtr � I � and we take

M �M ��B���tr� This completes the proof of �a��

�b� We need to show that we can choose "A so that the diagonal entries of "A "Atr � I are

zero mod �� Set "A� � "A� �L "A� where L is symmetric� so that

"A�� "A��tr � "A "Atr � 
L� 
L��mod �� �

Let # � �
��
"A "Atr� I�� Then we need L��L�# �mod �� to be symmetric with zero diagonal�

It is easy to see that we can accomplish this provided trace�#� � � �mod �� �consider� for

instance� L �
�
�
�

�
�



�� In fact� we have

� � det� "A "Atr� � � � 
 trace # �mod ��

so trace # is even�

The proof of �c� is analogous�

It follows from Theorem 
 that the Golay code g�� can be lifted to Z�� Since g�� is

an extended cyclic code� the lift can be easily performed by Grae�e�s method ����� �
����

Suppose g��x� divides x
n � � �mod ��� and we wish to �nd a monic polynomial g�x� over Z�

such that g�x� � g��x� �mod �� and g�x� divides xn � � �mod 
�� Let g��x� � e�x� � d�x��

where e�x� contains only even powers and d�x� only odd powers� Then g�x� is given by

g�x�� � 
�e��x� � d��x��� Applying this technique to the generator polynomial for g��� that

is� to g��x� � �� x� x
� x�� x�� x�� x�� �see ������ we obtain g�x� � ��� x��x�� x
�
x� � x� � x� � �x�� � x��� and so


�
����


�
�������������� �
��

generates a self�dual code G�� of length �
 which is the Golay code lifted to Z�� Iterating this

process enables us to lift cyclic or extended cyclic codes to Z�m for arbitrarily large m�

�F�� Let q � �� Then �
� � �v v �� � �
� � �v v �� �
� � � �v v ��

�
� �
��

where v � �� � u���� generates a self�dual code of length � over F
�u���u���

The matrix �
�� also generates self�dual codes from family qH� Suppose q is a prime power

such that v� � v � � has no solution in Fq � and let v be a solution in Fq� � Then �
�� de�nes

��



a Hermitian self�dual code over Fq� with minimal distance 
� In the case q � � we get the

hexacode�

�F
� The ��adic Hamming code ���� is the self�dual code of length � with generator matrix

�


�
� 
 
� � �� � � � �
� � 
 
� � �� � � �
� � � 
 
� � �� � �
� � � � 
 
� � �� �

�
��� �

where 
 is the ��adic integer �� �
p������ The ��adic expansion of 
 is


 � � � 
� 
�� ��� � ��� � ��� � ���
 � ��
� � 
�	� � 
����� � � �

This is the cyclic code with generator

�� 
� 
� ����� �� �� �

with a � appended to each of the generators�

Similarly� the ��adic self�dual Golay code of length �
 is the cyclic code with generator

�� �� 
���� 
��
� 
� 
� �
� 
� �
� �� 
� 
� 
� 
� 
��
���� �� �� �� �� �� �� �� �� �� �� � �

where now 
 � �� �
p��
���� with a � appended to each of the �� generators�

The 
�adic self�dual Golay code of length �� is the cyclic code with generator

�� 
���� �� 
� ����� �� �� �� �� � �

where 
 � �� �
p������� again with a � appended to each generator�

�F
� We shall not discuss these codes here� but refer the reader to Wood �

���

���� MacWilliams Theorems

MacWilliams ����
�� see also ���	�� discovered that the Hamming weight distribution of

the dual of a linear code is determined just by the Hamming weight distribution of the code�

There are versions of this theorem for most of our families of codes� Although there are

several ways to state these identities� the simplest formulation is always in terms of the weight

enumerator polynomials �it is for this reason that we insist that the weight enumerator should

be a homogeneous polynomial��

Theorem �� �MacWilliams and others��

��



��� Three equivalent formulations of the result for binary self�dual codes are�

WC��x� y� �
�

jCjWC�x� y� x� y� � �

�

X
u�C�

xn�wt�u	ywt�u	 �
�

jCj
X
u�C

�x� y�n�wt�u	�x� y�wt�u	 � �

�

and� if fA�� � A�� � � � �g is the weight distribution of C��

A�k �
�

jCj
nX
i��

AiPk�i� �
��

where

Pk�x� �
kX

j��

����j
�
x

j

��
n� x

k � j

�
� k � �� � � � � n �

is a Krawtchouk polynomial ������� Chap� �� etc��� There are analogous Krawtchouk polyno�

mials for any alphabet� see ������ p� ���� For the remaining cases we give just the formulation

in terms of weight enumerators�

�
�

WC��x� y� �
�

jCjWC�x� �y� x� y� �

cweC��x� y� z� �
�

jCjcweC�x� y � z� x� �y � �z� x� �y � �z� �

�
H� and �
H��

WC��x� y� �
�

jCjWC�x� 
y� x� y� �

sweC��x� y� z� �
�

jCjsweC�x� y � �z� x� y � �z� x� y� �

cweC��x� y� z� t� �
�

jCjcweC�x� y � z � t� x� y � z � t� x� y � z � t� x� y � z � t� �

�
E�

WC��x� y� �
�

jCjWC�x� 
y� x� y� �

sweC��x� y� z� �
�

jCjsweC�x� y � �z� x� y � �z� x� y� �

cweC��x� y� z� t� �
�

jCjcweC��x� y � z � t� x� y � z � t� x� y � z � t� x� y � z � t� �

�qH�

WC��x� y� �
�

jCjWC�x� �q � ��y� x� y� � �
��

�	



Let 
 be a nontrivial linear functional from Fq to Fp� and set

���x� � e��i���x	�p � �
��

The cwe for C� is obtained from the cwe for C by replacing each xj by

q��X
k��

�	j ��k�xk �

�We omit discussion of the swe� since there are several di�erent ways in which it might be

de�ned��

�qE� Same as for qH� but omitting the bar in �
���

�
Z�

WC��x� y� �
�

jCjWC�x� 
y� x� y�

sweC��x� y� z� �
�

jCjsweC�x� �y � z� x� y� x� �y � z�

cweC��x� y� z� t� �
�

jCjcweC�x� y � z � t� x� iy � z � it� x� y � z � t� x� iy � z � it� �

�mZ�

WC��x� y� �
�

jCjWC�x� �m� ��y� x� y� �

The cwe for C� is obtained from the cwe for C by replacing each xj by

m��X
k��

e��ijk�mxk � �
��

Proof� We prove the result for family �� There are analogous proofs for the other cases� cf�

Section �� of Chapter �� Section � of Chapter xx �Helleseth�Kumar�� ������ ���	� Chap� ���

Let f be a polynomial�valued function on Fn� � De�ne the Fourier �or Hadamard� transform

of f by

"f�u� �
X
v�Fn

�

����u
vf�v�� u � Fn� �

If C is a linear code it is straightforward to verify that

X
u�C�

f�u� �
�

jCj
X
u�C

"f�u� � �
	�

�This is a version of the Poisson summation formula � cf� �	���� Now we set f�u� �

xn�wt�u	ywt�u	� and after some algebra �the details can be found on p� ��� of ���	�� discover

that

"f �u� � �x� y�n�wt�u	�x� y�wt�u	 � ����

Equations �
	� � ���� together imply �

��

��



Examples

�a� The repetition code C over a �eld Fq has Hamming weight enumerator

WC�x� y� � xn � �q � ��yn �

so from �
�� we deduce that the dual code C�� the zero�sum code� has weight enumerator

WC��x� y� �
�

q
f�x� �q � ��y�n � �q � ���x� y�ng �

Note that when n � �� WC� � WC �compare case �e� of Theorem ���

�b� The binary codes i� and e
 are self�dual� and indeed one easily veri�es that their weight

enumerators x�� y� ���� and x
� �
x�y�� y
 ���� are left unchanged if x and y are replaced

by �x� y��
p
� and �x� y��

p
��

Remarks

�� The map that sends WC�x� y� to
�
jCjWC�x � y� x � y�� or that sends fA�� A�� � � �g to

fA�� � A�� � � � �g as in �
��� is often called the MacWilliams or Krawtchouk transform� A remark�

able theorem of Delsarte ���� � see Chapters xx �Brouwer�� yy �Camion�� zz �Levenshtein� �

shows that this transform is useful even for nonlinear codes�

�� For the families �� 
H� 
E and 
H� all the MacWilliams transforms have order �� as they

do for the Hamming weight enumerators for families 
 and 
Zand the swe for 
Z� For the

cwe in families 
 and 
Zthe square of the MacWilliams transform takes xj to x�j � However�

this does not change the cwe of the code� and so� in all cases� if the MacWilliams transform is

applied twice� the original weight enumerator is recovered�


� The identity for the swe in family mZis left to the reader� For �F�� we refer to Bachoc

��� and for �F
� to Wood �

��� Duality fails for �F�� and weights are unde�ned in case �F
��


� Shor and La$amme ����� show that there is an analogue of the MacWilliams identity

for quantum codes� There is also an analogue of the shadow ������

���� Isodual and formally self�dual codes

Following ����� we say that a linear code which is equivalent to its dual is isodual� A �possibly

nonlinear� code with the property that its weight enumerator coincides with its MacWilliams

transform is called formally self�dual� An isodual code is automatically formally self�dual�

It is easy to prove that any self�dual code from family 
Zproduces a formally self�dual

binary code using the Gray map �
	� ��		�� ���	��� As already mentioned in Section 
��� the

��



octacode o
 produces the �formally self�dual� Nordstrom�Robinson code in this way� Similarly�
�

a self�dual code from family 
H� produces an isodual binary code using the map

�� ��� �� ��� � � ��� � � �� � ����

We give several examples of this construction�

�i� The code d�� �see Section ����� produces the isodual ��� 
� 
� binary code with generator

matrix �

� �� �� ��
�� �� ��
�� �� ��

�
�� � ����

�The dual� which is a di�erent code� is obtained by interchanging the last two columns��

�ii� The shortened hexacode� h
� �see Section ���
� produces an isodual ���� �� 
� code�

�iii� The hexacode h� produces an isodual ���� �� 
� code� There is an additive but not linear

version of the hexacode� h��� found by Ran and Snyders ���	�� generated by ��������� which

under the map ���� produces a second� inequivalent� isodual ���� �� 
� code� As members of the

family 
H�� however� h� and h
�
� are equivalent�

Further examples of formally self�dual codes will be mentioned in Remark 
 following

Theorem �� Isodual and formally self�dual codes have also been studied in ����� ���	�� ���
��

������ ���	�� ���	�� ����� �see also ������

�� Restrictions on weights

���� Gleason�Pierce Theorem

It is elementary that in a binary self�orthogonal code the weight of every vector is even� in

a ternary self�dual code the weight of every vector is a multiple of 
� and in a Hermitian self�

dual code over F� the weight of every vector is even� Furthermore� there are many well�known

binary self�dual codes whose weights are divisible by 
 � see above� The following theorem�

due to Gleason and Pierce� shows that these four are essentially the only possible nontrivial

divisibility restrictions that can be imposed on the weights of self�dual codes�

Theorem 	� �Gleason and Pierce ����� If C is a self�dual code belonging to any of the families

� through mZwhich has all its Hamming weights divisible by an integer c � � then one of the

�We are indebted to Dave Forney for these remarks�

��



following holds�

�a� jFj � �� c � � �so family ��

�b� jFj � �� c � 
 �so family ��

�c� jFj � 
� c � 
 �so family 
�

�d� jFj � 
� c � � �so families 
H� 
E� 
H�� 
Z�

�e� jFj � q� q arbitrary� c � �� and

the Hamming weight enumerator of C is

�x� � �q � ��y��n�� �

Remarks� �� The theorem may be proved by considering how the Hamming weight enumer�

ator behaves under the MacWilliams transform� see ���
� for details� An alternative proof of

a somewhat more general result is given in �
�	� � see Theorem �
�� of Chapter xx �Ward��

�� The same conclusion holds if �C is self�dual� is replaced by �C is formally self�dual��


� Note that there are no nontrivial examples from families qH� qE or mZ�


� There are several points to be mentioned concerning case �e�� Linear self�dual codes

with weight enumerator �x� � �q � ��y��n�� always exist in families �� 
H� 
E� 
H�� qH� exist
in families qE and mZprecisely when there is a square root of �� in Fq or Zm respectively� in
particular� they never exist in families 
 or 
Z�

Furthermore� it is easy to see that any linear code over Fq for q � � with weight enumerator

�x� � �q � ��y��n�� is a direct sum of codes of length �� However� in the binary case there

are many examples of linear codes with weight enumerator �x�� y��n�� that are not self�dual�

these have been classi�ed for n � ��� see ������ These are examples of formally self�dual

codes� see Section 
�
� There are also examples from family 
H�� e�g� the additive code

������ ����� ����� ����� with weight enumerator �x� � 
y����

�� In some cases� analogous restrictions can be imposed on Euclidean norms of codewords�

In particular� suppose C is a self�dual code over Zm �that is� a code from families 
Zor mZ�

where m is even� Then the Euclidean norms of the codewords must be divisible by m� and

may be divisible by �m ��	�� ����� ����� see also Theorem 
��

�� Codes from family �F�� with q � � can also satisfy case �d� of the theorem� since they

can be embedded in family 
H� via the map a � bu� a� b��

�




Examples

Many of the examples given in Section 
�� satisfy one of these divisibility conditions�

���� all self�dual codes satisfy �a�� and e
 and g�� satisfy �b�� Note that any code satisfying

�b� is self�orthogonal �from ������

�
�� a code satis�es �c� precisely when it is self�orthogonal

�
H�� a code satis�es �d� precisely when it is self�orthogonal

�
E�� a self�dual code satisfying �d� is a linearized binary code

�
H��� The dodecacode z�� satis�es �d�� Any code satisfying �d� is self�orthogonal�

���� Type I and Type II codes

A binary self�dual code C with all weights divisible by 
 is called doubly�even� or of Type

II� if we do not impose this restriction then C is singly�even or of Type I� We denote these two

families by �I and �II� A Type I code may or may not also be of Type II� the classes are not

mutually exclusive� We say a code is strictly Type I if it is not of Type II�

Similarly� we will say that a self�dual code over Zm� m even� from the families 
Zor mZis

of Type II if the Euclidean norms are divisible by �m� or of Type I if they are divisible by m�

�This terminology was introduced in �	�� ����� ������ We denote these families by 
ZI �or m
Z

I �

and 
ZII �or m
Z

II��

There is one other situation where a similar distinction can be made� An additive trace�

Hermitian self�dual code over F� from the family 
H� is of Type II if the Hamming weights are

even� or of Type I if odd weights may occur �if odd weights do occur then the code cannot be

linear�� We denote these two families by 
H�I and 
H�II �

More generally� we will say that a binary code is doubly�even if all its weights are divisible

by 
� or singly�even if its weights are even� It follows from ���� that a doubly�even code is

necessarily self�orthogonal �and from ��
� and ��
� that Type II codes over Zm and F� are

necessarily self�orthogonal��

In view of Theorem �� in the past self�dual codes over F� have been called Type III codes�

and Hermitian self�dual codes over F� have been called Type IV codes� However� we shall not

use that terminology in this chapter�

�The unquali�ed term �even� has been used to denote both Type I and Type II codes� and is therefore to
be avoided when speaking of self�dual codes� Use �singly�even� or �doubly�even� instead�

�




	� Shadows

In the three cases where we can de�ne a Type II code �see the previous section� we can also

de�ne a certain canonical translate of a code called its shadow ��	�� The weight enumerator

of the shadow can be obtained from the weight enumerator of the code via a transformation

analogous to the MacWilliams transform of Theorem 
�

We �rst discuss binary codes�

Lemma �� Let C be a self�orthogonal singly�even binary code� and let C� be the subset of

doubly�even codewords� Then C� is a linear subcode of index 
 in C�

Proof� From ����� �
�wt�u� is a linear functional on C� and C� is its kernel�

De�nition �� ��	�� The shadow
 S of a self�orthogonal binary code C is

S �

��
�

C�� n C� if C is singly�even

C� if C is doubly�even

��
� �

The weight enumerator of the shadow of C will usually be denoted by SC�x� y��

Examples� �i� If C is the repetition code f�n� �ng of even length n� then if n � � �mod 
��
S � C� � all even weight vectors� but if n � � �mod 
�� S � all odd weight vectors� �ii� If

C � i� 
 i� 
 � � � 
 i� then S is the translate of C by ���� � � ���� �iii� Let C be the ���� ��� ��

shorter Golay code g��� obtained by �subtracting� �see Section ���
� i� from g��� so that g��

consists of all words of g�� that begin �� or ��� with these two coordinates deleted� Then S

consists of the remaining words of g�� with the same two coordinates deleted�

Theorem 
� ��	� The shadow S has the following properties�

�i� S is the set of �parity vectors� for C� that is�

S � fu � Fn� � �u� v� �
�

�
wt�v� mod � for all v � Cg ��
�

�ii� S is a coset of C�

�iii�

SC�x� y� �
�

jCjWC�x� y� i�x� y�� � ��
�

�A somewhat more general de�nition of shadow has been proposed in �	
�� but since it fails to possess the
crucial properties �i
 and �iii
 of Theorem � we shall not discuss it here�

��



Proof� If C is doubly�even then �i� and �ii� are immediate� and �iii� follows from the MacWilliams

transform and the fact that the weights are divisible by 
� Suppose C is singly�even� let C� be

the doubly�even subcode� and let C� � C n C�� Then

C� � C � C� � C�� � ����

The �rst and last inclusions have index �� so C�� � C� � �a� C��� say� where �a� u� � � for

u � C�� �a� v� � � for v � C�� Thus S � C�� nC� � a�C� has the properties stated in �i� and

�ii�� Also�

WC�
�x� y� �

�

�
fWC�x� y� �WC�x� iy�g �

WC��
�x� y� �

�

jCj fWC�x� y� x� y� �WC�x� y� i�x� y�g �

so

SC�x� y� � WC��
�WC� �

�

jCjWC�x� y� i�x� y�� �

If C is a singly�even self�dual code with doubly�even subcode C�� then C
�
� is the union of

four translates of C�� say C�� C�� C�� C�� with

C � C� � C�� S � C� � C� � ����

When n is a multiple of � then C� � C��C� and C�� � C� �C� are both Type II codes �in

the notation of Chapter xx �Pless�� C� and C�� are neighbors of C�� If C has a weight � word

then C � and C�� are equivalent�

Similar de�nitions for the shadow can be given in the other two cases mentioned� If C

is an additive trace�Hermitian self�orthogonal code over F�� let C� be the subcode with even

Hamming weights� and secondly� if C is a self�orthogonal code overZm �m even� let C� be the

subcode with Euclidean norms divisible by �m� In both cases the shadow is de�ned by�

S �

��
�

C�� n C� if C �� C�

C� if C � C� �

If C is self�dual from family 
H� then the quotient group C�� �C� is isomorphic to Z����Z����

If C is self�dual from family mZthen C�� �C� is isomorphic to Z���� Z��� if n is even and to

Z�
� if n is odd�

There are analogues of Theorem ��

��



Theorem �� Let C be a self�orthogonal additive code over F�� with shadow S�

�i� S � fu � Fn� � �u� v� � wt�v� �mod �� for all v � Cg
�ii� S is a coset of C�

�iii�

SC�x� y� �
�

jCjWC�x� 
y� y � x� �

sweS�x� y� z� �
�

jCj sweC�x� y � �z��x� y � �z� y � x�

cweS�x� y� z� t� �
�

jCjcweC�x� y � z � t��x� y � z � t��x� y � z � t��x� y � z � t� �

Remark� It follows from Theorem � that there is a code equivalent to C that has �n � S�

For the number of vectors of weight n in S is

SC��� �� �
�

jCjWC�
� �� � � �

All vectors of full weight are equivalent�

Theorem �� Let C be a self�orthogonal linear code over Z�� with shadow S�

�i� S � fu �Zn� � �u� v� � �
� Norm�v� �mod 
� for all v � Cg

�ii� S is a coset of C�

�iii� sweS�x� y� z� �
�
jCjsweC�x� �y � z� 
�x� y���x� �y � z�� where 
 � e�i���

cweS�x� y� z� t� �
�

jCjcweC�x� y� z� t� 
�x� iy� z� it����x� y� z� t�� 
�x� iy� z� it�� �

Remark� It follows that the shadow contains a vector of the form
�n� �For cweS��� �� �� �� �
�
jCjcweC��� �� �� �� � cweC��� �� �� �� � �� since �n � C�� This observation� and a formula for

the swe equivalent to ours� can be found in ����� In particular� a self�dual code from family 
ZII

contains a vector of the form 
�n�

Theorem �� Let C be a self�orthogonal linear code over Zm� m even� with shadow S�

�i� S � fu �Znm � �u� v� � �
� Norm�v� �mod m� for all v � Cg

�ii� S is a coset of C�

�iii� The cwe of S is obtained from the cwe of C by replacing each xj by

m��X
k��

e��i�j
���jk	��mxk �

and then dividing by jCj�

The proofs are analogous to that of Theorem ��

��




� Invariant theory

���� An introduction to invariant theory

If C is self�dual then its weight enumerator must be unchanged by the appropriate trans�

formation from Theorem 
� As we will see� this imposes strong restrictions on the weight

enumerator�

We begin by discussing the particular case of the weight enumerator W �x� y� of a binary

doubly�even self�dual code C� Since C is self�dual� Theorem 
 implies

W �x� y� �
�

�n��
W �x� y� x� y�

� W

�
x� yp
�
�
x� yp
�

�
����

�for W �x� y� is homogeneous of degree n�� Since all weights are divisible by 
� W �x� y� only

contains powers of y�� Therefore

W �x� y� � W �x� iy� � ����

The problem we wish to solve is to �nd all polynomials W �x� y� satisfying ���� and �����

Invariants� Equation ���� says that W �x� y� is unchanged� or invariant� under the linear

transformation

replace x by
x� yp
�

�

T� �

replace y by
x� yp
�

�

or� in matrix notation�

T� � replace

�
x

y

�
by

�p
�

�
�

�

�

��
��

x

y

�
�

Similarly� ���� says that W �x� y� is also invariant under the transformation

replace x by x
T� �

replace y by iy

or

T� � replace

�
x

y

�
by

�
�

�

�

i

��
x

y

�
�

Of course W �x� y� must therefore be invariant under any combination T �
� � T�T�� T�T�T�� � � �

of these transformations� It is not di!cult to show �as we shall see in the next section� that

��



the matrices
�p
�

�
�

�

�

��
�

and

�
�

�

�

i

�

when multiplied together in all possible ways produce a group G� containing �	� matrices�
So our problem now says� �nd the polynomials W �x� y� which are invariant under all �	�

matrices in the group G��

How many invariants� The �rst thing we want to know is how many invariants there are�

This isn�t too precise� because of course if f and g are invariants� so is any constant multiple

cf and also f � g� f � g and the product fg� Also it is enough to study the homogeneous

invariants �in which all terms have the same degree��

So the right question to ask is� how many linearly independent� homogeneous invariants

are there of each degree d% Let�s call this number ad�

A convenient way to handle the numbers a�� a�� a�� � � � is by combining them into a power

series or generating function

&�
� � a� � a�
� a�

� � � � � �

Conversely� if we know &�
�� the numbers ad can be recovered from the power series expansion

of &�
��

At this point we invoke a beautiful theorem of T� Molien� published in ��	� ������� see also

��
�� p� ��� �
��� p� ���� �
��� p� 
��� ��		�� p� ��	� ������ p� ��� ��	��� p� �	��

Theorem ��� �Molien� For any �nite group G of complex m�m matrices� &�
� is given by

&�
� �
�

jGj
X
A�G

�

det�I � 
A�
� ��	�

We call &�
� the Molien series of G� The proof of this theorem is given in the next section�
For our group G�� from the matrices corresponding to I � T�� T�� � � � we get

&�
� �
�

�	�

�
�

��� 
��
�

�

�� 
�
�

�

��� 
���� i
�
� � � �

�
� ����

There are shortcuts� but it is quite feasible to work out the �	� terms directly �many are the

same� and add them� The result is a surprise� everything collapses to give

&�
� �
�

��� 

���� 
���
� ����

�	



Interpreting &�
�� The very simple form of ���� is trying to tell us something� Expanding

in powers of 
� we have

&�
� � a� � a�
� a�

� � � � �

� �� � 

 � 
�� � 
�� � � � ���� � 
�� � 
�
 � � � �� � ����

We can deduce one fact immediately� ad is zero unless d is a multiple of �� i�e� the degree

of a homogeneous invariant must be a multiple of �� �This already proves that the length of

a doubly�even binary self�dual code must be a multiple of ��� But we can say more� The

right�hand side of ���� is exactly what we would �nd if there were two �basic� invariants� of

degrees � and �
� such that all invariants are formed from sums and products of them�

This is because two invariants� �� of degree �� and 	� of degree �
� would give rise to the

following invariants�
Degree d Invariants Number ad

� � �
� � �
�� �� �
�
 ��� 	 �

� ��� �	 �

� �
� ��	 �

� ��� ��	� 	� 

� � � � � � � � �

��
�

Provided all the products �i	j are linearly independent � which is the same thing as saying

that � and 	 are algebraically independent � the numbers ad in ��
� are exactly the coe!cients

in

� � 

 � 
�� � �
��� �
��� �
�� � 

�
 � � � �
� �� � 

 � 
�� � 
�� � � � ���� � 
�� � 
�
 � � � ��
�

�

��� 

���� 
���
� ��
�

which agrees with ����� So if we can �nd two algebraically independent invariants of degrees �

and �
� we will have solved our problem� The answer will be that any invariant of this group

is a polynomial in � and 	� Now 	
 �Eq� ����� and 	�� �Eq� ��	��� the weight enumerators

of the Hamming and Golay codes� have degrees � and �
 and are invariant under the group�

So we can take � � 	
 and 	 � 	��� �It�s not di!cult to verify that they are algebraically

independent�� Actually� it is easier to work with

	��� �
	�
 � 	��

�

� x�y��x� � y��� ����


�



rather than 	�� itself� So we have proved the following theorem� discovered by Gleason in �	���

Theorem ��� Any invariant of the group G� is a polynomial in 	
 and 	����

This also gives us the solution to our original problem�

Theorem ��� Any polynomial which satis�es Equations ���� and ���� is a polynomial in 	


and 	����

Finally� we have characterized the weight enumerator of a doubly�even binary self�dual

code�

Theorem ��� �Gleason ������� The weight enumerator of any Type II binary self�dual code is

a polynomial in 	
 and 	����

Alternative proofs of this astonishing theorem are given by Berlekamp et al� ��
�� and

Brou'e and Enguehard �

� �see also Assmus and Mattson �
��� But the proof given here seems

to be the most informative� and the easiest to understand and to generalize�

Notice how the exponents � and �
 in the denominator of ���� led us to guess the degrees

of the basic invariants�

This behavior is typical� and is what makes the technique exciting to use� One starts with

a group of matrices G� computes the complicated�looking sum shown in ��	�� and simpli�es the
result� Everything miraculously collapses� leaving a �nal expression resembling ���� �although

not always quite so simple � the precise form of the �nal expression is given in ����� ������

This expression then tells the degrees of the basic invariants to look for�

Finding the basic invariants� In general� �nding the basic invariants is a simpler problem

than �nding &�
�� In our applications we can often use the weight enumerators of codes

having the appropriate properties� as in the above example� or basic invariants can be found

by averaging� using the following simple result �proved in Section �����

Theorem ��� If f�x� � f�x�� � � � � xm� is any polynomial in m variables� and G is a �nite

group of m�m matrices� then

f�x� �
�

jGj
X
A�G

A � f�x� ����

is an invariant� where A�f�x� denotes the polynomial obtained by applying the transformation

A to the variables in f �


�



Of course f�x� may be zero� An example of the use of this theorem is given below�

To illustrate the use of Theorem �
� we use it to �nd the weight enumerator of the �
�� �
� ���

extended quadratic residue code XQ��� using only the fact that it is a doubly�even self�dual

code with minimal distance ��� This implies that the weight enumerator of the code� which is

a homogeneous polynomial of degree 
�� has the form

W �x� y� � x�
 �A��x
��y�� � � � � � ����

The coe!cients of x��y� x��y�� � � � � x��y�� are zero� Here A�� is the unknown number of code�

words of weight ��� It is remarkable that� once we know Equation ����� the weight enumerator

is completely determined by Theorem �
� For Theorem �
 says that W �x� y� must be a poly�

nomial in 	
 and 	
�
��� Since W �x� y� is homogeneous of degree 
�� 	
 is homogeneous of degree

�� and 	��� is homogeneous of degree �
� this polynomial must be a linear combination of 	�
�

	�
	
�
�� and 	

��
���

Thus Theorem �
 says that

W �x� y� � a�	
�

 � a�	

�

	
�
�� � a�	

��
�� � ����

for some real numbers a�� a�� a�� Expanding ����� we have

W �x� y� � a��x
�
 � �
x��y� � �	
�x��y
 � � � �� � a��x

��y� � 
�x��y
 � � � ��
� a��x

��y
 � � � �� � ��	�

and equating coe!cients in ����� ��	� we get

a� � �� a� � ��
� a� � �
� �

Therefore W �x� y� is uniquely determined� When these values of a�� a�� a� are substituted in

���� we �nd that

W �x� y� � x�
 � ���	�x��y�� � �
��	�x��y��

� 
		�
��x�
y�� � �������x��y�� � 
		�
��x��y�


� �
��	�x��y�� � ���	�x��y�� � y�
 � ����

This is certainly faster than computing W by examining each of the ��� codewords�

There is a fair amount of algebra involved in computing ����� Here is a second example�

simple enough for the calculations to be shown in full�


�



For a self�dual code from family qH� from �
�� the Hamming weight enumerator satis�es

W

�
x� �q � ��yp

q
�
x� yp

q

�
� W �x� y� � ����

Let us consider the problem of �nding all polynomials which satisfy �����

The solution proceeds as before� Equation ���� says that W �x� y� must be invariant under

the transformation

T� � replace

�
x

y

�
by A

�
x

y

�
�

where

A �
�p
q

�
�

�

q � �
��

�
� ����

Now A� � I � so W �x� y� must be invariant under the group G� consisting of the two matrices
I and A�

To �nd how many invariants there are� we compute the Molien series &�
� from ��	�� We

�nd

det�I � 
I� � ��� 
�� �

det�I � 
A� � det

�
� �� �p

q � q��p
q 


� �p
q � � �p

q

�
� � �� 
� �

&�
� �
�

�

�
�

��� 
��
�

�

�� 
�

�

�
�

��� 
���� 
��
� ��
�

which is even simpler than ����� Equation ��
� suggests that there might be two basic in�

variants� of degrees � and � �the exponents in the denominator�� If algebraically independent

invariants of degrees � and � can be found� say g and h� then ��
� implies that any invariant

of G� is a polynomial in g and h�
This time we shall use the method of averaging to �nd the basic invariants� Let us average

x over the group � i�e�� apply Theorem �
 with f�x� y� � x� The matrix I leaves x unchanged�

of course� and the matrix A transforms x into ���
p
q��x� �q � ��y�� Therefore the average�

f�x� y� �
�

�

�
x�

�p
q
fx� �q � ��yg

�
�
�
p
q � ��fx� �pq � ��yg

�
p
q

�

is an invariant� Of course any scalar multiple of f�x� y� is also an invariant� so we may divide

by �
p
q � ����

p
q and take

g � x� �
p
q � ��y ��
�







to be the basic invariant of degree �� To get an invariant of degree � we average x� over the

group� obtaining
�

�

�
x� �

�

q
fx� �q � ��yg�

	
�

This can be cleaned up by subtracting ��q � ����q�g� �which of course is an invariant�� and

dividing by a suitable constant� The result is

h � y�x� y� �

the desired basic invariant of degree ��

Finally g and h must be shown to be algebraically independent� it must be shown that no

sum of the form X
i�j

cijg
ihj � cij complex and not all zero � ����

is identically zero when expanded in powers of x and y� This can be seen by looking at the

leading terms� The leading term of g is x� the leading term of h is xy� and the leading term

of gihj is xi�jyj � Since distinct summands in ���� have distinct leading terms� ���� can only

add to zero if all the cij are zero� Therefore g and h are algebraically independent� So we have

proved�

Theorem �	� Any invariant of the group G�� or equivalently any polynomial satisfying �����

or equivalently the Hamming weight enumerator of any self�dual code from family qH� is a

polynomial in g � x� �
p
q � ��y and h � y�x� y��

At this point the reader should cry Stop�� and point out that self�dual codes from family

qH must have even length� and so every term in the weight enumerator must have even degree�

But in Theorem ��� g has degree ��

Thus we haven�t made use of everything we know about the code� W �x� y� must also be

invariant under the transformation

replace

�
x

y

�
by B

�
x

y

�
�

where

B �

���
�

�

��
�
� �I �

This rules out terms of odd degree� So W �x� y� is now invariant under the group G� generated
by A and B� which consists of I� A� � I� � A� The reader can easily work out that the







new Molien series is

&G��
� �
�

�
f&G��
� � &G���
�g

�
�

�

�
�

��� 
���� 
��
�

�

�� � 
���� 
��

�

�
�

��� 
���
� ����

There are now two basic invariants� both of degree � �matching the exponents in the denom�

inator of ������ say g� and h� or the equivalent and slightly simpler pair g� � x� � �q � ��y�

and h � y�x� y�� Hence�

Theorem �
� The Hamming weight enumerator of any Hermitian self�dual code over Fq is a

polynomial in g� and h�

The general plan of attack� As these examples have illustrated� there are two stages in

using invariant theory to solve a problem�

Stage I� Convert the assumptions about the problem �e�g� the code� into algebraic con�

straints on polynomials �e�g� weight enumerators��

Stage II� Use the invariant theory to �nd all possible polynomials satisfying these con�

straints�

���� The basic theorems of invariant theory

Groups of matrices� Given a collection A�� � � � � Ar of m � m invertible matrices� we can

form a group G from them by multiplying them together in all possible ways� Thus G con�
tains the matrices I � A�� A�� � � � � A�A�� � � � � A�A

��
� A��� A�� � � �� We say that G is generated by

A�� � � � � Ar� We will suppose that G is �nite� which covers all the cases encountered in this
chapter� �For in�nite groups� see for example Dieudonn'e and Carroll ��	�� Rallis ������ Springer

��	
�� Sturmfels ��	��� Weyl �
�����

Example� Let us show that the group G� generated by the matrices

M �
�p
�

�
�

�

�

��
�

and J �

�
�

�

�

i

�


�



that was encountered in Section ��� does indeed have order �	�� The key is to discover �by

randomly multiplying matrices together� that G� contains

J� �

�
� �
� ��

�
� E � �MJ�� � ��ip

�

�
� �
� �

�
�

E� � i

�
� �
� �

�
� R � MJ�M �

�
� �
� �

�
�

So G� contains the matrices

�

�
� �
� 
�

�
� �

�
� �

� �

�
� � � f�� i�����ig �

which form a subgroup H� of order ��� From this it is easy to see that G� consists of the union
of �� cosets of H��

G� �
���
k��

akH� � ����

where a�� � � � � a� are respectively

�
� �
� �

�
�

�
� �
� i

�
�
�p
�

�
� �
� ��

�
�
�p
�

�
� �
i �i

�
�
�p
�

�
� i

� �i
�
�
�p
�

�
� i

i �

�
�

a� � 
a�� � � � � a�� � 
a�� and 
 � ��� i��
p
�� an �th root of unity� Thus G� consists of the �	�

matrices


�
�
� �
� �

�
� 
�

�
� �
� �

�
� 
�

�p
�

�
� �

� ���
�
� ����

for � � � � � and �� � � f�� i�����ig�
As a check� one veri�es that every matrix in ���� can be written as a product of M �s and

J �s� that the product of two matrices in ���� is again in ����� and that the inverse of every

matrix in ���� is in ����� Therefore ���� is a group� and is the group generated by M and J �

Thus G� is indeed equal to �����
We have gone into this example in some detail to emphasize that it is important to begin

by understanding the group thoroughly� �For an alternative way of studying G�� see �

�
pp� ���������

Invariants� To quote Hermann Weyl �
�
�� �the theory of invariants came into existence

about the middle of the nineteenth century somewhat like Minerva� a grown�up virgin� mailed

in the shining armor of algebra� she sprang forth from Cayley�s Jovian head�� Invariant theory

became one of the main branches of nineteenth century mathematics� but dropped out of

fashion after Hilbert�s work� see Fisher �	�� and Reid ������ In the past thirty years� however�


�



there has been a resurgence of interest� with applications in algebraic geometry �Dieudonn'e and

Carroll ��	�� Mumford and Fogarty ���
��� physics �see for example Agrawala and Belinfante ���

and the references given there�� combinatorics �Doubilet et al� ����� Rota ������ Stanley ��	���

and coding theory ������� ��	
�� ��	��� ��	���� Recently a number of monographs �Benson ��
��

Bruns and Herzog �
��� Smith ������ Springer ��	
�� Sturmfels ��	��� and conference proceedings

������� ���
�� ������ ��	��� on invariant theory have appeared�

There are several di�erent kinds of invariants� but here an invariant is de�ned as follows�

Let G be a group of g m � m complex matrices A�� � � � � Ag� where the �i� k�
th entry of

A� is a
��	
ik � In other words G is a group of linear transformations on the variables x�� � � � � xm�

consisting of the transformations

T ��	 � replace xi by x
��	
i �

mX
k��

a
��	
ik xk� i � �� � � � � m ��	�

for � � �� �� � � � � g� It is worthwhile giving a careful description of how a polynomial f�x� �

f�x�� � � � � xm� is transformed by a matrix A� in G� The transformed polynomial is

A� � f�x� � f�x
��	
� � � � � � x��	m �

where each x
��	
i is replaced by

Pm
k�� a

��	
ik xk� Another way of describing this is to think of

x � �x�� � � � � xm�
T as a column vector� Then f�x� is transformed into

A� � f�x� � f�A�x� � ����

where A�x is the usual product of a matrix and a vector� One can check that

B � �A � f�x�� � �AB� � f�x� � f�ABx� � ����

For example�

A �

�
� �
� ��

�

transforms x�� � x� into �x� � �x��� � x��

De�nition� An invariant of G is a polynomial f�x� which is unchanged by every linear

transformation in G� In other words� f�x� is an invariant of G if

A� � f�x� � f�A�x� � f�x� ����

for all � � �� � � � � g�


�



Example� Let

G� �
��

� �
� �

�
�

��� �
� ��

��
�

a group of order g � �� Then x�� xy and y� are homogeneous invariants of degree ��

Even if f�x� isn�t an invariant� its average over the group�

f�x� �
�

g

gX
���

A� � f�x� ��
�

is� as was already stated in Theorem �
� To prove this� observe that any A� � G transforms
the right�hand side of ��
� into

�

g

gX
���

�A�A�� � f�x� � ��
�

by ����� As A� runs through G� so does A�A�� if A� is �xed� Therefore ��
� is equal to

�

g

gX
���

A� � f�x� �

which is f�x�� Therefore f�x� is an invariant�

More generally� any symmetric function of the g polynomials A� � f�x�� � � � � Ag � f�x� is an
invariant of G�

Clearly� if f�x� and h�x� are invariants of G� so are f�x� � h�x�� f�x�h�x�� and cf�x� �c

complex�� or in other words the set of invariants of G� which we denote by J �G�� forms a ring�
One of the main problems of invariant theory is to describe J �G�� Since the transformations

in G do not change the degree of a polynomial� it is enough to describe the homogeneous
invariants �for any invariant is a sum of homogeneous invariants��

Basic invariants� Our goal is to �nd a �basis� for the invariants of G� that is� a set of basic
invariants such that any invariant can be expressed in terms of this set� There are two di�erent

types of bases one might look for

De�nition� Polynomials f��x�� � � � � fr�x� are called algebraically dependent if there is a poly�

nomial p in r variables with complex coe!cients� not all zero� such that p�f��x�� � � � � fr�x��

is identically zero� Otherwise f��x�� � � � � fr�x� are algebraically independent� A fundamental

result from algebra is �Jacobson ���
�� vol� 
� p� ��
��

Theorem ��� Any m� � polynomials in m variables are algebraically dependent�


�



The �rst type of basis we might look for is a set of m algebraically independent invariants

f��x�� � � �fm�x�� Such a set is indeed a �basis�� for by Theorem �� any invariant is algebraically

dependent on f�� � � � � fm and so is a root of a polynomial equation in f�� � � � � fm� The following

theorem guarantees the existence of such a basis�

Theorem ��� �
�� p� 
��� There always exist m algebraically independent invariants of G�

Proof� Consider the polynomial
gY

���

�t� A� � xi�

in the variables t� x�� � � � � xm� Since one of the A� is the identity matrix� t � x� is a zero of this

polynomial� When the polynomial is expanded in powers of t� the coe!cients are invariants�

by the remark immediately following the proof of Theorem �
� Therefore x� is an algebraic

function of invariants� Similarly each of x�� � � � � xm is an algebraic function of invariants� Now if

the number of algebraically independent invariants werem� �� m�� them independent variables

x�� � � � � xm would be algebraic functions of the m� invariants� a contradiction� Therefore the

number of algebraically independent invariants is at least m� But by Theorem �� this number

cannot be greater than m�

Example� For the preceding group G�� we may take f� � �x� y�� and f� � �x� y�� as the

algebraically independent invariants� Then any invariant is a root of a polynomial equation in

f� and f�� For example�

x� � �
�

�p
f� �

p
f�
��

�

xy � �
��f� � f�� �

and so on�

However� by far the most convenient description of the invariants is a set f�� � � � � fl of

invariants with the property that any invariant is a polynomial in f�� � � � � fl� Then f�� � � � � fl is

called a polynomial basis �or an integrity basis� for the invariants of G� Of course if l � m then

by Theorem �� there will be polynomial equations� called syzygies� relating f�� � � � � fl�

For example� f� � x�� f� � xy� f� � y� form a polynomial basis for the invariants of G��
The syzygy relating them is

f�f� � f�� � � �

The existence of a polynomial basis� and a method of �nding it� is given by the next theorem�


	



Theorem ��� �Noether ������ �
��� p� ������ The ring of invariants of a �nite group G of

complex m�m matrices has a polynomial basis consisting of not more than
�m�g

m

�
invariants�

of degree not exceeding g� where g is the order of G� Furthermore this basis may be obtained

by taking the average over G of all monomials

xb�� x
b�
� � � �xbmm

of total degree
P
bi not exceeding g�

Proof� Let the group G consist of the transformations ��	�� Suppose

f�x�� � � � � xm� �
X
e

cex
e�
� � � �xemm �

ce complex� is any invariant of G� �The sum extends over all e � e� � � �em for which there is

nonzero term xe�� � � �xemm in f�x�� � � � � xm��� Since f�x�� � � � � xm� is an invariant� it is unchanged

when we average it over the group� so

f�x�� � � � � xm� �
�

g
ff�x��	� � � � � � x��	m � � � � �� f�x

�g	
� � � � � � x�g	m �g

�
�

g

X
e

cef�x��	� �
e� � � � �x��	m �

em � � � �� �x�g	� �e� � � ��x�g	m �
emg

�
�

g

X
e

ceJe �say� �

Every invariant is therefore a linear combination of the �in�nitely many� special invariants

Je �
gX

���

�x
��	
� �e� � � ��x��	m �em �

Now Je is �apart from a constant factor� the coe!cient of ue�� � � �uemm in

Pe �
gX

���

�u�x
��	
� � � � �� umx

��	
m �e � ����

where e � e� � � � �� em� In other words� the Pe are the power sums of the g quantities

u�x
��	
� � � � �� umx

��	
m � � � � � u�x

�g	
� � � � �� umx

�g	
m �

Any power sum Pe� e � �� �� � � �� can be written as a polynomial with rational coe!cients in

the �rst g power sums P�� P�� � � � � Pg� Therefore any Je for

e �
mX
i��

ei � g


�



�which is a coe!cient of Pe� can be written as a polynomial in the special invariants

Je with e� � � � �� em � g

�which are the coe!cients of P�� � � � � Pg�� Thus any invariant can be written as a polynomial in

those Je with
Pm

i�� ei � g� The number of such Je is the number of e�� e�� � � � � em with ei � �
and e� � � � �� em � g� which is

�m�g
m

�
� Finally� deg Je � g� and Je is obtained by averaging

xe�� � � �xemm over the group�

Molien
s theorem� Since we know from Theorem �	 that a polynomial basis always exists�

we can go ahead with con�dence and try to �nd it� using the methods described in Section ����

To discover when a basis has been found� we use Molien�s theorem �Theorem ���� This states

that if ad is the number of linearly independent homogeneous invariants of G with degree d�
and

&G�
� �
	X
d��

ad

d �

then

&G�
� �
�

g

gX
���

�

det�I � 
A��
� ����

The proof depends on the following theorem�

Theorem ��� ��		� p� ����� ����� p� ��� The number of linearly independent invariants of G
of degree � is

a� �
�

g

gX
���

trace�A�� �

Proof� Let

S �
�

g

gX
���

A� �

Changing the variables on which G acts from x�� � � � � xm to y�� � � � � ym� where �y�� � � � � ym� �

�x�� � � � � xm�T
tr� changes S to S� � TST��� We may choose T so that S� is diagonal �see �
��

p� ������ Now S� � S� �S��� � S�� hence the diagonal entries of S� are � or �� So with a change

of variables we may assume

S �

�









�

� �
� ��

�
�
� ��

� �

�
����������


�



with say r ��s on the diagonal� Thus S � yi � yi if � � i � r� S � yi � � if r � � � i � m�

Any linear invariant of G is certainly �xed by S� so a� � r� On the other hand� by

Theorem �
�

S � yi � �

g

gX
���

A� � yi

is an invariant of G for any i� and so a� � r�

Before proving Theorem �� let us introduce some more notation� Equation ��	� describes

how A� transforms the variables x�� � � � � xm� The d
th induced matrix� denoted by A

�d�
� � describes

how A� transforms the products of the xi taken d at a time� namely xd�� x
d
�� � � � � x

d��
� x�� � � �

�Littlewood ����� p� ������ E�g�

A� �

�
a b

c d

�

transforms x��� x�x� and x
�
� into

a�x�� � �abx�x� � b�x�� �

acx�� � �ad� bc�x�x� � bdx�� �

c�x�� � �cdx�x� � d�x��

respectively� Thus the �nd induced matrix is

A���
� �

�
�a� �ab b�

ac ad� bc bd

c� �cd d�

�
� �

Proof of Theorem ��� To prove ����� note that ad is equal to the number of linearly

independent invariants of degree � of G�d� � fA�d�
� � � � �� � � � � gg� By Theorem ���

ad �
�

g

gX
���

trace A�d�
� �

Therefore� to prove Theorem ��� it is enough to show that the trace of A
�d�
� is equal to the

coe!cient of 
d in
�

det�I � 
A��
�

�

��� 
��� � � ���� 
�m�
� ����

where ��� � � � � �m are the eigenvalues of A�� By a suitable change of variables we can make

A� �

�

�
�� �

� � �

� �m

�
�� � A�d�

� �

�






�

�d� �
�d�

� � �

�d��� ��

�
� � �

�
�������
�


�



and trace A
�d�
� � sum of the products of ��� � � � � �m taken d at a time� But this is exactly the

coe!cient of 
d in the expansion of �����

It is worth remarking that the Molien series does not determine the group� For example

there are two groups of �� � matrices of order � having

&�
� �
�

��� 
����� 
��

�namely the dihedral group D
 and the abelian group Z��� � Z�
��� In fact there exist ab�

stract groups A and B whose matrix representations can be paired in such a way that every
representation of A has the same Molien series as the corresponding representation of B �Dade
������

A standard form for the basic invariants� The following notation is very useful in

describing the ring J �G� of invariants of a group G� The complex numbers are denoted by
C � and if p�x�� q�x�� � � � are polynomials� C �p�x�� q�x�� � � �� denotes the set of all polynomials

in p�x�� q�x�� � � � with complex coe!cients� For example Theorem �� just says that J �G�� �
C �	
 � 	

�
����

Also� 
 will denote the usual direct sum operation� For example a statement like J �G� �
R
 S means that every invariant of G can be written uniquely in the form r� s where r � R�

s � S�

Using this notation we can now specify the most convenient form of polynomial basis for

J �G��

De�nition� A good polynomial basis for J �G� consists of homogeneous invariants f�� � � � � fl
�l � m� where f�� � � � � fm are algebraically independent and

J �G� � C �f� � � � � � fm� if l �m � ����

or� if l � m�

J �G� � C �f� � � � � � fm�
 fm��C �f� � � � � � fm�
 � � � 
 flC �f� � � � � � fm� � ��	�

In words� this says that any invariant of G can be written as a polynomial in f�� � � � � fm �if
l � m�� or as such a polynomial plus fm�� times another such polynomial plus � � � �if l � m��

f�� � � � � fm are called primary invariants and fm��� � � � � fl �if present� are secondary invariants�







Speaking loosely� ���� and ��	� say that when describing an arbitrary invariant� f�� � � � � fm are

�free� and can be used as often as needed� while fm��� � � � � fl are �transients� and can each be

used at most once� Equations ���� and ��	� are sometimes called a Hironaka decomposition of

J �G� ���	��� p� 
	��
For a good polynomial basis f�� � � � � fl we can say exactly what form the syzygies must take�

If l � m there are no syzygies� If l � m there are
�l�m��

�

�
syzygies expressing the products

fifj �m� � � i � j � l� in terms of f�� � � � � fl�

It is important to note that the Molien series can be written down by inspection from the

degrees of a good polynomial basis� Let d� � deg f�� � � � � dl � deg fl� Then

&G�
� �
�Qm

i����� 
di�
� if l � m � �	��

or

&G�
� �
� �

Pm
j�l�� 


djQm
i����� 
di�

� if l � m � �	��

�This is easily veri�ed by expanding �	�� and �	�� in powers of 
 and comparing with ���� and

��	���

Some examples will make this clear�

��� For the group G� of Section ���� f� � 	
 and f� � 	��� form a good polynomial basis�

with degrees d� � �� d� � �
� Indeed� from Theorem �� and �����

J �G�� � C �	
 � 	����

and

&G��
� �
�

��� 

���� 
���
�

��� For the group G� de�ned above� f� � x�� f� � y�� f� � xy is a good polynomial basis�

with d� � d� � d� � �� The invariants can be described as

J �G�� � C �x� � y��
 xyC �x� � y�� � �	��

In words� any invariant can be written uniquely as a polynomial in x� and y� plus xy times

another such polynomial� E�g�

�x� y�� � �x��� � �x�y� � �y��� � xy�
x� � 
y�� �

The Molien series is

&G��
� �
�

�

�
�

��� 
��
�

�

�� � 
��

�
�

� � 
�

��� 
���







in agreement with �	�� and �	��� The single syzygy is x� � y� � �xy��� Note that f� � x��

f� � xy� f� � y� is not a good polynomial basis� for the invariant y� is not in the ring

C �x� � xy�
 y�C �x� � xy��

Fortunately the following result holds�

Theorem ��� �Hochster and Eagon ��

� Proposition �
�� A good polynomial basis exists for

the invariants of any �nite group of complex m�m matrices�

For the proof see ��
�� �
��� ��

� or ������

So we know that for any group the Molien series can be put into the standard form of

�	��� �	�� �with denominator consisting of a product of m factors �� � 
di� and numerator

consisting of sum of powers of 
 with positive coe!cients�� and that a good polynomial basis

����� ��	� can be found whose degrees match the powers of 
 occurring in the standard form

of the Molien series�

On the other hand the converse is not true� It is not always true that when the Molien

series has been put into the form �	��� �	�� �by cancelling common factors and multiplying

top and bottom by new factors�� then a good polynomial basis for J �G� can be found whose
degrees match the powers of 
 in &�
�� This is shown by the following example� due to Stanley

��	
��

Let G� be the group of order � generated by the matrices diagf��������g and diagf�� �� ig�
The Molien series is

&G��
� �
�

��� 
���
�	
�

�
�� 
�

��� 
������ 
��
� �	
�

A good polynomial basis exists corresponding to �	
�� namely

J �G�� � C �x� � y�� z��
 xyC �x� � y�� z�� �

but there is no good polynomial basis corresponding to �	
��

Remarks� ��� Shephard and Todd ����� have characterized those groups for which ���� holds�

i�e� for which a good polynomial basis exists consisting only of algebraically independent

invariants� These are the groups known as �unitary groups generated by re$ections�� A

complete list of the 
� irreducible groups �or families of groups� of this type is given in �����

and ������ p� �		�


�



��� Sturmfels ��	�� gives an algorithm for computing a good polynomial basis for the ring of

invariants of a �nite group� The computer language MAGMA ������ ��	�� �
��� has commands

for computing Molien series and �nding a good polynomial basis �and many other things��

�
� Relative invariants� If � is a homomorphism from G into the multiplicative group of
the complex numbers �i�e� a linear character of G�� then a polynomial f�x� is called a relative
invariant of G with respect to � if

A � f�x� � ��A�f�x� for all A � G �

Molien�s theorem for relative invariants states that the number of linearly independent homo�

geneous relative invariants with respect to � of degree � is the coe!cient of 
� in the expansion

of
�

jGj
X
A�G

��A�

det jI � 
Aj �

�� Gleason�s theorem and generalizations

We now make use of the machinery developed in the previous section to give a series of

results that characterize the rings to which the various weight enumerators of self�dual codes

belong� The �rst theorems of this type� for binary and ternary codes� were discovered by

Gleason ������ The results can be proved by the generalizations of the arguments used to

establish Theorem �
� We remind the reader that hwe� swe and cwe stand for Hamming�

symmetrized and complete weight enumerators� respectively� The code under consideration is

denoted by C and its shadow by S�

In each case the conclusion is that the weight enumerator being considered must be an

element of a certain ring R� We describe R by giving its Molien series �also called a Hilbert

series or Poincar�e series�

&�
� �
	X
n��

�dimCRn�

n �

where Rn is the subspace of homogeneous polynomials in R of degree n� We then give a good

polynomial basis for R �in the sense of ����� ������

In many cases R is obtained �as described in the previous sections� as the ring of invariants

of a certain matrix group G� If so then we start by giving generators for G� its order� and� if it

is a well�known group� a brief description� We have preferred to give natural generators for G�

rather than attempting to �nd a minimal but less�intuitive set � in most cases two generators


�



would su!ce� If G is a re$ection group we give its number in Shephard and Todd�s list �������

������ page �		��

In other cases �the symmetrized weight enumerator of a Hermitian self�dual code over F��

������ for example� the ring R cannot be found directly as the ring of invariants of any group�

but must be obtained by collapsing the ring of complete weight enumerators�

At the end of each subsection is a table that gives� for most of the rings mentioned� a

list of codes whose weight enumerators provide a polynomial basis for the ring� The weight

enumerators of the codes before the semicolon are primary invariants� those after the semicolon

�if present� are secondary invariants�

For example� the �rst line of Table ����� is equivalent to Theorem �
�

���� Family �I	 Binary self�dual codes

hwe of code C� ������� ��
�� �

�� ������ G � G�� �
D

�p
�

�
�
�

�
��


�
�
�
�

�
��

E 	� dihedral group

D�� �Shephard and Todd (�b�� order ��

& �
�

��� 
����� 

�

R �
�

	�� �

� �	��

where 	� � x� � y�� �
 � x�y��x� � y���� For example� since a Type II code is also a Type I

code� the weight enumerator of g��� ��	�� must be in this ring� It is�

	�� � 	��� � ��	
��
 � �	����
 � �
��
 �

hwe of shadow S� It follows from Theorem � that if C has weight enumerator W �x� y� then

its shadow has weight enumerator S�x� y� � W ��x� y��
p
�� i�x� y��

p
��� This map from W

to S preserves multiplication and addition� so to evaluate it it su!ces to consider the images

of the generators of the above ring� We �nd that x� � y� becomes �xy and x�y��x� � y���

becomes �
�x� � y���� So S�x� y� belongs to the ring

R �
�

xy� �x� � y���
� �	��

In particular� every element of the shadow has weight congruent to n�� mod 
 �since this

is true of the generators��

The shadow must satisfy an additional constraint� If C is Type I� let W �j	�x� y� be the

weight enumerator of coset Cj � j � �� � � � � 
 �see ������ Then W
��	�x� y��W ��	�x� y� is �up to


�



sign� a multiplicative function on codes� i�e�� if C is the direct sum of two Type I codes C� and

C��� then W ��	 �W ��	 for C is 
� times the product of the polynomials W ��	 �W ��	 for C�

and C��� In order for this property to still hold when one �or both� of C� and C�� is of Type II�

we adopt the convention that for a Type II code� W ��	�W ��	 is simply the weight enumerator

of the code�

Then the additional condition satis�ed by the shadow is that �if C is Type I or Type II�

W ��	�x� y��W ��	�x� y� is a relative invariant for the group G��� �see �	��� with respect to the

character

�

�
�p
�

�
�

�

�

��
��

� in� �

��
�

�

�

i

��
� 
n

where 
 � ��� i��
p
� ��	�� An equivalent assertion is that W ��	�W ��	 is an absolute invariant

for the subgroup of G��� with determinant ��

It follows �see ��	� for the proof� that for a Type I code W ��	�x� y��W ��	�x� y� lies in the

following ring�

& �
�� 
�


��� 

���� 
���

R �
�� xy�x
 � y
��x
 � 

x�y� � y
�

x
 � �
x�y� � y
� x�y��x� � y���
� �	��

One of the di�erences between binary codes of Types I and II is that whereas the weight

enumerator of the former is invariant under a group of order only ��� the weight enumerator of

the latter is invariant under a group of order �	� �see Eq� �	���� The above result restores the

balance to a certain extent� by requiring W ��	 �W ��	 to be a relative invariant for the larger

group�

���� Family �II	 Doubly�even binary self�dual codes

hwe of C ������� ��
�� �

�� ������

G � G��� �

�
�p
�

�
�

�

�

��
�
�

�
�

�

�

i

��
� order �	� �	��

�Shephard and Todd (	�

& �
�

��� 

���� 
���

R �
�

x
 � �
x�y� � y
� x�y��x� � y���
� �		�


�



Codes whose weight enumerators give generators for the above rings�

Ring Codes

�	�� i� ����� e
 ����
�	�� i� ����� e
 ����
�	�� e
 ����� g�� ��	�� d

�
��� �d��e�f��

� �x���
�
�		� e
 ����� g�� ��	�

�����

Remark� The above groups G�� and G��� are also the two�dimensional real and complex

Cli�ord groups occurring in quantum coding theory �
��� �
	�� At present this appears to

be nothing more than a coincidence� However� in view of the other mysterious coincidences

involving the Cli�ord groups� there may be a deeper explanation that is presently hidden

�compare the remarks in Section ��	��

���� Family �	 Ternary codes

hwe of C ������� ��
�� ������ ���	� p� �����

G �

�
�p



�
�

�

�

��
	
�

�
�

�

�

�

	
� � � e��i��

�
� order 
�

�Shephard � Todd (��

& �
�

��� 
����� 
���
�����

R �
�

x� � �xy�� y��x� � y���
�����

cwe of C� �n � C ���	��� ���	� p� ����� �This forces the length to be a multiple of ����

G �

�
�p



�

� � � �
� � �
� � �

�
�� �

�

� � � �
� � �
� � �

�
�� �

�

� � � �
� � �
� � �

�
�� �

�

� � �

�

�
��
 

�

order ��	��

& �
�� 
��

��� 
������� 
���

R �
�� �����

���� ��� � �
�
�

���
�

where

a � x� � y� � z�� b � x�y� � y�z� � z�x��

p � 
xyz� ��� � a�a� � �p���

�� � a�� � ��b� �� � �x� � y���y� � z���z� � x�� �


	



cwe of C� not requiring that �n � C ��	�� �Now the length is just a multiple of 
��

G �

�
�p



�

� � � �
� � �

� � �

�
�� �

�

� � � �
� � �
� � �

�
�� �

�

� � �

�

�
��
 

�

order 	�

& �
�� 

�� � 
��

��� 
����� 
����
�

R �
�X

i��

f �i	S

where S � C ��� � �
�
�� t

���� s � y� z� t � y� z� �� � x�x�� s��� �� � �x
�� ��x�s�� s�� f ��	 � ��

f ��	 � t�	���� 	� � s��x� � s��� f ��	 � t�	��� f
��	 � t���� f

��	 � t
	�� f
�
	 � t��	�����

Codes�
Ring Codes

����� t� �
��� g�� �
��

���
� e��� �x���
�� g�� �
��� S�
�� �x������ XQ�� �x�����
���
�

���� Family �
H	 Self�dual codes over F� with Hermitian inner product

hwe of C ������� ���	� p� ������

G �

�
�

�

�
� 

� ��

�
�

�
� �
� ��

� 
� Weyl group of type G�

	� dihedral group D��

�Shephard � Todd (�b�

& �
�

��� 
����� 
��

R �
�

x� � 
y�� y��x� � y���
�����

cwe of C� �n � C �There must be some word of full weight� so this is not a severe restriction�

G �

�
�

�

�



�
� � � �
� � �� ��
� �� � ��
� �� �� �

�
���� �

�



�
�

��
��

��

�
���� �

�



�
� � � �
� � � �
� � � �
� � � �

�
���� �

�



�
� � � �
� � � �
� � � �
� � � �

�
����
 

order ���

& �
�� 
��

��� 
����� 
����� 

���� 
���

R �
�� �x� � y���x� � z���x� � t���y� � z���y� � t���z� � t��

x� � y� � z� � t�� �
��� f
� f��
�����

��



where

f
 � x
 � � � ��
 terms� � �
x�y� � � � � �� terms� � ���x�y�z�t� � cwe of e
 � F�
f�� � �s� � 
x�y� � 
z�t���s� � 
x�z� � 
y�t���s� � 
x�t� � 
y�z�� �
s� � x�y� � x�z� � � � � �� terms� �

cwe of C� assuming �n � C and C and C have same cwe�

G � previous G together with

�



�
� � � �
� � � �
� � � �
� � � �

�
����

	� Weyl group of type F� �Shephard � Todd (���� order ����

& �
�

��� 
����� 
����� 

���� 
���

R �
�

x� � y� � z� � t�� �
��� f
� f��
�����

swe of C� �n � C� �Set t � z in cwe�

& �
�� 
��

��� 
����� 
����� 

�

R �
�� f�x�� z���y� � z��g�

x� � y� � �z�� �
��� f�x� � z���y� � z��g� �����

Remark� If we try to apply invariant theory directly to the swe� we are led to the group

G �

�
�

�

!
B" � � �
� � ��
� �� �

#
CA �

!
B" � � �
� � �
� � �

#
CA �

!
B" �

��
��

#
CA
 

�Weyl group of type B�� Shephard � Todd (�a� of order 
�� with Molien series

& �
�

��� 
����� 
����� 
��
�

However� the invariant of degree 
 is

�� � �x
� � z���y� � z�� �

which cannot be obtained from the swe of any self�dual code of length 
� The ring of invariants

here and the ring in ����� have the same quotient �eld� So there is no group whose ring of

invariants is ������

��



Codes�
Ring Codes

����� i� �

�� h� �
��
����� i� �

�� h� �
��� e
 � F�� �e�e
�� �x������ d���
����� i� �

�� h� �
��� e
 � F�� �e�e
�� �x�����
����� i� �

�� h� �
��� e
 � F�� �e�e
�� �x�����

���	�

Here d��� is the code obtained from d��� of Section ���
 by multiplying the last four coordinates

by ��

��
� Family �
E	 Self�dual codes over F� with Euclidean inner product

�This is inadequately treated in ������ where only even codes are considered�� Neither the

hwe nor the swe can be obtained directly from invariant theory� but must be obtained by

collapsing the cwe� Since �v� v� � � � P
v�i � � �

P
vi � � � �v� �n� � �� we may assume

�n � C�

cwe of C

G �

�
�

�

!
BBB"
� � � �
� � �� ��
� �� �� �
� �� � ��

#
CCCA �

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA �

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA
 

order �	�

& �
�� 
��

��� 
����� 
����� 
����� 

�

R �
�� abcd�a�� b���a� � c�� � � ��c� � d��

symmetric polynomials in a�� b�� c�� d�
�����

where

a � ��x � y � z � t���� b � ��x� y � z � t��� �

c � ��x � y � z � t���� d � ��x� y � z � t��� �

cwe of C� assuming C has same cwe as C�

G � previous group together with

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA

�Weyl group of type B�� Shephard � Todd (�a�� order 
�


& �
�

��� 
����� 
����� 
����� 

�

R � symmetric polynomials in a�� b�� c�� d� � �����

��



swe of C� �Set t � z in the above cwe�

& �
� � 

 � 
��

��� 
����� 
����� 
��

R �
�� f�x� � z���y� � z��g�� f�x� � z���y� � z��g�

x� � y� � �z�� x� � y� � �z� � ��xyz�� z��x� y���xy � z��
� �����

hwe of C� �Set t � z � y in the cwe�

& �
� � 
�

��� 
����� 
��

R �
�� y��x� � y���

x� � 
y�� y��x� y��
� ���
�

Rather surprisingly� ������ ������ ���
� appear to be new�

Codes� The following codes will be used�

i� � ����� cwe � x� � y� � z� � t�� swe � x� � y� � �z�� hwe � x� � 
y�

c� �

�
� � � �
� � � �

�
� a �
���
� Reed�Solomon code�

cwe � x� � y� � z� � t� � ��xyzt� swe � x� � y� � �z� � ��xyz��
hwe � x� � ��xy� � 
y� �

c� �

�

� � � � � � �
� � � � � �
� � � � � �

�
�� �

cwe � x� � � � � �
 terms� � �x�yzt� � � ��
 terms� � 	x�y�z� � � � � �
 terms��
hwe � x� � �x�y� � ��x�y� � ��xy
 � ��y� �

���
�

Codes�
Ring Codes

����� i�� c�� c�� e
 � F�� %
����� i�� c�� c�� e
 � F�
����� i�� c�� c�� e
 � F�
���
� i�� c�� c�

�����

Remark� The question mark in the �rst line of the table indicates that we do not have a

code that produces the degree �� polynomial in the numerator of ������ Such a code would

necessarily be odd and have the property that the cwe of C is not equal to that of C� Pre�

sumably a random self�dual code would do� but we would prefer to �nd a code with some nice

structure�

�




���� Family �
H�
I 	 Additive self�dual codes over F� using trace inner product

hwe of C�

G �

�
�

�

�
� 

� ��

� 
� order �

& �
�

��� 
���� 
��

R �
�

x� y� y�x� y�
�����

cwe of C� �n � C�

G �

�
M� �

�

�

!
BBB"
� � � �
� � �� ��
� �� � ��
� �� �� �

#
CCCA � �� �

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA
 
� order �

& �
� � 
�

��� 
���� 
������ 
��

R �
�� BCD

A�B� � C�� D�� B�C�
�����

where

A � �x� y���� B � �x� y���� C � �z � t���� D � �z � t��� � �����

swe of C� �n � C� �Set t � z in cwe�

& �
�

��� 
���� 
����� 
��

R �
�

A� B� � C�� B�C�
���	�

where

A � �x� y���� B � �x� y���� C � z � �����

cwe of C� �n � S� Note that ��n� u� � wt�u� � n��u� � wt�u� �mod �� if and only if the

number of ��s in u is even� So if �n � S� the cwe is invariant under diagf����� �� �g�

G � hM�� diagf����� �� �gi � order �

& �
�

��� 
����� 
����� 
��

R �
�

D� A�B � C� A� � B� � C�� A� � B� � C�
�����

where A� B� � � � are as in ������

�




swe of C� �n � S� �Set t � z in cwe�

& �
�

��� 
���� 
����� 
��

R �
�

symmetric polynomials in A� B� C
�����

hwe of S�

& �
�

��� 
���� 
��

R �
�

�y� � �
��x

� � y��
���
�

As a corollary� the weight of a vector in the shadow is congruent to n �mod ���

hwe of W ��	 �W ��	� Again we use the terminology W �i	� i � �� � � � � 
� for the cosets of C�

in C�� �as in Sect� ��

G �

�
M� �

�

�

�
� 

� ��

�
� �� �

�
� �
� ��

� 

with character ��M�� � �� ����� � ����n �Ker � 	� S��

& �
�

��� 
����� 
��

R �
�

x� � 
y�� y�x� � y��
� ���
�

cwe of S� �n � C� Belongs to image of ����� under the map that sends �x� y� z� t� to

�x� y� z� t���M��

R �
�� ABD

C� A� �B�� D�� A�B�
�����

cwe of W ��	 �W ��	� �n � C� G � hM�� ��� ��i with character ��M�� � �� ����� � ����� �

����n� order 
�
& �

�

��� 
���� 
����� 
����� 
��

R �
�

D� A� � B� � C�� ABC� A� �B� � C�
�����

where

A � x� y� B � x� y� C � z � t� D � z � t�

��



swe of W ��	 �W ��	� �n � C�

& �
�

��� 
����� 
����� 
��

R �
�

A� �B� � C�� ABC� A� �B� � C�
�����

cwe of S� �n � S� Belongs to image of ����� under the map x� y� y � x� z � t� t� z�

R �
�

�D� A �B � C� A� �B� � C�� A� �B� � C�
�����

swe of S� �n � S� Set D � � in ������

hwe of S� �n � S� Same as ���
��

cwe of W ��	�W ��	� �n � S� G � hM�� �� � diagf����������gi� with character ��M�� � ��

����� � ����n� order ��
& �

�

��� 
����� 
����� 
��

R �
�

D� A�B � C� A� � B� � C�� A� � B� � C�
���	�

Remark� We may obtain W ��	 � W ��	 by applying �� to W ��	 � W ��	� which in turn is

obtained by applying �� to W
��	 �W ��	�

���� Family �
H�
II 	 Additive even self�dual codes over F� using trace inner

product

hwe of C� Same as family 
H� see ������

cwe of C� �n � C�

G � hM�� ��� ��i � order 
�

& �
� � 
�

��� 
������ 
����� 
��

R �
�� ABCD

D�� A� � B� � C�� A� � B� � C�� A� � B� �D�
��
��

swe of C� �n � C� �Set t � z in cwe�

& �
�

��� 
����� 
����� 
��

R �
�

symmetric polynomials in A�� B�� C� ��
��

��



cwe of C �not assuming �n � C��

G � hM�� ��i� order ��

& �
� � 
� � �
�

��� 
������ 
��
��
��

Codes� The following codes will be used�

i� � ���� cwe � swe � hwe � x� y

i�� � ���� cwe � swe � x� z

i��� � ���� cwe � x � t� swe � x� z

i� � ���� ���� see ���
�

i�� � ���� ���� cwe � x� � y� � �zt� swe � x� � y� � �z�� hwe � x� � 
y�

c� � ����� ���� ����

c� � ������ �������

c�� � ������ �������

Ring Codes

����� i�� i�
����� i�� i�� i

�
�� c�� c�

���	� i�� i�� c�
����� i��� i���� i�� c��
����� i��� i�� c��
���
� i�� i�
����� i�� i�� i

�
�� c�� c�

���	� i��� i���� i�� c�
��
�� i�� i

�
�� c

�
�� h�� c�

��
�� i�� c
�
�� h�

��

�

���� Family qH	 Codes over Fq� q a square� with Hermitian inner product

The case q � 
 has been studied in Section ��
� The next case is q � 	� but as little

attention has been paid so far to codes over this �eld we shall not discuss the cwe or swe

further� It is possible to say a little about the Hamming weight enumerator in the general

case�

hwe of C �See Theorem ����

G �

�
�p
q

�
� q � �
� ��

�
�

�
�� �
� ��

� 
� order 


��



& �
�

��� 
���

R �
�

x� � �q � ��y�� y�x� y�
��

�

�This is somewhat unsatisfactory� since y�x�y� forces a vector of weight �� which is impossible
in a self�dual code��

��
� Family qE	 Codes over Fq with Euclidean inner product

The cases q � �� 
 and 
 have been studied in Sections ���� ��
� ���� As q increases the

results rapidly become more complicated�

We �rst discuss the case q � � and then say a little about the general case�

cwe of C� q � �� Let � � e��i�
�

G �

�
�p
�
��rs�r�s���


��� diagf�� �� ���� ���� �g

�
� order �
�

& �
	�
�

��� 
����� 
����� 
����
��
��

where 	�
� is a polynomial of degree ��� with 	��� � ��� A good basis for this ring would

therefore involve about �� polynomials� Such Behavior is typical of most groups � see Hu�man

and Sloane ��
	��

swe of C� q � �

G �

�!B" � � �
� � � �� �� � ��

� �� � �� � � ��

#
CA � diagf�� �� ��g�

!
B" � � �
� � �
� � �

#
CA
 

�

�the re$ection group �
� ��� a three�dimensional representation of the icosahedral group� Shep�

hard and Todd (�
�� order ���

& �
�

��� 
����� 
����� 
���

R �
�

�� �� �
��
��

where

� � x� � 
yz

� � x�yz � x�y�z� � x�y
 � z
� � �y�z�

� � �x�y�z� � 
x
�y
 � z
�� ��x�y�z� � ��x��y�z � yz�� � �x�y�z�

� ��x�y�z� � y�z�� � �y
z
 � y�� � z�� �

��



Codes� ����� ��������

�� and either

d��
 � �����

��������� �����������

�� �����������

or

e��� � ������
������
�� ����������� ��
��

for the invariant of degree ���

In ����� it was observed that these invariants were already known to Klein ���
�� ���
�� This

paper then went on to remark that �it is worth mentioning that precisely the same invariants

have recently been studied by Hirzebruch in connection with cusps of the Hilbert modular

surface associated with Q�
p
�� � see ��
��� p� 
��� However� there does not seem to be any

connection between this work and ours�� An elegant explanation for this was soon found by

Hirzebruch ��
��� The basic idea is to take a self�dual code over F
 and to obtain from it

�using a version of Construction A ����� a lattice over Z�
p
��� The theta series of this lattice is

a Hilbert modular form which can be written down from the swe of the code� This produces

an isomorphism between the ring of swe�s and the appropriate ring of Hilbert modular forms�

The monograph �	�� gives a comprehensive account of these connections�

Incidentally� we do not know if the cwe ring described by ��
�� collapses to ��
���

hwe of C� q � �� ����
�� �Set z � y in swe�

& �
� � 
�� � 
��

��� 
����� 
��

R �
�� �� ��

�� �

where

� � x� � 
y��

� � y��x� y���x� � �xy � �y���

� � y��x� y����x� � ��xy � �y�� �

cwe of C� q � �� �n � C� �The group is now considerably larger� but the ring of invariants

is no simpler�

G � hprevious group� diagf�� �� ��� ��� ��gi

�	



	� 
�����Sp����� a Cli�ord group ����� ����� �

�� �
��� �see also ��
���� order 
����

& �
� � 

�� � �

�� � ��
�� � ��

� � 


�� � ��
��� 


� � �
��

��� 
������ 
������� 
����
�

The sum of the coe!cients in the numerator is ���� so again there is no possibility of giving a

good basis�

The degree �� invariant is the cwe of either of the codes of length �� given in ��
���

cwe of C� general q� It is hard to say anything in general� but if q is an odd prime p we

can at least describe the structure of the group G under which the cwe is invariant�

G �

�
M �

�p
p
��rs�r�s���


�p��� J � diagf�� �� ��� ��� � � �g��I

 
�

If �n � C then the cwe is invariant under the larger group G� � hG�P i� where

P � xj � xj��� �subscripts mod p�

We use )�H� to denote the center of a group H �

Theorem ��� �a� Suppose p � � �mod 
�� Then G has structure Z���� SL��p� and center

)�G� � h�Ii� G� has structure Z��� � p��� SL��p� and )�G�� � h�I� �Ii� �b� Suppose

p � 
 �mod 
�� Then G has structure Z�
� � SL��p� and )�G� � hiIi� G� has structure

Z�
��p���SL��p� and )�G
�� � hiI� �Ii� In either case G and G� are preserved by the Galois

group Gal�Q�
p
p� ���Q��

Remarks� �i� The group G was �rst studied in the present context by Gleason ������ The

groups G and G� �also for composite odd q� and with the appropriate modi�cation for even q

as well� are a special case of the construction in �
�
�� Weil obtains analogs of G�� in which

Fq can be replaced by any locally compact abelian group isomorphic to its Pontrjagin dual�
�

�ii� The analogous results for p � � are given in Sections ��� and ���� �iii� In both cases �a�

and �b� G� is the full normalizer �with coe!cients restricted to Q�
p
p� ��� of the extraspecial

p�group E � hP�Qi� where Q � diagf�� �� ��� ��� � � �g �cf� �

���

Proof� G normalizes E� since MPM�� � Q���MQM�� � P � JPJ�� � �aPQ��� JQJ�� �

�bQ for appropriate integers a and b� �Note that �I � PQP��Q�� � E�� Thus we have a

�We are grateful to N� D� Elkies for this comment�

��



surjective homomorphism 	 from G to SL��p� � M �
�
�
�
��
�



� J �

�
�
��

�
�



� In particular G

is transitive on E�h�Ii�
Suppose G � E is nontrivial� If there were a noncentral element of E in G then by the

transitivity of G it would follow that �cP � G and �dQ � G for some c� d� But then �I � G�

This would force the length of C to be a multiple of p� which is false �since there is always a

code of length 
�� Hence G �E � fIg�
E is irreducible� so the centralizer of E consists only of multiples of I � It follows that ker	

consists of multiples of elements of E� But the fourth power of an element of ker	 would be in

E� and this must be I � Thus ker	 is either h�Ii or hiIi� If p � � �mod 
� then i �� Q�pp� ��� so
the �rst possibility obtains� It remains to show that iI � G when p � 
 �mod 
�� The matrix
�MJ�pM� is readily veri�ed to belong to ker	� But det��MJ�pM�� � �detM�p��� Since M�

maps xj to x�j � detM� � ��� so detM � 
i� It follows that �MJ�pM� is 
iI �

Corollary �� If p � 
 �mod 
� then a self�dual code over Fp must have length divisible by 
�

Proof� iI � G�

The conclusion of Corollary � also holds for self�dual codes over Fq � q � 
 �mod 
� ������

hwe of C� general q� Belongs to the ring ��

�� If q � 
 �mod 
� we can say more ��������

G �

�
�p
q

�
� q � �
� ��

�
�

�
i �
� i

� 
� order �

& �
� � 
�

��� 
���

R �
�� x�y� � �xy� � y�

x� � 
�q � ��xy� � �q � ���q � 
�y�� x�y � �q � 
�xy� � �q � ��y�

����� Family �
Z

I 	 Self�dual codes over Z�

cwe of C� �������

G �

�
M� �

�

�

!
BBB"
� � � �
� i �� �i
� �� � ��
� �i �� i

#
CCCA � �� � diagf�� i� �� ig

 
� order �


& �
�� 
��

��� 
���� 
������ 

�

R �
�� �BCD���B� � C��

A� B� � C�� D�� B�C�
��
��

��



where

A � x� z� B � y � t� C � x� z� D � y � t � ��
	�

swe of C� �Set t � y in cwe�

& �
�

��� 
���� 
����� 

�

R �
�

A� B� � C�� B�C�
��
��

hwe of C� �Set t � z � y in cwe�

& �
� � 



��� 
���� 
��

R �
�� y��x� y��

x� y� y�x� y��x� � xy � �y��
��
��

cwe� �n � C

G �

�
M�� ���

!
BBB"
� � � �
� � � �
� � � �
� � � �

#
CCCA
 

� order ���


& �
�� � 
����� � 
���

��� 
����� 

����� 
���

R �
��� A�� �B�� � C�� �D���� ��� ����

A� � B� � C� �D�� A
 �B
 � C
 �D
� �
� A�B�C�D�
��
��

where

�
 � A�D� �B�C� �

��� � �ABCD���A�B� � C�D� � A�C� � B�D��

swe of C� 
�n � C �Set t � y in cwe�

& �
�� 
��

��� 
����� 

��

R �
�� A�B�C�

A� �B� � C�� A
 B
 C
� B�C�
� ��

�

This ring may also be described as R�
B�C�R�
B
C
R�� where R� is the ring of symmetric

polynomials in A�� B�� C��

��



hwe of C� 
�n � C� �Set t � z � y in cwe�

& �
�� � 

��� � 
���

��� 
����� 

�

R �
��� y��x� � 
y���x� � y����� ��� y��x� � y����

�x� � 
y���� y��x� y��
��

�

cwe of C� �n � S� If �n � S� Part �i� of Theorem � implies that if a vector �a�b�cdd � C

then b�d��c � �
��b�d���c �mod 
�� i�e� b � 
d �mod ��� and so �� � diagf�� 
� �� 

g � G�

G � hM�� ��i� order �	�

& �
�� 
�


��� 
���� 
����� 

���� 
���

R �
�� B�C�D��B� � C���B� �D���C� �D��

A� B� � C� �D�� B
 � C
 �D
� B�� � C�� �D��
��
��

swe and hwe of C� 
�n � S� Same as ��
�� and ��
��� respectively�

cwe of S� the image of ��
�� under A� B� B � 
C�C� A� D� 
�D

& �
�� � 
���

��� 
���� 
������ 

�

R �
�� A�C�D���A� � C��

B� A� � C�� �D�� �A�C�
��
��

swe of S� the image of ��
�� under A� B� B � 
C� C � A

& �
�

��� 
���� 
����� 

�

R �
�

B� A� � C�� � A�C�
��
��

It follows that the norms of vectors in the shadow are congruent to n mod ��

cwe of S� �n � C� the image of ��

� under A� B� B � 
C� C � A� D � 
�D�

swe of S� 
�n � C�

& �
�� 
��

��� 
����� 

��

R �
�� �A�B�C�

A� �B� � C�� A
 �B
 � C
� � A�C�
��
��

�




cwe of S� �n � S�

R �
�� A�C�D��A� � C���C� �D���A� �D��

B� A� � C� �D�� A
 � C
 �D
� A�� � C�� �D��
��
	�

swe of S� 
�n � S� same as ��
���

cwe of W ��	 �W ��	�

G � hM�� �� � diagf�� 
���� 
gi � order ��� �

with character ��M�� � in� ����� � 
n

& �
�� 
�


��� 
���� 
����� 

���� 
���

R �
�� A�B�C��A� � B���A� � C���B� � C��

D� symmetric polynomials in A���B���C�
�����

swe of W ��	 �W ��	�

& �
�� 
�


��� 
����� 

���� 
���

R � omit D from ����� �����

�This ring has also been studied in ������

cwe of W ��	�W ��	 with �n � C� G � hM�� ��� ��i� order ��

� with character ��M�� � in�

����� � �� ����� � 
n� ker��� has order 
���

& �
�� 
��

��� 
����� 

���� 
������ 
���

R �
�� A�B�C�D��A� � B���A� � C���A� �D���B� � C���B� �D���C� �D��

symmetric polynomials in A���B���C�� D� �����

swe of W ��	 �W ��	 with �n � C�

& �
�

��� 
����� 

���� 
���

R �
�

symmetric polynomials in A�� � B�� � C�

�




����� Family �
Z

II	 Type II self�dual codes over Z�

cwe of C� �n � C ����� ���� In view of the remarks following Theorem �� this is not a severe

restriction�

G � hM�� ��� ��i � order ��



& �
�� � 
����� � 
���

��� 

����� 
������ 
���

R �
��� f���� ��� f���

A
 �B
 � C
 �D
� f
� A�� � � � ��D��� A�� � � � ��D��
���
�

where

f
 � A�C� � C�D� �D�B� � B�A� �A�D� �B�C� �

f�� � �ABCD�� �

f�� � �ABCD���A� � C���C��D���D� �B���B� � A���A� �D���B� � C��

swe of C� 
�n � C

& �
�� 
��

��� 

����� 
���

R �
�� ���

�
� h
� ���
���
�

where

�
 � x
 � ��x�z� � ��x�z� � ��x�z� � z
 � ���y
 �

��� � fx�z��x� � z��� � 
y
gf�x� � �x�z� � z��� � �
y
g �
��� � y
�x� � z��
 �

h
 � fxz�x� � z��� �y�g� �

cwe of C� �n � C� Lee weights divisible by � ������

G �

�
M�� ��� ���

!
BB"
� � � �
� i � �
� � � �
� � � i

#
CCA
 

�Shephard � Todd (�a�� order 
	���

& �
�

��� 

���� 
������� 
���

R �
�

f��� symmetric polynomials in A

� B
� C
� D
 �����

��



swe of C� 
�n � C� Lee weights divisible by � ������ �Set t � y in cwe�

& �
�

��� 

���� 
������ 
���

R �
�

�
� ���� ���
�����

However� the following result shows that the extra condition on the Lee weights may not be a

good thing� For it was shown in ���	� that most interesting linear codes over Z� do not have

linear images under the Gray map�

Theorem ��� ���� If C is a self�dual code over Z� with all Lee weights divisible by 
� then the

binary image of C under the Gray map ���� is linear�

For the proof� see �����

Codes� The following codes will be used� i� and D
� are de�ned in Section ����� and o
 is

the octacode �
��� J�� is the self�dual code with generator matrix�











�

� � � � � � � � � �
� � � � � � 
 
 � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

�
������������

and jJ��j � 
��� ������� J�� has generator matrix�
















�

� � � � � � � � � � 
 
 � � 
 �
� � � � � � � � � � 
 
 � � � 

� � � � � � � � � � � � � � 
 

� � � � � � � � � � 
 � � 
 
 �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � 
 � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

�
�����������������

and jJ��j � 
����
K�m �m � �� but note that K�

	� D
� � is a self�dual code introduced by Klemm ������

having generator matrix �





�

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �

�
������ � �����

��



jK�mj � 
���m��� g � ��m���
m��� cwe � �A�m � B�m � C�m �D�m��� �see ��
	���

Ring Codes

��
�� i�� D
� in � versions ������ o
� J��
��
�� i��D
� � o

��
�� i��D
� � o

��
�� K�� K
� o
� K��� K���J��
��

� K�� K
� o
� K��

��

� K�� o
� K
� K��

���
� K
� o
� K��� K��� J���%
���
� K
� o
� K��� J��
����� K
� K��� K��

�����

Again the question mark indicates that we do not have a satisfactory code to produce the

desired polynomial�

����� Family mZ	 Self�dual codes over Zm

The Hamming weight enumerator of a self�dual code over Zm for general m has been

considered in ������


� Weight enumerators of maximally self�orthogonal codes

In some cases it is possible to prove results analogous to those in Section � for codes which

are maximally self�orthogonal yet not self�dual� the ��� 
� 
� Hamming code e� with weight

enumerator p� � x� � �x�y� being a typical example� A more trivial example is the zero code

z� � f�g� with weight enumerator p� � x�

The following results are proved in ��	���

For n odd� let C be an �n� ���n� ��� self�orthogonal binary code� Thus C� � C � �� � C��

The weight enumerator of C belongs to the module R � p�C �x��y�� x�y��x��y����
p�C �x��
y�� x�y��x� � y����� which in the notation of the previous section would be described by

& �

� 
�

��� 
����� 

�

R �
p�� p�

x� � y�� x�y��x� � y���
���	�

�compare �	���� If in addition C is doubly�even� the module is described by�

�a� if n � �m� ��
& �


� � 
��

��� 

���� 
���

R �
p�� p��

x
 � �
x�y� � y
� x�y��x� � y���
�����

��



�b� if n � �m� ��

& �

� 
��

��� 

���� 
���

R �
p�� p��

x
 � �
x�y� � y
� x�y��x� � y���
�����

�compare �		��� Here p�� � x�� � ��x��y� � ���x�y
 � ��x
y��� p�� � x�� � ���x�
y
 �

����x��y�� � ��
x�y���

Codes� The code g�� is the cyclic version of g�� obtained by deleting any coordinate�

Ring Codes

���	� i�� e
� z�� e�
����� e
� g��� e�� g��
����� e
� g��� z�� �d��e��

�

There are analogous results for ternary codes� see ��	���

�� Upper bounds

Of course� we are interested not just in codes per se� but also in good �or� at the very least�

interesting� codes� that is� codes with large minimal distance �Hamming� Lee� or Euclidean�

as appropriate�� In order to know if a particular code is good� it is necessary to know how

good comparable codes could be� that is� for a given length and dimension� what is the optimal

minimal distance% For general codes� this question was studied in Chapters xx �Levenshtein��

yy �Brouwer� and zz �Litsyn�� we are� of course� interested in self�dual codes� As one might

imagine� the constraint of self�duality usually leads to stronger bounds�

We will concentrate most of our attention on binary codes �family ��� pointing out analogues

to other families as they arise�

Essentially all of the bounds we will be discussing are special cases of the linear program�

ming �or LP� bound �Section ��� of Chapter yy �Brouwer��� that is� they rely on the fact that

both the weight enumerator of the code and the weight enumerator of its dual are nonnegative�

For a self�dual code� these weight enumerators are� of course� equal� So for Type II self�dual

binary codes� for instance� we have the following�

Theorem ��� If there exists a Type II self�dual binary code of length n and minimal distance

d� then there exists a homogeneous polynomial W �x� y� with nonnegative �integer� coe	cients

��



such that

�n��W �x� y� x� y� � W �x� y�

W ��� y� � � �O�yd�

W �x� iy� � W �x� y��

These conditions assert that the code is self�dual� that it has minimal distance d� and that it

is of Type II� respectively�

The analogues for other classes of codes should be clear� in each case� the appropriate enu�

merator �Hamming� symmetrized� complete� is nonnegative� invariant under the appropriate

transformations �see Section ��� and is zero on all terms of low weight� In some cases� we can

add further constraints from shadow theory �Section ��� since the weight enumerator of the

shadow of the code is also nonnegative� For instance�

Theorem �	� If there exists a Type I self�dual binary code of length n and minimal distance

d� then there exist homogeneous polynomials W �x� y� and S�x� y� with nonnegative �integer�

coe	cients such that

W �x� y� � ��n��W �x� y� x� y�

W ��� y� � � � O�yd�

S�x� y� � ��n��W �x� y� i�x� y���

Again there are analogues for each family for which shadows are well�de�ned ��� 
H�� 
Z��

Remark� For a code C from family qH �linear over Fq� q a square� with Hermitian inner

product�� it can be shown that the polynomial

S�x� y� � q�n��W ��
p
q � ��x� �pq � ��y� y � x�

has nonnegative �but not necessarily integral� coe!cients� note that this agrees with the shadow

enumerator for q � 
� This can be used to strengthen the LP bound in those cases� The known

proof that this is nonnegative involves constructing a quantum code Q from C ���
���� S�x� y�

is then the shadow enumerator of Q ������� proved nonnegative in ������� There is surely a

more direct proof�

One way to apply the linear programming bound is to ignore the constraint that the coe!�

cients of W �x� y� be nonnegative� and simply ask that the low order coe!cients be as speci�ed�

�	



This gives a surprisingly good bound for Type II binary codes� Recall from Theorem �
 that

for C of Type II� W �x� y� lies in the ring

R � C �x
 � �
x�y� � y
� x�y��x� � y�����

and if C has length n� W �x� y� has degree n� The subspace of R of degree n has dimension

D � � n�� ���� This lets us set the �rst D coe!cients of W �x� y� arbitrarily� in particular� there

exists a unique element W ��x� y� of R such that W ���� y� � � � O�y�D�� This is known as

the extremal enumerator� since W � has the largest minimal distance of any Type II self�dual

enumerator� It follows immediately that the minimal distance of any Type II code of length n

is bounded above by the minimal distance of W ��

Theorem �
� ��	�� The �rst nonzero coe	cient of W ���� y� occurs precisely at degree 
D�

in particular� the minimal distance of a Type II self�dual binary code of length n is at most


�n��
� � 
�

In fact it is possible to use the B*urmann�Lagrange theorem �Theorem 
�� to derive an

explicit formula for the number of words of weight 
D in the extremal enumerator� Let

� � �n��
�� so that D � � � �� Then we have

Theorem ��� �Mallows and Sloane ��	���� A��
��� the number of codewords of minimal

nonzero weight 
D � 
�� 
 in the extremal weight enumerator� is given by��
n

�

��
��� �
� � �

�$�
�� 

�

�
� if n � �
� � �����

�



n�n� ���n� ���n� 
� �����

���
�� 
��
� if n � �
�� � � ���
�




�
n�n � �� ���� ���

���
�� 
��
� if n � �
�� �� � ���
�

and is never zero�

For the proof� see ��	�� or ���	�� Chapter �	� There is a similar formula for Type I binary

codes � see ���	�� Chapter �	� Problem �����

Results similar to Theorem �� hold for other families�

Theorem ��� The minimal distance of a Type I binary self�dual code is at most ��n��� � ��

The minimal distance of a Type II binary self�dual code is at most 
�n��
� � 
� The minimal

��



distance of a self�dual code from family 
 is at most 
�n���� � 
� The minimal distance of a

self�dual code from family 
H is at most ��n������ The minimal distance of a Type II self�dual

code from family 
H� is at most ��n��� � �� The minimal distance of a self�dual code from

families 
E� 
H�� qH or qE is at most �n��� � ��

Note that the last bound is simply the Singleton bound� obtained from the ring C �x� ��q�
��y�� y�x � y�� of ��

�� As we have already remarked in Section ���� this is not the correct

ring �that is� the smallest ring containing all Hamming enumerators of self�dual codes�� In

some cases �q � 
 or q � ��� we know a smaller ring� however� since the ring is no longer

free� it is much more di!cult to use� In particular� it is no longer the case that we may set

the leading coe!cients arbitrarily� This leads to the extremal enumerator not being unique�

making it di!cult to determine its �rst nonzero coe!cient� Similarly� any attempt to make an

analogous argument for families 
Zor mZwill have the problem that� in those cases� we are

primarily interested in Lee weight or Euclidean norm� forcing us to work with the symmetrized

weight enumerator� This is� of course� much more di!cult to deal with than the Hamming

enumerator� A partial solution to this problem is provided by Theorem 

 below�

In each case it can be shown �cf� ��	��� that the bounds of Theorems �� and �� can be

met for at most �nitely many n� in fact� the next coe!cient �A��
�
� after the leading nonzero

coe!cient in the extremal enumerator becomes negative for su!ciently large n� Furthermore�

for any constant �� the minimal distance can be within � of the bound only �nitely often�

For Type II binary codes� for instance� it was shown in ��	�� that the A��n�
 term �rst goes

negative when n is around 
���� Ma and Zhu ���
� and Zhang �

�� have recently determined

precisely when the A��n�
 term �rst goes negative� and have obtained similar results for several

other families� The following result incorporates the work of several authors�

Theorem ��� �

�� Let C be a self�dual code of length n from one of the families �I� �II� 
�


H� and let c � �� 
� 
� �� respectively� and � � �n���� �n��
�� �n����� �n���� Then the coe	cient

A�c�
��	 in the extremal Hamming weight enumerator is negative if and only if�

��I�� n � �i �i � 
�� �i� � �i � ��� �i� 
 �i � ��� �i� � �i � ���
��II�� n � �
i �i � ��
�� �
i� � �i � ��	�� �
i� �� �i � ��
��
�
�� n � ��i �i � ���� ��i� 
 �i � ���� ��i� � �i � ����
�
H�� n � �i �i � ���� �i� � �i � ���� �i� 
 �i � ����

In particular� the �rst time A��
�
 goes negative for Type II codes is at �
� ��
 � 
�	��

��



Of course other coe!cients in the extremal weight enumerator may go negative before this�

In the case of ternary self�dual codes� for example� family 
� the extremal Hamming weight

enumerator contains a negative coe!cient for lengths ��� 	�� ��� and all n � �

�
The best asymptotic bound presently known for Type II codes is the following�

Theorem ��� �Krasikov and Litsyn ������� The minimal distance d of a Type II binary code

of length n satis�es

d � �����
�� � � �n� o�n�� n�� �

The constant in this expression is the real root of �x
 � �
x� � 
�x� � 
�x� � ��x� ��

The proof uses a variant of the linear programming bound�

For Type I binary codes� the bound of Theorem �� is especially weak� Ward �
��� has

shown that the minimal distance can be ��n��� � � precisely when n is one of �� 
� �� �� ���

�
� �� or �
� This suggests that the bound can be greatly strengthened� which is indeed the

case� Conway and Sloane ��	� showed that d � ���n� ������ for n � ��� and Ward ��
���� see
also Chapter �Ward�� established d � n���O�logn�� It turns out� in fact� that the �correct�

bound is 
�n��
� � 
 �except when n � � is a multiple of �
�� just as for Type II codes� The

key to proving this fact is the observation that we have not yet used the shadow enumerator�

Theorem ��� �Rains ��
	��� Suppose C is a �n� n��� d� self�dual binary code� Then d �

�n��
��
� except when n � �� �mod �
�� when d � 
�n��
���� If n is a multiple of 

� any

code meeting the bound is of Type II� If n � �� �mod �
�� any code meeting the bound can be

obtained by shortening a Type II code of length n� � that also meets the bound�

Proof �sketch�� From �	���W �x� y� lies in the ring C �x� � y�� x�y��x�� y����� consequently

we can write

W ��� y� �
X
j

ajy
�j

�
X
i

ci�� � y��n����i�y���� y����i�

Applying the shadow transform� we have

S��� y� �
X
j

bjy
�j�t

�
X
i

ci��y�
n����i����� y�����i�

��



where t � ��n��� mod 
�� Suppose C had minimal distance 
�n��
� � �� This fact determines

ci for � � i � ��n��
� � �� and in particular c��n������� On the other hand� we can also

express c��n������ as a linear combination of the bj for small j� It turns out that these two

expressions for c��n������ are incompatible� in particular� we �nd that a certain nonnegative

linear combination of the bj is negative�

Rather than give the �somewhat messy� details of the proof� we will simply show how one

can compute the coe!cients in these linear combinations� This uses the B*urmann�Lagrange

theorem�

Theorem ��� �B*urmann�Lagrange�� Let f�x� and g�x� be formal power series� with g��� � �

and g���� �� �� If coe	cients �ij are de�ned by

xjf�x� �
X
��i

�ijg�x�
i�

then

�ij �
�

i
�coe�� of xi�� in �jxj��f�x� � xjf ��x��

�
x

g�x	


i
��

For proof and generalizations� see �
��� p� �

�� ������ ������ ���
�� ���
��

For instance� to compute c��n������� we note that

X
i

ci�� � y��n����i�y���� y����i � � �O�y��n��������

Dividing both sides by �� � y��n�� and substituting y �
p
Y � we get�

X
i

ci

�
Y ��� Y ��

�� � Y ��

�i

� �� � Y ��n�� �O�Y ��n��������

We can then apply B*urmann�Lagrange� with

f�Y � � �� � Y �n��� g�Y � � Y ��� Y ���� � Y ���

to obtain

ci �
�

i
�coe�� of Y i�� in � ddY �� � Y ��n���

�
�� � Y ����� Y ���

�i
�

�
�n
�i
�coe�� of Y i�� in �� � Y ��n������i��� Y ���i�

�
�n
�i
�coe�� of Y i�� in �� � Y ��n������i��� Y ����i��

In particular� for i � ��n��
� � ��

c��n������ �
�n


�n��
� � 

�coe�� of Y ��n������ in �� � Y ��n������n���������� Y �����n��������

�




It follows that c��n������ � �� with equality only when n � �� �mod �
�� since all coe!cients
of any power series of the form �� � Y �a��� Y ���b are positive whenever a� b � ��

Similarly� we �nd that the coe!cients of the expansion of c��n������ in terms of the bj are

positive� This proves the bound� except when n � �� �mod �
�� the proof that the bound

holds in that case and that a code meeting the bound is even if n � � �mod �
� is left to the
reader�

This bound agrees with the full linear programming bound for n � ���� and� most likely�
for much larger n� However� it is likely that again it can only be attained for �nitely many n�

There is also an analogue of this bound for Type I codes from family 
H��

Theorem ��� If C is an additive self�dual code of length n and minimal distance d from

family 
H�� then d � ��n��� � �� except when n � � �mod ���� when d � ��n��� � 
� If n is a

multiple of �� then any code meeting the bound is even�

We will call a code extremal if it meets the strongest of the applicable bounds from Theo�

rems ��� 
�� and 

� For Type II binary codes� ternary codes� and linear codes over GF �
� this

agrees with the historical usage� For Type I binary codes� however� �extremal� has generally

been used to mean a code meeting the much weaker bound of Theorem ��� in the light of

Theorem 
�� it seems appropriate to change the de�nition�

Concerning codes over Z�� Bonnecaze� Sol'e� Bachoc and Mourrain ���� show�

Theorem ��� Suppose C is a Type II self�dual code over Z� of length n� Then the minimal

Euclidean norm of C is at most

�

�
n

�


	
� � � �����

The proof uses C to de�ne an even unimodular n�dimensional lattice +�C� � f��u � Rn �

u �mod 
� � Cg� and examines its theta series�
As usual� one can derive an analogue for Type I codes�

Theorem �	� ����� Suppose C is a Type I self�dual code over Z� of length n� The minimal

Euclidean norm of C is at most

�

�
n

�


	
� � � �����

except when n � �
 �mod �
�� in which case the bound is

�

�
n

�


	
� �� � �����

If equality holds in ����� then C is a shortened version of a Type II code of length n� ��

�




We say that codes meeting either of these bounds are norm�extremal� For Type II codes

this agrees with the de�nition given in �����

There should be an analogous concept of Lee�extremal� but at present we do not know what

this is� Of course� the bounds ����� and ����� also apply to Lee weight� But this is not a

satisfactory bound� since it is not even tight at length �
� where the highest attainable Lee

weight is �� rather than �� �see Table XVI��

The fact that� from Theorem 
�� an extremal binary code of length a multiple of �
 must

be doubly�even suggests that these codes are likely to be particularly nice� Indeed� we have the

following result� which is a consequence of the Assmus�Mattson theorem �see ���	� Chap� ���

Theorem ����
 of Chapter �� Section � of Chapter xx �Tonchev���

Theorem �
� Let C be an extremal binary code of length �
m� Then the codewords of C of

any given weight form a ��design�

Similarly� the supports of the minimal codewords of an extremal ternary code of length

��m form a ��design� For codewords of larger weight� the natural incidence structure is almost

a ��design� except that it may have repeated blocks� Similarly� for an extremal additive code

over F� of length �m� the supports with multiplicities of the codewords of any �xed weight form

a ��design with repeated blocks� Harada ����� has shown that the Z��lift of the Golay code g��

also yields ��designs� More generally� one can show that the words of any �xed symmetrized

type� in any of the �
 Lee�optimal self�dual codes of length �
 overZ�� form a colored ��design�

possibly with repeated blocks ����� See also ������

��� Lower bounds

There are two ways to obtain lower bounds on the optimum minimal distance of a code

of length n� The �rst way� naturally� is simply to construct a good code� Just as for general

linear codes� there is also a nonconstructive lower bound� analogous to the Gilbert�Varshamov

bound �cf� Theorems 
��� 
�
� 
�� of Chapter ���

We �rst consider the case of self�dual binary codes �family ���

Theorem ��� ��	��� ��	�� Let n be any positive even integer� Let dGV be the largest integer

such that X
��i�d
�ji

�
n

i

�
� �n���� � �� �����

��



Then there exists a self�dual binary code of length n and minimal distance at least dGV �

Proof If we can show that the expected number of nonzero vectors of weight less than dGV

in a random self�dual code of length n is less than �� it will immediately follow that there exists

some self�dual code of length n with no such vectors�

Let us therefore compute the average weight enumerator of the set of self�dual codes�

Consider the group G of binary matrices that preserve the quadratic form I � On the vector

space of even weight vectors� modulo the all ��s vector� the quadratic form becomes symplectic�

and the group acts as the full symplectic group� In particular� it is therefore transitive on

nonzero vectors of even weight� modulo �n� It follows that the expected number of vectors of

weight �i in a random code must be proportional to
�n
�i

�
� except for i � � or i � n��� Thus

the average weight enumerator has the form�

W �x� y� � axn � b
X

��i�n����

�
n

�i

�
xn��iy�i � cyn

� axn � cyn � b�
�

�
�x� y�n �

�

�
�x� y�n � xn � yn��

Since every self�dual binary code contains the � vector and the all ��s vector� W ��� �� �

W ��� �� � �� since every self�dual code contains a total of �n�� vectors� W ��� �� � �n���

Solving for a� b� and c� we �nd�

W �x� y� � xn � yn �
�

�n���� � �

X
��i�n����

�
n

�i

�
xn��iy�i �

Thus the average number of nonzero vectors of weight less than d is

�

�n���� � �

X
��i�d
�ji

�
n

i

�
�

Corollary �� ��	��� ��	�� There exists an in�nite sequence of self�dual �ni� ni��� di� binary

codes� such that ni tends to in�nity� and

lim inf
i�	

di
ni
� ��

where � 	 ��������� is the unique solution less than �
� of

H���� � �� log����� ��� �� log���� �� �
�

�
�

��



Proof� Take the logarithm of both sides of ������ divide by n� and let n tend to in�nity� The

resulting inequality is

H���� � �

�
�

as desired�

Similar results hold if one restricts ones attention to codes of Type II�

Theorem ��� ��	��� ��	�� Let n be any positive multiple of �� Let dGV be the largest integer

such that X
��i�d

�ji

�
n

i

�
� �n���� � � ���	�

Then there exists a doubly�even self�dual binary code of length n and minimal distance at least

dGV �

Proof� Again we compute the average weight enumerator� The key observation is that the

function �
�wt�v� induces a quadratic form on the space of even weight vectors modulo the all

��s vector� The group of matrices that preserve this quadratic form is transitive on the kernel

of this quadratic form� that is� vectors of weight divisible by 
� modulo �n� This allows us to

write down the average weight enumerator�

W II�x� y� � xn � yn �
�

�n���� � �

X
��i�n��

�
n


i

�
xn��iy�i�

Asymptotically� this agrees with Corollary � �as well as the Gilbert�Varshamov bound��

For �nite n� it is actually �slightly� stronger� That is� the constraint that the code be Type II

makes it easier to �nd good codes�

Similar arguments prove�

Theorem ��� In each family from the list �I� �II� 
� 

H� 
E� 
H�I � 
H�II � qH and qE there exists

a sequence of self�dual codes with length tending to in�nity satisfying

lim inf
i�	

di
ni
� ��

where

Hq��� � � logq�q � ��� � logq���� ��� �� logq��� �� �
�

�
�

The result for families qH and qE was �rst given by Pless and Pierce ��
	��

Similar results hold for self�dual codes over Z��

��



Theorem ��� There exists a family of Type II self�dual codes over Z�� with length tending to

in�nity� such that

lim inf
i�	

li
�ni

� ��

where li is the minimal Lee weight of the ith code and � � H��
� ������ as before�

Theorem ��� There exists a family of Type II self�dual codes over Z�� with length tending to

in�nity� such that

lim inf
i�	

Ni

ni
� �

�
���
 � � � �

where Ni is the minimal Euclidean norm of the ith code�

��� Enumeration of self�dual codes

����� Gluing theory

Gluing is a technique for building up self�dual codes from smaller codes� and is especially

useful when one is attempting to classify all self�dual codes of a given length� Typically one

�nds that there are many codes with low minimal distance and only a few with high minimal

distance� Gluing theory is good at �nding all the codes of low distance�

The �rst formal description of gluing theory appeared in ����� It has also been used in ��
��

����� ����� ���	�� ������ etc�

The theory applies to codes from any of the families that we have discussed in this chapter�

Let C�� � � � � Ct be self�orthogonal codes of lengths n�� � � � � nt with generator matricesG�� � � � � Gt�

If C is a self�dual code with the generator matrix shown in Fig� � then we say that C is formed

by gluing the components C�� � � � � Ct together� and we write

C � �C�C� � � �Ct�
� �����

to indicate this process� �Whenever possible the subcodes are chosen so that every minimal

weight codeword of C belongs to one of the Ci�� The codewords in C which contain a nonzero

linear combination of the rows of the matrix X are called glue words� since these hold the

components together� A glue word has the form

u � u�u� � � � ut � �����

where each glue element ui has length ni� Since C is self�dual� ui is in C
�
i �

��



X

�

�
Gt

G�

G�

Figure �� Generator matrix G for a code formed by gluing components C�� � � � � Ct together�
Gi is a generator matrix for Ci� and X denotes the rest of the generator matrix for C�

Let us choose coset representatives a� � �� a�� � � � � as�� for Ci in C�i � where s � jC�i j�jCij�
so that

C�i �
s���
j��

�aj � Ci� �

Then we can assume that each ui in ����� is one of a�� � � � � as���

As illustrations we give the two indecomposable binary Type I self�dual codes of length ��

�see Tables II and VI�� using the components from the list in Section ���
� The �rst code is

formed by gluing three copies of the component d� together�

����
����

����
����

����
����

������ ������ ������
������ ������ ������
������ ������ ������

�����

The three glue vectors shown are abc� cab and bbb�

The second code is formed by gluing together d��� e� and a �free� �or empty� component

�	



f��
����
����
����
����

�������
�������
�������

���������� ������� �
���������� ������� �

���
�

The two glue vectors shown are a�A and cd��

Of course a self�dual code has no �nonzero� glue� If a self�orthogonal code C has a com�

ponent B� say� which is self�dual� then C is a direct sum C � B 
 C�� where C� is again

self�orthogonal�

It may happen that there is a glue word in which only one ui is nonzero� in which case we

say that the component Ci has self�glue� and that u is a self�glue vector� So if C has a single

component C� �say� with self�glue� we write C � C�
� �compare �������

A basic result of gluing theory is the following�

Theorem ��� If a self�dual code C is formed by gluing together two codes C� and C� in such

a way that there is no self�glue� then the quotient groups C�� �C� and C�� �C� are isomorphic�

We omit the easy proof� The isomorphism is given by u� � C� � u� � C� whenever there

is a glue vector u�u��

����� Automorphism groups of glued codes

One advantage of the gluing method is that it makes it much easier to �nd the automor�

phism group of a self�dual code C� We will denote the group by G�C� rather than Aut�C� in

this section� It is essential that every automorphism of C takes the set of component codes

C�� � � � � Ct to itself� We will always choose the components so that this is true�

This being the case� any automorphism in G�C� will e�ect some permutation of the Ci� so

that G�C� will have a normal subgroup G�� consisting of just those elements for which this

permutation is trivial� The group of permutations of the components that are realized in this

way we call G��C� � it is isomorphic to the quotient group G�C��G���

Let G��C� be the normal subgroup of G�� consisting of those automorphisms which� for

every i� send each glue element ui into a vector in the same coset ui � Ci� i�e� which �x the

glue elements modulo the components� Then G���G��C� is isomorphic to a group acting on

��



Table I� Numbers of self�dual codes of length n� �a� Indecomposable Type II� �b� total Type
II� �c� indecomposable self�dual� �d� total self�dual�

n � � 
 � � �� �� �
 ��

a � � � � � � � � �
b � � � � � � � � �
c � � � � � � � � �
d � � � � � � 
 
 �

n �� �� �� �
 �� �� 
� 
�

a � � � � � � � �

b � � � 	 � � � ��
c � � � �� 
� �
� 
��
d 	 �� �� �� ��
 ��� �
�

the glue elements of each component� we call this group G��C�� Thus the full group G�C� is

compounded of the groups G��C�� G��C� and G��C�� and has order

jG�C�j � jG��C�jjG��C�jjG��C�j � ���
�

Also G��C� is the direct product of the groups G��Ci�� But in general G��C� is only a subgroup

of the direct product of the G��Ci�� and therefore must be computed directly for each C�

����� Family �	 Enumeration of binary self�dual codes

The enumeration of binary self�dual codes of length n � 
� has been carried out in a series
of papers� Pless ����� for n � ��� Conway �unpublished� for Type II of length �
� Pless and

Sloane ��
�� for n � ��� �
� Conway and Pless ���� for n � �� to 
� and Type II of length 
�

�see also Pless ��
���� Some errors in the last two references were corrected in Conway� Pless

and Sloane ����� The results are summarized in Table I�

In this section we describe these codes� drawing heavily from the tables in �����

Since �from �
�� there are at least ��
	
 inequivalent Type II codes of length 
�� length 
�

is probably a good place to stop�

Although the Type I codes of length 
� have not been classi�ed� it is shown in ��	� that

there are precisely three inequivalent �
�� ��� �� extremal Type I codes�

The following self�orthogonal codes will be used as components�

d� � ������� glue� a � ����� b � ����� c � ����� jG�j � 
� G� � S�
� on fa� b� cg� jG�j � ��
d�n�n � 
��

������� � � � � �������� � � � � � � � � � � �������� � �����

��



glue� a � ���� � � ���� b � ���� � � ���� c � ���� � � ���� jG�j � �n��n�� jG�j � � �swap a and c�
e� � ������������ glue� a � �������� G� � L����� jG�j � ���� jG�j � ��
e
 is the ��� 
� 
� Hamming code� see Section 
���

fn � If some coordinate positions contain very few codewords� it is often best to regard

these places as containing the free �or empty� component fn � f�ng� In this case we label
the coordinate positions by A� B� C� � � �� and use ABD for example to denote the glue word

������ � � � � Also jG�j � ��
The above components are important in view of the following decomposition theorem for

binary codes with low minimal distance�

Theorem ��� �a� If a self�orthogonal code C has minimal distance 
 then C � ik�
C�� where

C� has minimal distance at least 
� �b� If a self�orthogonal code C is generated by words of

weight 
 then C is a direct sum of copies of the codes d�m �m � ��� e� and e
�

Proof� �a� Suppose C contains a word of weight �� say u � ���� � � � � Then any other word

v � C must meet u evenly� so begins �� � � � or �� � � � � Hence C � B
C� where B � ����� �b� A
set of mutually self�orthogonal words of weight 
 whose supports are linked is easily seen to

be either a d�m for some m � �� or an e� or e
�

Remarks� ��� Suppose C is a self�dual code with minimal distance 
� and let C� be the

subcode generated by words of weight 
� Then C� is as described in part �b� of the theorem�

and C can be regarded as being obtained by gluing C� to some other subcode C�� �the latter

may be the free component fn��

��� Generalizing Part �a� of the theorem� it is easy to show that any self�orthogonal code

over a �eld Fq with length n � � and minimal distance � is decomposable ���
�� Theorem 
��

The following are some additional components that will be used in Table II�

The code g���m �m � �� �� 
� 
� �� �� is obtained by taking the words of the Golay code

g�� that vanish on m digits �and then deleting those digits�� For the �������� �rst�order Reed�

Muller code g�� the � digits must be a special octad� while for g�
 they must be an umbral

hexad �see ���� for terminology�� For � � m � �� g���m is a ��
�m� ���m� �� code�

The ��
������ half�Golay code h�� consists of the Golay codewords that intersect a given

tetrad evenly�

The odd Golay code h��� is the ��
� ��� �� Type I code generated by h�� and an appropriate

��



vector of weight �� Alternatively� the odd Golay code may be obtained as follows� Let v � F ���
be a �xed vector of weight 
� say v � ������ Then h��� � fu � g�� � wt�u � v� evengSfu� v �

u � g��� wt�u � v� oddg� with generator matrix
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

This code has weight enumerator x����
x�
y��
��x��y
�	��x��y�����	�x��y���	��x��y���


��x
y�� � �
x
y�
 � y��� and Aut�h���� is the �sextet group� �
��
�S���� of order ����
��� �

�
��
� ���
��� ���� p� 
�	���

The �rst �� rows of the above matrix generate h��� if the last row is replaced by

� � � � � � � � � � � � � � � � � � � � � � � �

we get the Golay code g�� itself� and if the last row is replaced by

� � � � � � � � � � � � � � � � � � � � � � � �

we get �d���
��

Under the action of Aut�g��� there are two distinct ways to select tetrads t � fc� d� e� fg�
u � fa� b� e� fg� v � fa� b� c� dg so that t � u � v � �� depending on whether fa� b� � � � � fg
is a special hexad or an umbral hexad �see Fig� ��� Correspondingly there are two ��
������

quarter�Golay codes q���� q
�
��� consisting of the codewords of g�� that intersect all of t� u� v evenly�

We refer to ���� and ���� for a description of the glue vectors for these codes�

Our �rst table �Table II� lists all indecomposable binary self�dual codes of length n � ���
together with the indecomposable Type II codes of length �
� using the � notation of ������

For these codes �and for most of those in the following tables� there is only one way to glue

the speci�ed components together without introducing additional minimal�weight words� We

have therefore omitted the glue words from the table� �However� more information about these

codes� including the glue words� will be given in Table VI��

�




Figure �� Two choices for a hexad �special or umbral�� used to de�ne the two ��
� ��� �� quarter�
Golay codes q��� and q

�
���

a b

c d

e f

a b c d e f

Table II� Indecomposable binary self�dual codes of length n � �
 �x indicates a Type II code�
For length �
 only Type II codes are listed��

Length n Components

� i�
� ex

�� d���
�
 e���
�� dx��� d

��



�� �d��e�f��
�� d���

�� d���� �d��d
�
�� �d�
d��

�� �e��d��
�� �d��f��

�� d
��
�� g���� �d��e�f��

�� �d���f��
�� �d��d

�
��

�� �d
e�d�f��
��

�d
d��f��
�� �d��d

�
�f��

�� �d��f
�
� �

�

�
x g��� d
�
��� d

��
�� � �d��e

�
��

�� d��
 � d��� � d���

The next table �Tables III and IV� gives the full list of all �� �decomposable or indecom�

posable� Type II codes of length 
�� This table is taken from ����� and is a corrected version

of the table in ����� The codes are labeled from C� to C�� in the �rst column �using the same

order as in ���� and ������ The second column gives the components �omitting the superscripts

��� to save space��

The third and fourth columns give the orders of the groups G��C� and G��C�� and the

�fth column gives the order of the full group� using ���
�� where jG��C�j is the product of the
orders of the G��Ci� for the components� The latter are given in Table V� The next column

gives A�� the number of codewords of weight 
� The weight enumerator of the code is then

�from Theorem �
�

�x
 � �
x�y� � y
�� � ���� A��x
�y��x� � y����x
 � �
x�y� � y
� �

The last four columns give the number of self�dual codes �the �children�� cf� Chapter xx

�Pless�� of lengths 
�� ��� ��� �
 that arise from the code�

To save space� we have omitted the glue vectors from Tables III and IV� In many cases

�




they are uniquely determined by the components� and in any case they can be found in full in

����� with corrections in �����

The enumeration in Tables III and IV has been subjected to many checks� including the

veri�cation of the mass formula

X �

jAut�C�j �

	��������	�
�
��


�
���
�
�
�
������
��

�in agreement with �
���

Remark� There are just �ve Type II codes of length 
� with minimal distance �� the

quadratic residue code C�� � q��� generated by

���������������������������������� �

the second�order Reed�Muller code C�� � r��� generated by

���������������������������������� �

and the three codes C�
 � g���� � C�
 � f
�� and C�� � f���� � Explicit generator matrices for

the last three are shown in Fig� 
�

Subtraction� Suppose for concreteness that C is a Type I code of length �� with doubly

even subcode C�� Then we obtain a Type II code B �say� of length 
� by gluing C� to d�� as

follows� Write C�� � C� � C� � C� � C�� as in Section �� where C � C� � C�� the shadow of C

is C� � C�� and Ci � ui � C� for i � �� �� 
� Then B is generated by

C�

d�
u� a

u� b

u� c

�����

This is a special case of the following construction� Let C� D be any strictly Type I codes�

of lengths n� and n�� respectively� with C�� � ��i��Ci� D�
� � ��i��Di� Then B � ��i��Ci �Di

is self�dual if n� � n� � � �mod 
�� and is Type II if n� � n� � � �mod ��� The weight

enumerator of B is then
�X

i��

WCi�x� y�WDi
�x� y� �

Several constructions in the literature ��
��� Theorems � and �� ��
�� Theorem 
��� for example�

are special cases of this construction� In ����� we have D � i���

��



In this way any Type I code of length �� leads to a unique �up to equivalence� Type II

code of length 
��

Conversely� all Type I codes of length �� can be obtained by choosing a d� inside a Type

II code of length 
� and inverting the above process�

More generally� suppose B is a Type II code of length n� We choose a copy of D � im� so

that D� � d�m � B� Then we obtain a Type I code of length n � �m by taking the vectors

v such that vw � B for some w � D� We call this process subtraction� Every Type I code

of length n � �m can be obtained in this way by starting with a unique Type II code and

subtracting an appropriate d�m� Of course any Type II code of length n � �m is a direct

summand of some Type II code of any greater length�

Table VI shows all �decomposable or indecomposable� codes of lengths n � �� with minimal
distance d � 
� as obtained by subtracting suitable codes d�m from one of the codes in Tables III
and IV� The second column indicates the parent code in Tables III and IV and the d�m to be

subtracted� The next two columns gives the components� with a x to indicate a Type II code�
and the name �if any� given to this code in ����� or ��
��� The remaining columns give the

orders of the glue groups G� and G�� the weight distribution� and generators for the glue�

Table VII gives the self�dual codes �both Type I and Type II� of length �
 and minimal

distance d � 
�
A complete list of all Type I or Type II self�dual codes of lengths n � �
 can be obtained

by forming direct sums of the codes in Tables VI and VII in all possible ways with the codes

im� �m � �� �� � � ���

There are over ���� self�dual codes of lengths ���
� �see Table I� ����� ������ The highest

minimal distance is �� and there are respectively �� 
 and �
 codes with d � � of lengths ���

�� and 
��

����� Family �	 Enumeration of ternary self�dual codes

Ternary self�dual codes of lengths n � �� �and the maximal self�orthogonal codes of lengths
n � �	� n �� � �mod 
� have been enumerated by Pless ����� and Mallows� Pless and Sloane

��	
� for n � ��� Conway� Pless and Sloane ��
� for n � ��� and Pless� Sloane and Ward ��
��
for n � ��� Leon� Pless and Sloane ���	� give a partial enumeration of the self�dual codes of

length �
� making use of the complete list of Hadamard matrices of order �
� and show that

there are precisely two codes with minimal distance 	 �cf� Table XII below��

��



We will make use of the following components�

e�� ������ glue� 
a� a � ���� If the coordinates are labeled �� �� 
 then G� is generated by

��� �� 
� and ��� �� diagf��������g and has order �� jG�j � ��
t� is the �
� �� 
�� tetracode� and g�� is the ���� �� ��� ternary Golay code� see Section 
���

g�� is the ���� 
� ��� code consisting of the vectors u such that ��u � g��� If x and y are

chosen so that ��x � g��� ��y � g��� then the glue words for g�� can be taken to be 
x� 
y�

x
 y� jG�j � 
��� jG�j � ��

p��� Let Q�� Q�� � � � � Q�� be the points of a projective plane of order 
� labeled so that the

�
 lines are represented by the cyclic shifts t�� t�� � � � � t�� of the vector t� given by

Q� Q� Q� Q� Q� Q
 Q� Q� Q
 Q� Q�� Q�� Q��

� � � � � � � � � � � � �

����	�� p� �	�� ������ The vectors t�� � � � � t�� generate a ��
� �� 
�� code p
�
��� The dual is p��� a

��
� �� ��� self�orthogonal code consisting of the vectors
P��

i�� aiti with ai � F� and
P
ai � ��

and having weight distribution A� � �� A� � ���� A� � 
	
� A�� � ��� G��p��� � PGL��
��

of order ����� jG��p���j � �� The glue words are 
t��
The indecomposable self�dual codes of lengths n � �� are shown in Table VIII� H
 denotes

a suitably normalized version of the Hadamard matrix of order ��

The analogue of Theorem 

 is� any self�orthogonal ternary code generated by words of

weight 
 is a direct sum of copies of e� and t�� A technique for classifying self�orthogonal codes

generated by words of weight � �using �center sets�� is given in ��
���

���
� Family �
H	 Enumeration of Hermitian self�dual codes over F�

These have been classi�ed for lengths n � �� ��
� � see Table IX�

We will make use of the following components�

d�n �n � ��� generated by ������ There are �� cosets of d�n in d��n� and as glue words we
choose �� ��a� ��b� ��c� ��d� ��e� � � f�� �� �g� where

a � ���� � � �����

b � ���� � � �����

c � ���� � � �����

d � ���� � � �����

e � ���� � � �����

��



Also jG�j � �n��n�� jG�j � 
� �n � ��� or �� �n � 
��
e
 � ������� ������� glue� �

��� � � f�� �� �g� G� � A���� of order ��� jG�j � ��
h� is the hexacode� e� � F�� e
 � F� are F��versions of the Hamming codes in Sections 
���

and �n is the �n� �� n�� repetition code�

Remarks� ��� The group orders di�er slightly form those in ��
�� since now we are allowing

conjugation in the group�

��� The dots and double�dots in the glue column indicate multiplication by � or ��� re�

spectively�

�
� The unique distance � code at length �
� q��� is the ��
� �� ��� extended quadratic residue

code generated by

���������������� �

�
� The analogue of Theorem 

 is� �a� any self�orthogonal code with minimal distance �

has i� as a direct summand� �b� any self�orthogonal code generated by words of weight 
 is a

direct sum of copies of d�� d�� d
� � � �� e
� h�� e� and e
�

����� Family �
E	 Enumeration of Euclidean self�dual codes over F�

Although even codes of length up to �
 were classi�ed in ������ the odd codes do not seem

to have been classi�ed�

����� Family �
H�	 Enumeration of trace self�dual additive codes over F�

These have been classi�ed up to length � �and Type II code up to length �� in �
	�� ��

��

The analogue of Theorem 

 is the following� Let dn be the code of length n generated by

all even�weight binary vectors �n � ��� and let i� � ���� ���� Then any trace self�orthogonal

additive code over F� generated by words of weight � is a direct sum of copies of i�� d�� d��

d�� � � ��

d�n �mentioned in Table XIV� is the code of length n� containing �n words� generated by

dn and �� � � ���

����� Family �
Z	 Enumeration of self�dual codes over Z�

These have been classi�ed for lengths up to �� in the following papers� Conway and Sloane

���� for n � 	� Fields� Gaborit� Leon and Pless �	�� for n � ��� and Pless� Leon and Fields

��
�� for Type II codes of length ���

��



In this section we will present enough component codes to state the analogue of Theorem 

�

The smallest self�dual code is i� � f�� �g� If a self�orthogonal code C contains a vector of

the form ���n�� then C � i� 
 C� is decomposable� The next�simplest possible vectors are

�tetrads�� of type 
���n��� We list a number of self�orthogonal codes that are generated by
tetrads� t denotes the total number of tetrads in the code�

The �rst four codes have the property that the associated binary code C��	 is the self�dual

code d�m of ������

D�m �m � �� is generated by the tetrads ���
� � � ��� �����
� � � ��� � � � � � � � �����
� jD�mj �

m��� jAut�D�m�j � ��
� �m � �� or ����m �m � ��� t � ��m � ��� D��m�D�m is a group of

type 
� with generators v� � ���� � � ���� v� � �� � � ������

DO
�m �m � �� is generated by D�m and the tetrad �
�� � � ����� �or equivalently the vector

���� � � ����� jDO
�mj � 
m���� jAut�DO

�m�j � ���� �m � �� or ���m����m �m � ��� t � �m�

�DO
�m�

��DO
�m is a cyclic group of order 
 generated by v� �if m is odd�� or a 
�group generated

by v� and �v� �if m is even��

D�
�m �m � �� but note that D�

� � DO
� � is generated by D�m and �v�� jD�

�mj � 
m����

jAut�D�
�m�j � �m��m��� t � 
�m� ��� �D�

�m�
��D�

�m is a 
�group generated by �v� and v��

D
�m �m � �� is the self�dual code generated byDO
�m andD�

�m� jD
�mj � 
m����� jAut�D
�m�j �
���
� �m � �� or �m��m��m �m � ��� t � 
m� For use in ����� we note that there are two

permutation�inequivalent versions of D
� � with generator matrices

�a�

�
� � � � �
� � � �
� � � �

�
� � �b�

�
� � 
 
 

� � � �
� � � �

�
� � �����

D
� �in either version� has swe � x� � �x�z� � z� � �y��

E� is generated by ���
���� �����
�� ������
� jE�j � 
�� jAut�E��j � ��
�� t � �� E�� �E� is
a cyclic group of order 
 generated by 
�������

E�� is the self�dual code generated by E� and ������� �or equivalently by all cyclic shifts of

�������� jE�� j � 
��� jAut�E�� �j � ������ t � �
� swe � x� � z� � �
y��x� � z�� ��x�z��x �

z� � 
�xy�z�x� z�� For both E� and E�� the associated binary code C��	 is the Hamming code

e��

E
 is the self�dual code generated by �u� u � E� and 
�������� An equivalent generator
matrix has already been given in �
��� jE
j � 
�� g � ����
� � 
�
� t � ��� swe � x
 � ��y
 �

z
 � ��y��x� � z�� � �
x�z�� 
�xy�z�x� � z�� �	�x�y�z��

�	



Theorem ��� Any self�orthogonal code over Z� generated by vectors of the form 
���n�� is

equivalent to a direct sum of copies of the codes

D�m� DO
�m� D�

�m� D
�m�m � �� �� � � ��� E�� E�� � E
 �

The �somewhat complicated� inclusions between the codes mentioned in the theorem can

be seen in Fig� � of �����

��� Extremal and optimal self�dual codes

Recall from Section 	 that we have de�ned a self�dual code from any of the families � through

qE to be extremal if it meets the strongest of the applicable bounds from Theorems ��� 
� and



� that is� if its minimal distance d is equal to

��I� 

%
n
��

&
� 
 � �� where � � �� if n � �� 
 or �� � � � if n � �� �mod �
�� and � � �

otherwise�

��II� 

%
n
��

&
� 
�

�
� 

%
n
��

&
� 
�

�
H� �
%n
�

&
� ��

�
E�
%
n
�

&
� ��

�
H�I � �
%
n
�

&
� �� ��� where �� � �� if n � �� �� � � if n � � �mod ��� and �� � � otherwise�

�
H�II � �
%n
�

&
� ��

�qH�� �qE�
%
n
�

&
� ��

We also de�ned a code over Z� to be norm�extremal if its minimal norm is

�
Z� �
% n
��

&
� � � ���

where ��� � 
 if n � �
 �mod 
�� ��� � � otherwise�
It is very likely �although we do not have a proof� that the above bounds for families �

through qE are the highest minimal distance that is permitted by the pure linear programming

bound applied to the Hamming weight enumerator and �when relevant� the shadow enumerator�

In contrast� we call a code optimal if it has the highest minimal distance of any self�dual

code of that length� An extremal code is automatically optimal�

In this section we will summarize what is presently known about extremal and optimal

codes in the families we are considering� Earlier summaries of extremal codes and lattices have

appeared in Chapter � of ����� ��
��� In the tables we have tried to list all known codes with

the speci�ed minimal distance �a period indicating that the list is complete�� or else to indicate

	�



how many extremal codes are known� Whenever possible we have attempted to name at least

one extremal code�

����� Family �	 Binary codes

Type I codes meeting the d � ��n��� � � bound of Theorem �� �the old de�nition of

extremal� were completely classi�ed by Ward �
��� ��nishing the work begun in ��	��� ������

��
���� such codes exist if and only if n is � �i��� 
 �i
�
��� � �i

�
��� � �e
�� �� �d

�
���� �
 �e

��
� �� �� �g

�
���

or �
 �g��� � compare Tables II and VI� In each case the code is unique�

However� there are many more Type I codes that are extremal in the new sense� and they

have not yet been fully classi�ed� It is known �Theorem �	� that extremal Type II codes do

not exist for lengths � 
	�� and presumably a similar bound applies to extremal Type I codes�
Table X shows the highest possible minimal distance for binary self�dual codes of lengths

n � ��� This is based on earlier tables in Fig� �	�� of ���	�� ��	� and ��
�� In the table dI �resp�
dII� denotes the highest minimal distance of any strictly Type I �resp� Type II� self�dual code�

Remarks on Table X

The fourth column of the table gives the known codes having the indicated minimal dis�

tance� As mentioned above� a period indicates that the lists of codes is complete� �The

enumeration for lengths n � 
� has already been discussed in Section ���
�� When n is a

multiple of � a semicolon separates the Type I and Type II codes�

In the years since the manuscript of ��	� was �rst circulated� a large number of sequels

have been written� supplying additional examples of self�dual codes in the range of Table X�

The bibliography includes all the manuscripts known to us� even though inevitably not all of

them will be published� It was not possible to mention all these references in the table� so

instead we list them here� This list also includes a number of older papers� Readers interested

in extremal self�dual codes� especially of Type I� in the range of the table should therefore

consult the following� �
��� �
��� �
	�� �
��� �
��� �
��� �

�� ����� ��
�� ��
�� ����� ����� ����� ������

������ ���	�� ������ ������ ���
�� ������ ������ ������ ������ ���	�� ������ ������ ��
��� ��
��� ������

������ ������ ������ ������ ������ ������ ��

�� ��
��� ��
��� ������ ������ ������ �
�
�� �
���� �
����

�
�	�� �
���� �
���� �

��� �

��� �


�� �


�� �

��� �

���

Note that if we don�t distinguish between Type I and Type II codes� but just ask what

is the highest minimal distance of a binary self�dual code� then the answer is known for all

	�



n � ���
The symbol XQm in any of these tables indicates an extended quadratic residue code of

length m��� Both quadratic residue codes and double circulant codes provide many examples

of good self�dual codes �cf� Section �� of Chapter �� Chapter xx �Ward�� Chapter yy �Pless��

���	� Chapter ����� There are two basic types of binary double circulant codes� having generator

matrices of the form
� � � � � �
� �
� � R

� �
� �

�����

or
�
�
� R
�
�

� ���	�

where R is a circulant matrix with �rst row r �say�� ����� is used only when the length is a

multiple of 
� Such codes and their generalizations to other �elds have been studied by many

authors� including ����� ����� ������������ ��
��� ������ ������ ������ ������ ���	� Chap� ���� ��
���

������ �
���� �
���� �

����


�� Table XI� based on ��	� and ���
�� gives a selection of double

circulant binary codes� Code H�� �from ��
�� is the shortest Type I self�dual code presently

known with d � ��� The �rst column gives the name of the codes� following ��	�� and the last

column gives r� the initial row of R� in hexadecimal� The codes marked ��� are not necessarily
optimal� The minimal distance of the last two codes in the table was determined by Moore

������ ���
�� For these two codes r has ��s at the squares modulo 

 and ��� respectively� Moore

remarked that the analogous code of length ���might also have been extremal� However� Aaron

Gulliver �personal communication� Nov� �		�� has shown that the minimal distance of this

code is at most ���

We see from Table X that there are extremal Type I codes �in the new sense� that are not

also Type II codes at lengths

�� 
� �� ��� �
� ��� ��� ��� ��� 
�� 
�� 
�� 
�� 
�� 

� 
�� ��� �
� ��� ��

that such codes do not exist at length

�� ��� �
� ��� ��� 
�� 

� 
�� ��� ��� �
� �� �����

	�



and that their existence at lengths

��� ��� ��� �� �����

is at present an open question� The nonexistence of the Type I codes of lengths in ����� is

established by imposing the extra condition that the shadow enumerator must have integral

coe!cients�

Concerning extremal Type II codes� with d � 
�n��
� � 
� these exist for the following

values of n�

�� ��� �
� 
�� 
�� 
�� ��� �
� ��� ��� ��
� �
�

but their existence at lengths �� and 	� and all greater lengths is open� For lengths �� �
� 
��


�� �� and ��
 we can use extended quadratic residue codes� and for lengths 
�� ��� �
� ���

�
� we can use double circulant codes �see Table XI��

Only one �
�� �
� ��� code is presently known� XQ��� which is generated by � and

��������������������������������������������������

�with ��s at the nonzero squares modulo 
��� Hu�man ��
�� has shown that any Type II

�
�� �
� ��� code with a nontrivial automorphism of odd order is equivalent toXQ��� Houghten�

Lam and Thiel �cf� ��
��� are attempting to establish by direct search that XQ�� is unique�

As Table X shows� if n � 
� is congruent to � or �� �mod �
� there are often large numbers
of extremal codes� It is easy to �nd ���� 
�� ��� Type II codes� for example XQ��� ��
� shows

that there are at least 

 inequivalent codes with these parameters�

Concerning the existence of self�dual codes with a speci�ed minimal distance� the following

results were established in ��	�� Self�dual codes with minimal distance

d � � exist precisely for n � ���
d � � exist precisely for n � �
� 
�� and n � 
��
d � �� exist precisely for n � 
��
d � �� exist� for n � 
�� ��� �� and n � �
� perhaps for n � ��� and do not exist for all

other values of n� �As pointed out in ��	�� the ���� �	� ��� self�dual code claimed in ���� is an

error��

Dougherty� Gulliver and Harada ��
�� extending work in ��	�� show that codes with

	The existence of a ���� 	
� ��� was not known when ���� was written� but such a code was later found by
Scharlau and Schomaker ���
��

	




d � �
 exist for n � ��� perhaps for n � ��� ��� �
� ��� and do not exist for all other values
of n�

d � �� exist for n � ��� ��� ��� 	�� ������
� ��� and n � ��� �and possibly for other values
of n��

����� Family �	 Ternary codes

Table XII shows the highest possible minimal distance for ternary self�dual codes of lengths

n � ���

Remarks on Table XII

For the entries at lengths n � �
� see the discussion in Section ���
�
Extremal codes exist at lengths 
� �� ��� ��� ��� �
� ��� 
�� 
�� 
�� 

� 
�� ��� �� and �
�

Extremal codes do not exist at lengths ��� 	�� ��� and all n � �

� because then the extremal
Hamming weight enumerator contains a negative coe!cient� The existence of extremal codes

in the remaining cases �n � ��� ��� ��� � � �� �
�� is undecided�

In Table XII� XQn denotes an extended quadratic residue code of length n� �� and S�n�

denotes a Pless double circulant �or �symmetry�� code of length n �see Section � of Chapter

�coding�constructions�� ����� ��	�� ��	
�� ������ ���	��� A ���� �
� 	�� code was discovered by

Cheng and R� Scharlau ����� Another such code was given by Kschischang and Pasupathy

���
�� namely the negacyclic code generated by the polynomial �x��x� ���x��x��x��x��
���x� � x
 � x� ��� i�e� by the vectors

������������������������������� �

where the subscript � indicates that the code is negacyclic� Hu�man ��
�� shows that there

are at least �
 inequivalent ���� �
� 	�� codes with nontrivial automorphisms of odd order�

Ward �
��� and Dawson ���� independently discovered that �
�� ��� ���� codes can be con�

structed using generator matrices of the form �I��H���� where H�� is a Hadamard matrix of

order ��� There are three distinct Hadamard matrices of this order� and Dawson shows that all

three produce �
�� ��� ���� codes� Harada ���
� shows that these three codes are inequivalent�

Dawson also shows that the same construction using the Paley�Hadamard matrix of order 
�

leads to a ��
� 
�� ���� self�dual code� A ��
� 
�� ���� code B�� �equivalent to Dawson�s� had

been constructed earlier by Beenker �����

	




The codes of length 
�� 

� ��� �� and �� can be obtained by �subtracting� �see Section ���
�

a copy of t� from a code of length 
 greater�

Other constructions for ternary self�dual codes can be found in Harada ���
� and Ozeki

���
��

����� Family �
H	 Hermitian self�dual codes over F�

Table XIII shows the highest possible minimal distance for Hermitian self�dual codes over

F� of lengths n � 
��

Remarks on Table XIII

A period in the �Codes� column indicates that the list is complete�

For the entries at lengths n � ��� see the discussion in Section �����
Extremal codes exist at lengths �� 
� �� �� ��� �
� ��� ��� ��� ��� �� and 
�� They do not

exist at lengths ��� �
� ���� ���� ��
� ���� ��� and all n � ��� �the larger n being eliminated
by the presence of negative coe!cients in the extremal Hamming weight enumerator�� The

remaining lengths ���� 
�� 

� � � �� are undecided�

The ���� 	� ��� code S�
 generated by

��������������������

has a number of interesting properties �see ������ ����� ��	�� ��

��� It has automorphism group


� �PSL������
�� of order 
�	�� ��	� and is the unique ���� 	� ��� code ��
���

The long�standing question of the existence of a ��
� ��� ���� code was settled in the negative

by Lam and Pless ����� �see also ��
���� The code g��� F� is an example of a ��
� ��� ��� code�

����� Family �
H�	 Additive self�dual codes over F�

Table XIV� taken from �
	�� shows the highest possible minimal distance for additive codes

over F� of lengths n � 
� that are self�dual with respect to the trace inner product�

Remarks on Table XIV

A period in the �Codes� column indicates that the list is complete�

Extremal Type I codes exist at lengths ���� ����� �
���� ����� and ���
�� and do not exist

at lengths �� �
 and ��� Lengths �	� �
� �
� ��� �� are undecided�

	�



Many of the entries are copied from the table of Hermitian self�dual codes� Table XIII� The

codes d�n are de�ned in Section ����� h� is the hexacode� and h
 is the ��� ���� 
��� shortened

hexacode� generated by �������� with weight enumerator x
 � ��x�y� � ��xy� � �y
 and

jAut�h
�j � ���� Also� c�� c�
� c��� c��� c�
 are cyclic codes with generators shown in Table XV�
If no name is given� the code can be obtained by shortening a code of length one greater�

���
� Family �
Z	 Self�dual codes over Z�

Table XVI gives the highest possible Hamming distance� Lee distance and Euclidean norm

for codes overZ� of lengths n � �
� This is based on ����� ����� �	��� ��
��� ��
�� and ���
�� The
columns headed ( give the number of extremal codes�

Remarks on Table XVI

The length �� code C�� is given in ��
��� where it is called � f�� It has jAut�C���j �
�
���
���� and generator matrix�




















�

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
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�
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The codes C�� and C�
 mentioned in the table have generator matrices�
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and automorphism groups of orders ��� and �

� respectively�

G�� was de�ned in �
��� and G�� through G�� are shortened versions of it�

Besides the norm�extremal codes of length �� ��� �
��
 shown in the table� there are also

norm�extremal codes of lengths 
� and 
� obtained by lifting binary extended quadratic residue

codes to Z�� The code of length 
� has minimal Lee weight �
 and minimal norm ��� Pless

and Qian ��
�� have shown that the code of length 
� has minimal Lee weight �� and minimal

norm �
�

Further examples of good self�dual codes overZ� may be found in ����� ��
�� ����� ����� �����

������ ������ ������ ���
�� ��
��� ��
��� ��

�� ���
��

��� Further topics

����� Decoding self�dual codes

The problem of decoding self�dual codes is an extremely important one for applications�

but we will not discuss it here� Decoding the binary Golay code� in particular� has been studied

in many papers � see ���� ����� ����� ���� Chapter ���� ��
��� ��
��� ������ ��	��� �
�
�� �
���� See

also ������ �
�
�� and Section � of Chapter �codes�and�groups��

����� Applications to projective planes

There is a very nice application of self�dual codes to projective planes� If n is congruent to �

�mod 
� then the incidence matrix of a projective plane of order n generates a self�orthogonal

code Cn� which when an overall parity�check is added becomes an �n
��n��� ���n

��n���� n���

Type II self�dual binary code �see �
�� ��	�� or Chapter �assmus� for the proof��

It was a famous unsolved problem to decide if a projective plane of order �� could exist�

The weight enumerator of C�� was initially studied in ��	�� �see also ��	���� Finally� after

	�



many years of work� Lam� Thiel and Swiercz ����� �see also ���
�� succeeded in completing this

project and showed that C�� �and hence the putative plane of order ��� does not exist�

The possibility of the existence of a plane of order �� �or ��� but then we do not obtain a

self�dual code� remains an open question�

����� Automorphism groups of self�dual codes

Various topics concerning the automorphism groups of self�dual codes are discussed in

chapter �codes�and�groups�� e�g� the full automorphism groups of extended quadratic residue

codes� the occurrence of self�dual codes with a trivial group �see �
	�� ��	�� ������ ���	�� ������

�
�
��� and the existence of self�dual codes with any prescribed symmetry group ��������

����� Open problems

Do there exist ���� 
�� ��� or �	�� 
�� ��� Type II self�dual binary codes% �Cf� ��
�� �	
�� ������

��

�� �������

Fill in the other gaps in Tables X� XII� XIII� No extremal Hermitian self�dual codes over

F� of any length greater than 
� are presently known�

There is an interesting open question concerning self�dual codes of length �
� There exists

a unique ��
� ��� �� binary code� exactly two ��
� ��� 	�� ternary codes� and no ��
� ��� ����

Hermitian or Euclidean self�dual code over F� �������� But the possibility of an additive trace�

self�dual code of length �
 over F� with minimal distance �� remains open �see Table XIV��

From Theorem 

� if such a code exists then it must be even� However� all our attempts so far

to construct this code have failed� so it may not exist�

When is the �rst time a Type I binary code has a higher minimal distance than the best

Type II code of the same length% �No such example is presently known��

In this regard it is worth mentioning that there is a �
�� ��� �� binary code ����� which has

the same minimal distance as the best self�dual codes of length 
�� yet contains twice as many

codewords� There are similar examples in the ternary case � see Chapter �Brouwer��

The Nordstrom�Robinson code �see Chapter �� is an example of a nonlinear code that has a

higher minimal distance than any self�dual �or even linear� code of the same length� However�

as mentioned in Section 
��� the Nordstrom�Robinson code should really be regarded as a self�

dual linear code over Z� �the octacode o
�� When is the �rst time a non�self�dual �n� n��� d�

binary linear code has a higher minimal distance than any �n� n��� d�� self�dual code% This

	�



certainly happens at length 
�� but may happen at length 
� or 
��

Is there any di�erence asymptotically� as n � �� between d�n for the best binary codes�
the best binary linear codes and the best binary self�dual codes%

Let ,n denote the collection of binary self�dual codes that have the highest possible minimal

distance at length n� and let Ln� Un be respectively the smallest and largest orders of Aut�C��

C � ,n� When �if ever� is the �rst time that Ln � Un � �% Is there an in�nite sequence of

values of n with Un � �% Show that Ln � � for all su!ciently large n�

��� Self�dual codes and lattices

There are many connections and parallels between self�dual codes and lattice sphere pack�

ings� Our original intention was to end the chapter with an account of these connections� but

constraints of space and time have not permitted this� Instead� we give a brief list of some

of the parallels� to whet the reader�s appetite� For more information about the relationship

between the two �elds� see �
��� �

�� �	��� �	��� �	��� ���
�� ���
�� ����� and especially ����� ��
��

Coding concept Lattice concept

Binary linear code Lattice
Dual code Dual lattice
Self�orthogonal code Integral lattice
Self�dual code Unimodular lattice
Doubly�even self�dual code Even unimodular lattice
Hamming code e
 Root lattice E
 ������ p� ����
Hexacode h� Coxeter�Todd lattices K�� ������ p� ����
Binary Golay code g�� Leech lattice +�� ������ p� �
��
Minimal distance Minimal norm
Number of minimal weight words Kissing number
Weight enumerator W �x� y� Theta series
MacWilliams identity �Eq� �

�� Jacobi identity ������ p� ��
�
�weight enumerator of dual code in terms �theta series of dual lattice in terms
of weight enumerator of code� of theta series of lattice�

Gleason�s theorem �Theorem ��� Hecke�s theorem ������ p� ����
�weight enumerator of doubly�even �theta series of even unimodular
code is polynomial in weight enumerators lattice is polynomial in theta series
of e
 and g��� of E
 and +���

The similarity between the theorems of Gleason and Hecke is particularly striking� and we

will end the chapter by saying a little more about this� Suppose C is a binary code of length

n� Construction A produces an n�dimensional sphere packing +�C�� consisting of the points

�p
�
x for x � Zn� x �mod �� � C� If C is linear� +�C� is a lattice� if C is self�dual� +�C� is

unimodular� and if C is Type II� +�C� is an even unimodular lattice�

		



If C is a linear code with weight enumeratorWC�x� y�� then WC�����z�� ����z�� is the theta

series of +�C�� where

���z� �
	X

m��	
qm

�

� ���z� �
	X

m��	
q�m����	� �

where q � e�iz � Im�z� � �� This map gives an isomorphism between �a� the ring of weight

enumerators of Type I self�dual codes� C �	� � �
� �see Eq� 	��� and the ring of theta series of

even�dimensional unimodular lattices� C ���� �#
�� where

#
 � q
	Y

m��

f��� q�m������ q�m�g
 �

and �b� the ring of weight enumerators of Type II self�dual codes� C �	
 � 	
�
��� �Theorem �
��

and the ring of theta series of even unimodular lattices� C �-E�
�#���� where

-E�
�z� � � � �
�

	X
m��

���m�q
�m �

#�� � q�
	Y

m��

��� q�m��� �

and ���m� is the sum of the cubes of the divisors of m� For further information see ����

Chapter ���

The bibliography also contains a number of references that are concerned with particular

constructions of lattices from self�dual codes� or of properties of lattices that are analogous to

properties of self�dual codes mentioned in this chapter� ���� �	�� ����� ��
�� ����� ����� ����� �����

����� ����� ����� ������ ������ ������ ������ ���
�� ��	��� ������ ���	�� ������ ������ ���
�� ������ ������
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Table III� Doubly�even self�dual �or Type II� binary codes of length 
� �Part ��

Code Components jG�j jG�j jGj A� n�� n�
 n�� n��
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Table IV� Doubly�even self�dual �or Type II� binary codes of length 
� �Part ��

Code Components jG�j jG�j jGj A� n�� n�
 n�� n��
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Table V� The groups G� for the components mentioned in Tables II� III and IV�

Component G� jG�j
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Figure 
� Generator matrices for the �
�� ��� �� Type II codes C�
 � g���� � C�
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Table VI�

Binary self�dual codes with n � ��� d � 

n Code Compts� Name jG�j jG�j A� A� A
 A�� A�� Generators for glue

� C��d��� i� � � � �
� C��d��� e
 A
 � � �
 � � �
�� C
�d��� d�� B�� � � �� 
� �� � � a

�
 C
�d�
� e�� D�� � � �
 
	 
	 �
 � dd
�� C��d��� d�� E�� � � �� � �	� � �� a

C��d��� e�
 A
 
 A
 � � �� � �	� � �� �
C��d��� d�
 F�� � � �� �
 ��� �
 �� �ab�

�� C��d��� d��e�f� I�
 � � �� �� ��� ��� �� aoA� cd�
C	�d��� d�� H�
 � � 	 �� ��� ��� �� �abc�� bbb

�� C
�d��� d�� J�� � � 
� � ��� ��� ��� a
C���d��� d��e
 A
 
 B�� � � �	 
� ��� 

� ��� a�
C���d��� d��d
 K�� � � �� 
� �

 
�� �

 �ab�
C���d��� d�
d� S�� � � �
 �
 �
� 
�
 �
� �ab�x� bby
C�
�d��� e��d� L�� � � �� �� �
� 
�� �
� doa� ddb

C�
�d��� d��f� R�� � � 	 �� �
� 
�� �
� aaaA� cccB� �abc��
C���d��� d
� M�� � ��� � �� ��� 
�� ��� �ooxyx�

�� C��d��� d��e�f� N�� � � �� 
	 �
� ��� ��� aoA� bdA
C���d��� d���f� P�� � � �� �� ��� ��� ��� �ao��� cc�
C���d��� d��d

�
� Q�� � � �� �� ��� ��
 ��
 aoc� oaa� bbb

C���d��� e
e
�
� E
 
D�� � � �� 
	 �
� ��� ��� �dd

C�	�d��� d
e�d�f� R�� � � �� �� ��� ��
 ��
 odbA� boaA� aob�
C���d��� d
d

�
�f� S�� � � �� �� �	
 ��� ��� baoA� aooAB� abb��

occ�
C���d��� d��d

�
�f� T�� � 
 � �	 
�� �
� �
� aoxoA� ooyyAB�

aayo�� bozx�� obxz�
C���d��� d��f� U�� � �
 
 �
 
�� ��� ��� oxyzBC� ozxyAC�

ooxxAE� oyoyAD�
ozzoAF� xxxx��
yyyy�

C�
�d��� g�� G�� � � � �� 

� ��� ��� the all�ones vector
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Table VII�

Binary self�dual codes with length �
 and d � 

Code Components Name d Code Components Name d

C��e
� d�� x E�� 
 C
��d
� d
e
�
�f� J�� 


C��e
� d��e
 x � 
 C

�d
� d
d
�
�f� R�� 


C��d
� d��d
 H�� 
 C

�d
� d
d
�
� T�� 


C���e
� d��� x A�� 
 C
��d
� e�d
�
�d�f� P�� 


C���d
� d��� � 
 C���e
� d�� x D�� 

C���d
� d��d
d� I�� 
 C
��d
� d�� Q�� 

C���e
� d��e

�
� x B�� 
 C
��d
� d��d�d�f� S�� 


C�	�d
� d��e�d�f� K�� 
 C
��d
� d��d
�
�f� U�� 


C���d
� d��d
�
�f� N�� 
 C
	�d
� d�d

�
�f� W�� 


C�
�e
� e�
 x � 
 C���e
� d�� x F�� 

C���d
� e
d

�

 � 
 C
��d
� d�� V�� 


C���e
� d�
 x C�� 
 C
��d
� d��f
 X�� 

C�	�d
� d�
 L�� 
 C
��d
� d��g�� Y�� 

C
��d
� d�
 M�� 
 C

�d
� h�� Z�� �
C
��d
� d�
d

�
� O�� 
 C���e
� g�� x G�� �

Table VIII� Indecomposable ternary self�dual codes of lengths n � ��

n Components jG�j jG�j jG�j d glue
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� � � 
 �
� �
�� e��� �� � �
 
 aaa�� �.aaa

g�� �	���� � � � �
�� �e��f��
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� ���
�� 
 � 
 a�x� �ay
�e�p���� ������ � � 
 at�
f��
 �� ������ � � �I jH
�

�� �� codes
� see ��
��

���



Table IX� Indecomposable Hermitian self�dual codes over F� of lengths n � ��

n Components jG�j jG�j jG�j d Glue

� i� �� � � � �

 � � � � � �
� h� ���� � � 
 �
� e
 ���
 � � 
 �
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 d
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 ��
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�e�e
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 ��
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� � � 
 �bd�
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� �
 � 
 ��de�
�
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 d

e��� ���� � � 
 ��
�d
e
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�e�
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 ��d� ��e
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� � � 
 ab� bd
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 �d����� bb��

�d�d���
� 
���
� �� � 
 bbb� a�d� cd�

�d��f��
� 
� � � 
 aa���� �aa��� /b*b���� �/b*b��

�d�����
� 
� ��� � 
 b�������� a��������

�b������� �a������
q�� ���� � � � �

�� 
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�see ��
��
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Table X� Highest minimal distance of binary self�dual codes

n dI dII Codes

� � i��

 � i���
� � i���
� � 
 i��� e
�
�� � i
�� e
i��
�� 
 d����
�
 
 e��� �

�� 
 
 d��
 � d
�
��� e

�

�

�� 
 d��� � �d��e�f��
��

�� 
 � codes �Table II��
�� � g���
�
 � � h���� g���
�� � f��� �����
�� � 
 codes �����

� � �
 codes ����� �����

� � � 
 codes ��	�� � codes �Table III��


 � � ���

� � � �

� � � 
 ��	�� �����

� � � � ��� � ���� �see text for references�

� � � 
� ��
�


 � � ��� ��
�

� �� � � ��	�

� �� �� � �� � � �XQ���
�� �� � �
�� �� � 
		 �����
�
 �� � �

�� �� or �� �� %� � ���
�� �� � �� ��
�
�� �� � �
�� �� or �� %
�
 �� �� � �� � 
��� ��
�
�� �� � 

�� �� � ��
�� �� or �
 % ������ �����
�� �� or �
 �� or �� %� %

���



Table XI� Double circulant binary codes

Name n k d Type Form r �hexadecimal�

g�� �� �� � I ���	� 	�
g�� �
 �� � II ����� B�

A�� � f���� �� �
 � I ���	� �F�
A�
 �D� �� �
 � I ����� �D
D� 

 �� � I ���	� �ECE
D
 
� �� � I ����� �C�B
D
 
� �	 � I ���	� ��	

D� 
� �� � II ���	� ��EB
D� 
� �� � I ���	� ��E
�
D� 
� �� � I ���	� B
	

D� 

 �� � I ����� �E�B�
D	 �� �� �� I ���	� 
�C
D
D�� �� �� �� I ����� ��F�	D
D�� �� �� �� II ����� ADF�FF
D�� �� �	 �� I ���	� D�A�	B
D��a �� �	 �� I ���	� �DD�D

D�
 �� 
� �� I ����� 
EF�B��
D�
 �
 
� �� II ����� 
��BD�B
D�� �
 
� �� I ���	� �EF
DD��
D�� �� 

 �� I ���	� B�D	�D	
D�� �� 

 �� I ���	� �F�C���F
D��� �� 
� �� I ���	� �B��	�E�
D�	� �
 
� �� I ���	� �

	
��C�
D��� �� 
� �� I ���	� A
�
B	�	B
H�� �� 

 �� I ���	� �F�������E�
M�� �� 

 �� II �����
M�
� �
� �� �
 II �����

��	



Table XII� Highest minimal distance of ternary self�dual codes

n d Codes


 
 t��
� 
 t���
�� � g���

�� � f��
 �
�� � � codes ��
���
�
 	 XQ��� S��
� ���	��
�� 	 � 
� ����� ���
�� ���
�� ��
��

� 	 � �
	 ��
��

� �� � � �S�
���

� �� � �� �
���� ����� ���
�� ��
��


 �� � � ���
�

� �� � � �XQ��� S�
���
�� �� or �� %
�� �� � �
�� �� � � �XQ
�� S�����
�
 �� � � ����� ����
�� �� or �� %
�� �� � � �XQ����
��

Table XIII� Highest minimal distance of Hermitian self�dual codes over F�

n d Codes

� � i��

 � i���
� 
 h��
� 
 e
�
�� 
 d���� e

��

 �

�� 
 � codes �Table IX��
�
 � q���
�� � 
 codes ��
��
�� � S�
 ��
���
�� � � codes ��
���
�� � � 
� codes ��
��� ��

�
�
 � � � code
�� � or �� %
�� �� � 
 codes ��
��� ��

�

� �� XQ�� �����

� % %

���



Table XIV� Highest minimal distance of additive self�dual codes over F�

n d Codes n d Codes

� � i�� �� � � 
 codes ��
�
� � i�� �� �

 � d�� � �� � S�


 � 
 codes� �	 �
� 
 h
� �� � � � codes ��
��
� 
 h�� �� � c��
� 
 �� � � 
� codes ��
��
� 
 e
 �
 ��	 c��
	 
 c� �
 ���� g�� � F�
�� 
 d��� � e

��

 �� ��	 c�


�� � �� ����
�� � z��� �� 	���
�
 � �� ��
�
 � q�� �	 ��
�� � c�
 
� �� XQ��

Table XV� Generators for cyclic additive codes over F�

c� �����������
c�
 �����������������
c�� ������������������������ �����������������������
c�� �������������������������
c�
 ���������������������������

���



Table XVI� Highest Hamming distance �dH�� Lee distance �dL� and Euclidean norm �Norm�
of self�dual codes over Z�

Length Hamming Lee Norm
n dH code ( dL code ( Norm code (

� � i� � � i� � 
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� � i�� � � i�� � 
 i�� �

 � i�� � � i�� � 
 i�� �

 � D


� � 
 D

� � 
 i�� �

� � D

� i� � � D


� i� � 
 i
� �
� � D


� � 
 D

� � 
 i�� 


� 
 E�
� � 
 E�

� � 
 i�� 

� 
 o
 � � o
 � � o
 �
	 � o
i� �� � o
i� �� 
 i�� ��
�� � D


� D


� � 
 D


� D


� � 
 i��� ��

�� � D

� E

�
� 
 
 D


� E
�
� 
 
 i��� �	

�� � D

� o
 
	 
 D


� o
 
	 � �	�� �	
�
 � D


� E
�
� � 
 D


� E
�
� � 
 i��� ��

�
 
 �E�
� �

� 
 � �	�� � � �	�� 
�
�� 
 E�

� o
 
� � �	�� �� � �	�� ��
�� 
 o�
 � � � C�� � � � o�
 � �
�� 
 C�� �� � C�� � �� � C�� � ��
�� 
 C�
 �� � C�
 � � C�
 � 
	
�	 
 G�� � � � G�� � � � G�� � �
�� 
 G�� � � � G�� � � � G�� � �
�� � G�� 
�
 � G�� 
�
 � G�� � 
�

�� � G�� � �	
�� � G�� � �	
�� � G�� � �	
��
�
 � G�� � ����� ��� �� G�� 
� �� G�� � 
�
�
 � G�� � ��
�� ��
 �� G�� �
 �� G�� � ��

���



The bibliography uses the following abbreviations for journals�

DCC � Designs� Codes and Cryptography

DM � Discrete Mathematics

JCT � Journal of Combinatorial Theory

PGIT � IEEE Transactions on Information Theory

References

��� V� K� Agrawala and J� G� Belinfante� An algorithm for computing SU�n� invariants� BIT

�� ��	���� �����

��� O� Amrani� Y� Be�ery� A� Vardy� F��W� Sun and H� C� A� van Tilborg� The Leech lattice

and the Golay code� bounded�distance decoding and multilevel constructions� PGIT ��

��		
�� ��
����

�

�
� E� F� Assmus� Jr� and J� D� Key� Designs and Their Codes� Cambridge Univ� Press� �		��

�
� and H� F� Mattson� Jr�� Coding and combinatorics� SIAM Review �
 ��	�
�� 

	�


���

��� and R� J� Turyn� Research to develop the algebraic theory of codes� Report

AFCRL��������� Air Force Cambridge Res� Labs�� Bedford� MA� June �	���

��� and V� Pless� On the covering radius of extremal self�dual codes� PGIT �� ��	�
��


�	�
�
�

��� L� Babai� H� Oral and K� T� Phelps� Eulerian self�dual codes� SIAM J� Discr� Math� �

��		
�� 
�
�


�

��� C� Bachoc� Applications of coding theory to the construction of modular lattices� JCT

A �� ��		��� 	����	�

�	� E� Bannai� S� T� Dougherty� M� Harada and M� Oura� Type II codes� even unimodular

lattices and invariant rings� preprint� June �		��

���� S� Minashima and M� Ozeki� On Jacobi forms of weight 
� Kyushu J� Math� 	�

��		��� 

��
���

��




���� and M� Ozeki� Construction of Jacobi forms from certain combinatorial polynomials�

Proc� Japan Acad� A �� ��		��� 
�	�
�
�

���� G� F� M� Beenker� A note on extended quadratic residue codes over GF �	� and their

ternary images� PGIT �� ��	�
�� 
�
�
���

��
� D� J� Benson� Polynomial Invariants of Finite Groups� Cambridge Univ� Press� �		
�

��
� E� R� Berlekamp� F� J� MacWilliams� and N� J� A� Sloane� Gleason�s theorem on self�dual

codes� PGIT ��� ��	���� 
�	�
�
�

���� V� K� Bhargava and C� Nguyen� Circulant codes based on the prime �	� PGIT �
 ��	����


�
�
�
�

���� and J� M� Stein� �v� k� d� con�gurations and self�dual codes� Inform� Contr� ��

��	���� 
���
���

���� G� Young and A� K� Bhargava� A characterization of a ���� ��� extremal self�dual

code� PGIT �� ��	���� ��������

���� I� F� Blake� Properties of generalized Pless codes� in Proc� �
th Allerton Conf� Circuit

and System Theory� Univ� Ill�� Urbana� �	�
� pp� ������	�

��	� On a generalization of the Pless symmetry codes� Inform Control �� ��	���� 
�	�


�
�

���� B� Bolt� T� G� Room and G� E� Wall� On Cli�ord collineation� transform and similarity

groups I� J� Australian Math� Soc� � ��	���� ����	�

���� On Cli�ord collineation� transform and similarity groups II� J� Australian

Math� Soc� � ��	���� ���	��

���� A� Bonnecaze� A� R� Calderbank and P� Sol'e� Quaternary quadratic residue codes and

unimodular lattices� PGIT �� ��		��� 
���
���

��
� P� Gaborit� M� Harada� M� Kitazume and P� Sol'e� Niemeier lattices and Type II

codes over Z�� preprint�

��
� B� Mourrain and P� Sol'e� Jacobi polynomials� Type II codes� and designs� DCC�

submitted�

��




���� A� Bonnecaze� E� M� Rains and P� Sol'e� Z� codes and ��designs� preprint�

���� and P� Sol'e� Quaternary constructions of formally self�dual binary codes and uni�

modular lattices� in Algebraic Coding� Lect� Notes� Comp� Sci� ��� ��		
�� �	
�����

���� C� Bachoc and B� Mourrain� Type II codes overZ�� PGIT �� ��		��� 	�	�	���

���� W� Bosma and J� Cannon� Handbook of Magma Functions� Sydney� May ��� �		��

��	� and G� Mathews� Programming with algebraic structures� Design of the

Magma language� in Proceedings of the ���
 International Symposium on Symbolic and

Algebraic Computation� M� Giesbrecht� Ed�� Association for Computing Machinery� �		
�

������

�
�� and C� Playoust� The Magma algebra system I� The user language� J� Symb�

Comp� �� ��		��� �
������

�
�� N� Bourbaki� Groups et Alg�ebres de Lie� Chap� 
� � et �� Hermann� Paris� �	���

�
�� M� Brou'e� Codes correcteurs d�erreures auto�orthogonal sur le corps 0a deux 'el'ements

et formes quadratiques enti0eres d'e�nies positives 0a discriminant ��� Comptes Rendus

Journ� Math� Soc� Math� France� Univ� Sci� Tech� Languedoc� Montpellier� �	�
� pp� ���

����

�

� and M� Enguehard� Polyn"omes des poids de certains codes et fonctions th"eta de

certains r'eseaux� Ann� Sci�ent� Ec� Norm� Sup� 	 ��	���� ��������

�

� A� E� Brouwer� A� M� Cohen and A� Neumaier� Distance�Regular Graphs� Springer�

Verlag� Berlin� �	�	�

�
�� R� A� Brualdi and V� S� Pless� Weight enumerators of self�dual codes� PGIT �� ��		���

����������

�
�� W� Bruns and J� Herzog� Cohen�Macaulay Rings� Cambridge Univ� Press� �		
�

�
�� W� Burnside� Group Theory� Dover� NY� �nd ed�� �	���

�
�� F� C� Bussemaker and V� D� Tonchev� New extremal doubly�even codes of length ��

derived from Hadamard matrices of order ��� DM �
 ��	�	�� 
��
	�

���



�
	� Extremal doubly�even codes of length 
� derived from Hadamard matrices�

DM �� ��		��� 
���
���

�
�� S� Buyuklieva� New extremal self�dual codes of lengths 
� and 

� PGIT �� ��		���

����������

�
�� On the binary self�dual codes with an automorphism of order �� DCC �� ��		���


	�
��

�
�� and I� Boukliev� Extremal self�dual codes with an automorphism of order �� PGIT

�� ��		��� 
�
�
���

�

� and V� Y� Yorgov� Singly�even self�dual codes of length 
�� DCC � ��		��� �
���
��

�

� A� R� Calderbank� P� J� Cameron� W� M� Kantor and J� J� Seidel� Z��Kerdock codes�

orthogonal spreads and extremal Euclidean line�sets� Proc� London Math� Soc� �	 ��		���



��
���

�
�� A� R� Hammons� Jr�� P� V� Kumar� N� J� A� Sloane and P� Sol'e� A linear construction

for certain Kerdock and Preparata codes� Bull� Amer� Math� Soc� �� ��		
�� ��������

�
�� W��C� W� Li and B� Poonen� A ��adic approach to the analysis of cyclic codes�

PGIT �� ��		��� 	���	���

�
�� G� McGuire� P� V� Kumar and T� Helleseth� Cyclic codes over Z�� locator polyno�

mials� and Newton�s identities� PGIT �� ��		��� ��������

�
�� E� M� Rains� P� W� Shor and N� J� A� Sloane� Quantum error correction and

orthogonal geometry� Phys� Rev� Lett� �� ��		�� 
���
�	�

�
	� Quantum error correction via codes over GF�
�� PGIT �� ��		���

to appear�

���� and N� J� A� Sloane� Modular and p�adic cyclic codes� DCC 
 ��		��� ���
��

���� Double circulant codes over Z� and even unimodular lattices� J� Algebraic

Combinatorics 
 ��		��� ��	��
��

���� P� Camion� 'Etude de codes binaires ab'eliens modulaires autoduaux de petites longueurs�

Revue du CETHEDEC ���� ��	�	�� 
��
�

���



��
� B� Courteau and A� Montpetit� Coset weight enumerators of the extremal self�

dual binary codes of length 
�� in EUROCODE ��
� CISM Courses and Lectures ����

Springer�Verlag� NY� �		
� pp� ���
��

��
� C� Carlet� On Z��duality� PGIT �� ��		��� �
����
	
�

���� R� Chapman and P� Sol'e� Universal codes and unimodular lattices� J� Th�eorie Nombres

Bordeaux � ��		��� 
�	�
���

���� P� Charpin� Self�dual codes which are principal ideals of the group algebra F��fF�m ��g��
J� Statist� Plann� Infer� 	
 ��		��� �	�	��

���� and F� Levy�dit�Vehel� On self�dual a!ne�invariant codes� JCT A 
� ��		
�� ��
�

�

�

���� Y� Cheng and R� Scharlau� personal communication� Sept�� �	���

��	� and N� J� A� Sloane� The automorphism group of an ����	��� quaternary code� DM

�� ��		��� ��������

���� Codes from symmetry groups and a �
������� code� SIAM J� Discrete Math� �

��	�	�� ���
��

���� J� H� Conway� A� M� Odlyzko� and N� J� A� Sloane� Extremal self�dual lattices exist only

in dimensions ���� ��� �
� ��� �
 and �
�Mathematika �	 ��	���� 
��

� A revised version

appears as Chapter �
 of �����

���� and V� Pless� On the enumeration of self�dual codes� JCT A �� ��	���� ����
�

��
� On primes dividing the group order of a doubly�even ����
����� code and the

group order of a quaternary ��
������� code� DM �� ��	���� �

�����

��
� and N� J� A� Sloane� Self�dual codes over GF �
� and GF �
� of length not

exceeding ��� PGIT �	 ��	�	�� 
���
���

���� The binary self�dual codes of length up to 
�� A revised enumeration�

JCT A 
� ��		��� ��
��	��

���� and N� J� A� Sloane� Soft decoding techniques for codes and lattices� including the

Golay code and the Leech lattice� PGIT �� ��	���� 
�����

���



���� Low�dimensional lattices II� Subgroups of GL�n�Z�� Proc� Royal Soc� A ���

��	���� �	����

���� A new upper bound for the minimum of an integral lattice of determinant one�

Bull� Amer� Math� Soc� �� ��		��� 
�
�
��� Erratum� volume �
 �April �		��� p� 
�	�

��	� A new upper bound on the minimal distance of self�dual codes� PGIT �
�

��		��� �
�	��


�

���� Sphere Packings� Lattices and Groups� Springer�Verlag� NY� �nd edition� �		
�

���� Self�dual codes over the integers modulo 
� JCT A 
� ��		
�� 
��
��

���� On lattices equivalent to their duals� J� Number Theory �� ��		
�� 
�
�
���

��
� Codes and lattices� PGIT� to appear� �		��

��
� D� Coppersmith and G� Seroussi� On the minimum distance of some quadratic residue

codes� PGIT �� ��	�
�� 
���
���

���� E� C� Dade� Answer to a question of R� Brauer� J� Algebra � ��	�
�� ��
�

���� E� Dawson� Self�dual ternary codes and Hadamard matrices� Ars Comb� ��A ��	����


�
�
���

���� A construction for the generalized Hadamard matrices GF �
q�EA�q��� J� Statist�

Plann� Inf� �� ��	���� ��
�����

���� P� Delsarte� Bounds for unrestricted codes� by linear programming� Philips Res� Reports

�� ��	���� ������	�

��	� J� Dieudonn'e and J� B� Carroll� Invariant Theory� Old and New� Acad� Press� NY� �	���

���� P� Doubilet� G��C� Rota and J� Stein� On the foundations of combinatorial theory� IX�

Combinatorial methods in invariant theory� Studies in Appl� Math� 	� ��	�
�� ��������

���� S� T� Dougherty� Shadow codes and weight enumerators� PGIT �� ��		��� ��������

���� T� A� Gulliver and M� Harada� Type II self�dual codes over �nite rings and even

unimodular lattices� J� Alg� Combin�� to appear�

���



��
� Extremal binary self�dual codes� PGIT �� ��		��� ��
����
���

��
� and M� Harada� Shadow optimal self�dual codes� Kyushu J� Math�� to appear�

���� New extremal self�dual codes of length ��� preprint�

���� Self�dual codes constructed from Hadamard matrices and symmetric designs�

preprint�

���� and M� Oura� Formally self�dual codes� preprint�

���� and P� Sol'e� Shadow codes over Z�� Finite Fields Applic� to appear�

��	� Self�dual codes over rings and the Chinese remainder theorem� preprint�

�		��

�	�� W� Duke� On codes and Siegel modular forms� Internat� Math� Res� Notices 	 ��		
��

�����
��

�	�� H� Dym and H� P� McKean� Fourier Series and Integrals� Acad� Press� NY� �	���

�	�� W� Ebeling� Codes and Lattices� Vieweg� Wiesbaden� �		
�

�	
� M� Eichler and D� Zagier� The Theory of Jacobi Forms� Birkh*auser� Boston� �	���

�	
� W� Feit� A self�dual even �	��
����� code� PGIT �� ��	�
�� �
���
��

�	�� J� Fields� P� Gaborit� J� Leon and V� Pless� All self�dual Z� codes of length �� or less are

known� PGIT �� ��		��� 
���
���

�	�� C� S� Fisher� The death of a mathematical theory� a study in the sociology of knowledge�

Archiv� Hist� Exact� Sci� � ��	���� �
����	�

�	�� G� D� Forney� Jr�� Coset codes I� introduction and geometrical classi�cation� PGIT ��

��	���� ����������

�	�� Coset codes II� binary lattices and related codes� PGIT �� ��	���� ����������

�		� N� J� A� Sloane and M� D� Trott� The Nordstrom�Robinson code is the binary image

of the octacode� in Coding and Quantization� DIMACS�IEEE Workshop October ���
��

���
� pp� �	���� R� Calderbank� G� D� Forney� Jr� and and N� Moayeri� Eds�� Amer�

Math� Soc� ��		
��

��	



����� R� Fossum et al�� editors� Invariant Theory� Contemporary Math� �� Amer� Math� Soc��

�	�	�

����� P� Gaborit� Mass formulas for self�dual codes overZ� and Fq�uFq rings� PGIT �� ��		���

����������

����� and M� Harada� Construction of extremal Type II codes over Z�� DCC� submitted�

���
� and P� Sol'e� Self�dual codes overZ� and unimodular lattices� a survey� preprint�

���
� F� Gherardelli� editor� Invariant Theory� Proceedings� Montecatini� ���
� Lect� Notes�

Math� ��
� Springer�Verlag� NY� �	�
�

����� A� M� Gleason� Weight polynomials of self�dual codes and the MacWilliams identities�

in Actes� Congr�es International de Math�ematiques� Gauthier�Villars� Paris� � ��	����

��������

����� I� J� Good� Generalizations to several variables of Lagrange�s expansion� with applications

to stochastic processes� Proc� Camb� Phil� Soc� 	
 ��	���� 
���
���

����� T� A� Gulliver and V� K� Bhargava� Self�dual codes based on the twin prime product 
��

Appl� Math� Lett� 	 ��		��� 	��	��

����� and M� Harada� Weight enumerators of extremal singly�even ���� 
�� ��� codes� PGIT

�� ��		��� ������	�

���	� Classi�cation of extremal double circulant formally self�dual even codes� DCC

�� ��		��� ���
��

����� Weight enumerators of double circulant codes and new extremal self�dual

codes� DCC �� ��		��� �
������

����� Classi�cation of extremal double circulant self�dual codes of lengths �
 to ���

DCC �� ��		��� ������	�

����� Certain self�dual codes overZ� and the odd Leech lattice� Proc� �
th Appl� Alg�

Algorithms and Error�Correcting Codes� Lect� Notes Comp� Sci� ���	 ��		��� �
���
��

���
� On the existence of a formally self�dual even ���� 
�� �
� code� Appl� Math�

Lett� �� ��		��� 	��	��

���



���
� New optimal self�dual codes over GF ���� Graphs and Combin�� to appear�

����� Extremal double circulant Type II code over Z� and construction of � �
��
� ��� 
�� designs� DM� to appear

����� Double circulant self�dual codes over GF ���� Ars Comb�� to appear�

����� Double circulant self�dual codes over Z�k� PGIT� submitted�

����� and H� Kaneta� Classi�cation of extremal double circulant self�dual codes of

length up to ��� DM� to appear�

���	� A� R� Hammons� Jr�� P� V� Kumar� A� R� Calderbank� N� J� A� Sloane� and P� Sol'e�

The Z��linearity of Kerdock� Preparata� Goethals and related codes� PGIT �� ��		
��


���
�	�

����� M� Harada� Existence of new extremal doubly�even codes and extremal singly�even codes�

DCC � ��		��� ��
���
�

����� The existence of a self�dual ���� 
�� ��� code and formally self�dual codes� Finite

Fields Applic� � ��		��� �
���
	�

����� Weighing matrices and self�dual codes� Ars Comb� �� ��		��� ����
�

���
� New extremal ternary self�dual codes� Australasian J� Combin�� to appear�

���
� New extremal Type II codes over Z�� DCC �� ��		��� ������
�

����� New ��designs constructed from the lifted Golay code overZ�� J� Combin� Designs�

to appear�

����� and H� Kimura� New extremal doubly�even ��
� 

� ��� codes� DCC 
 ��		��� 	��	��

����� On extremal self�dual codes� Math� J� Okayama Univ� �� ��		��� ���
�

����� and M� Oura� On the Hamming weight enumerators of self�dual codes over Zk�

preprint� Oct� �		��

���	� and M� Ozeki� Extremal self�dual codes with the smallest covering radius� preprint�

���



��
�� and V�D� Tonchev� Singly�even self�dual codes and Hadamard matrices� in Proc�

Applied� Alg�� Alg� Algorithms and Error�Correcting Codes� ed� G� Cohen� M� Giusti and

T� Mora� Lecture Notes in Computer Science ��� ��		��� ��	���
�

��
�� F� Hirzebruch� The ring of Hilbert modular forms for real quadratic �elds of small dis�

criminant� in Modular Functions of One Variable VI� pp� ����
�
� Proceedings� Bonn

�	��� Lecture Notes in Mathematics No� ���� Springer�Verlag� NY� �	��� �Ges� Abh��

Vol� II� pp� �����
���

��
�� Letter to N� J� A� Sloane� Aug� �	� �	��� Reproduced in F� Hirzebruch� Ges� Abh��

Springer�Verlag� NY� Vol� II� �	��� pp� �	���	��

��

� M� Hochster and J� A� Eagon� Cohen�Macaulay rings� invariant theory� and the generic

perfection of determinantal loci� Amer� J� Math� �� ��	���� ����������

��

� G� H*ohn� Self�dual codes over the Kleinian four�group� preprint� �		��

��
�� G� Horrocks and D� Mumford� A rank � vector bundle on P � with ������ symmetries�

Topology �� ��	�
�� �
����

��
�� S� Houghten� C� Lam and L� Thiel� Construction of �
�� �
� ��� doubly�even self�dual

codes� Congr� Number ��� ��		
�� 
���
�

��
�� K� Huber� Codes over Gaussian integers� PGIT �� ��		
�� ��������

��
�� W� C� Hu�man� Automorphisms of codes with applications to extremal doubly even

codes of length 
�� PGIT �� ��	���� ��������

��
	� Decomposing and shortening codes using automorphisms� PGIT �� ��	���� �

�

�
��

��
�� On the ��
������� quaternary code and binary codes with an automorphism having

two cycles� PGIT �� ��	���� 
���
	
�

��
�� On the equivalence of codes and codes with an automorphism having two cycles�

DM �� ��		��� ������
�

��
�� On extremal self�dual quaternary codes of lengths �� to ��� I� PGIT �
 ��		���

��������

���



��

� On 
�elements in monomial automorphism groups of quaternary codes� PGIT �


��		��� ������
�

��

� On extremal self�dual quaternary codes of lengths �� to ��� II� PGIT �� ��		���

����������

��
�� On extremal self�dual ternary codes of lengths �� to 
�� PGIT �� ��		��� �
	���
���

��
�� On the classi�cation of self�dual codes� Proc� �
th Allerton Conf� Commun� Control

and Computing� October ��
� �		�� pp� 
���
���

��
�� Characterization of quaternary extremal codes of lengths �� and ��� PGIT ��

��		��� ���
������

��
�� Decompositions and extremal type II codes over Z�� PGIT� �� ��		��� ������	�

��
	� and N� J� A� Sloane� Most primitive groups have messy invariants� Advances in

Math� �� ��	�	�� ��������

����� and V� D� Tonchev� The existence of extremal ���� ��� ��� codes and quasi�symmetric

���
	�	��� designs� DCC 
 ��		��� 	������

����� The ���� ��� ��� binary self�dual codes with an automorphism of order ��

preprint�

����� and V� Y� Yorgov� A ���� 
�� ��� doubly even code does not have an automorphism

of order ��� PGIT �� ��	���� �
	�����

���
� V� I� Iorgov� see V� Y� Yorgov�

���
� N� Jacobson� Lectures in Abstract Algebra� 
 vols�� Van Nostrand� Princeton� �	����	�
�

����� D� B� Ja�e� Binary linear codes� new results on nonexistence� Available from

http�11www�math�unl�edu1	dja�e1codes1code�ps�gz�

����� S� N� Kapralov and V� D� Tonchev� Extremal doubly�even codes of length �
 derived

from symmetric designs� DM �� ��		��� ������	�

����� M� Karlin� New binary coding results by circulants� PGIT �	 ��	�	�� ���	��

��




����� G� T� Kennedy� Weight distributions of linear codes and the Gleason�Pierce theorem�

JCT A 
� ��		
�� ������

���	� and V� Pless� On designs and formally self�dual codes� DCC � ��		
�� 

����

����� A coding theoretic approach to extending designs� DM ��� ��		��� ��������

����� H� Kimura� Extremal doubly even ���� ��� ��� codes and Hadamard matrices of order ���

Australas� J� Combin� �� ��		
�� ��������

����� M� Kitazume� T� Kondo and I� Miyamoto� Even lattices and doubly even codes� J� Math�

Soc� Japan �� ��		��� ������

���
� F� Klein� Weitere Untersuchunger *uber das Ikosaeder�Math� Ann� �� ������ �Ges� Math�

Abh� III� 
���
�
��

���
� Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree� �nd

ed�� Dover� NY �	���

����� M� Klemm� Ueber die Identit*at von MacWilliams f*ur die Gewichtsfunktion von Codes�

Archiv Math� �� ��	���� 
���
���

����� Selbstduale Codes *uber dem Ring der ganzen Zahlen modulo 
� Archiv Math� 	�

��	�	�� ��������

����� H� Koch� Unimodular lattices and self�dual codes� in Proc� Intern� Congress Math��

Berkeley ����� Amer� Math� Soc� Providence RI � ��	���� pp� 
���
���

����� On self�dual� doubly�even codes of length 
�� JCT A 	� ��	�	�� �
����

���	� On self�dual doubly�even extremal codes� DM �� ��		��� �	��
���

����� and B� B� Venkov� Ueber ganzzahlige unimodulare euklidische Gitter� J� reine

angew� Math� ��� ��	�	�� �

�����

����� S� S� Koh� editor� Invariant Theory� Lect� Notes Math� ����� Springer�Verlag� NY� �	���

����� I� Krasikov and S� Litsyn� Linear programming bounds for doubly�even self�dual codes�

PGIT �� ��		��� ��
����

�

��




���
� F� R� Kschischang and S� Pasupathy� Some ternary and quaternary codes and associated

sphere packings� PGIT �� ��		��� �����
��

���
� C� W� H� Lam� The search for a �nite projective plane of order ��� Amer� Math� Monthly

�� ��		�� 
���
���

����� and V� Pless� There is no ��
������� self�dual quaternary code� PGIT �
 ��		���

���
������

����� L� Thiel and S� Swiercz� The non�existence of �nite projective planes of order ���

Canad� J� Math� �� ��	�	�� ��������
�

����� S� Lang� Algebra� Addison�Wesley� Reading� MA� �	���

����� J� S� Leon� J� M� Masley and V� Pless� Duadic codes� PGIT �� ��	�
�� ��	���
�

���	� V� Pless and N� J� A� Sloane� On ternary self�dual codes of length �
� PGIT ���

��	���� ��������

����� Self�dual codes over GF���� JCT A �� ��	���� �����	
�

����� J� H� van Lint� Introduction to Coding Theory� Springer�Verlag� NY� �	���

����� D� E� Littlewood� A University Algebra� Dover� NY� �nd ed�� �	���

���
� X� Ma and L� Zhu� Nonexistence of extremal doubly even self�dual codes� preprint� �		��

���
� F� J� MacWilliams� A theorem on the distribution of weights in a systematic code� Bell

Syst� Tech� J� �� ��	�
�� 
�������

����� Orthogonal matrices over �nite �elds� Amer� Math� Monthly �
 ��	�	�� ������
�

����� Orthogonal circulant matrices over �nite �elds� and how to �nd them� JCT ��

��	���� �����

����� C� L� Mallows and N� J� A� Sloane� Generalizations of Gleason�s theorem on weight

enumerators of self�dual codes� PGIT �� ��	���� �	
�����

����� A� M� Odlyzko� N� J� A� Sloane and H� N� Ward� Self�dual codes over GF�
�� JCT

A �	 ��	���� ����
��

���



���	� and N� J� A� Sloane� The Theory of Error�Correcting Codes� North�Holland� Ams�

terdam� �	���

��	�� and J� G� Thompson� Good self�dual codes exist� DM � ��	���� ��
�����

��	�� On the existence of a projective plane of order ��� JCT A �� ��	�
��

������

��	�� C� L� Mallows� A� M� Odlyzko and N� J� A� Sloane� Upper bounds for modular forms�

lattices and codes� J� Algebra �
 ��	���� ������

��	
� V� Pless and N� J� A� Sloane� Self�dual codes over GF �
�� SIAM J� Appl� Math� ��

��	���� �
	�����

��	
� and N� J� A� Sloane� On the invariants of a linear group of order 

�� Proc� Camb�

Phil� Soc� �� ��	�
� 

��

��

��	�� An upper bound for self�dual codes� Information and Control �� ��	�
�� ����

����

��	�� Weight enumerators of self�orthogonal codes� DM � ��	�
�� 
	��
���

��	�� Weight enumerators of self�orthogonal codes over GF �
�� SIAM J� Algebraic

and Discrete Methods � ��	���� 
���
���

��	�� R� J� McEliece� personal communication�

��		� G� A� Miller� H� F� Blichfeldt and L� E� Dickson� Theory and Applications of Finite

Groups� Dover� NY� �	���

����� J� Milnor and D� Husemoller� Symmetric Bilinear Forms� Springer�Verlag� NY� �	�
�

����� T� Molien� Ueber die invarianten der linear Substitutionsgruppe� Sitzungsber K�onig�

Akad� Wiss�� ���	��� ����������

����� E� H� Moore� Double Circulant Codes and Related Algebraic Structures� Ph�D� Disserta�

tion� Dartmouth College� July �	���

���
� E� H� Moore� Using the group of a code to compute its minimal weights� preprint�

���



���
� D� Mumford and J� Fogarty� Geometric Invariant Theory� Springer�Verlag� NY� �nd ed��

�	���

����� E� Noether� Der Endlichkeitsatz der Invarianten endlicher Gruppen� Math� Ann� ��

��	���� �	�	��

����� H� Oral and K� T� Phelps� Almost all self�dual codes are rigid� JCTA 
� ��		��� ��
�����

����� M� Ozeki� On the basis problem for Siegel modular forms of degree �� Acta Arith� ��

��	���� ���
��

����� On even unimodular positive de�nite quadratic lattices of rank 
�� Math� Z� ���

��	���� ��
��	��

���	� On the con�gurations of even unimodular lattices of rank 
�� Archiv Math� �


��	���� �
����

����� Hadamard matrices and doubly even self�dual error�correcting codes� JCT A ��

��	���� ��
�����

����� Examples of even unimodular extremal lattices of rank 
� and their Siegel theta�

series of degree �� J� Number Theory �� ��	���� ��	��
��

����� Ternary code construction of even unimodular lattices� in Theorie des Nombres�

Quebec ����� Gruyter� Berlin� �	�	� pp� ������
�

���
� On the structure of even unimodular extremal lattices of rank 
�� Rocky Mtn� J�

Math� �� ��	�	�� �
������

���
� On a class of self�dual ternary codes� Science Reports Hirosaki Univ� �
 ��	�	��

��
��	��

����� Quinary code construction of the Leech lattice� Nihonkai Math� J� � ��		��� ����

����

����� On intersection properties of extremal ternary codes� JCT� to appear�

����� On the notion of Jacobi polynomials for codes� Math� Proc� Camb� Phil� Soc� ���

��		��� ���
��

���



����� On covering radius and coset weight distributions of extremal binary self�dual codes

of length 
�� Theoret� Comp� Sci�� to appear�

���	� G� Pasquier� The binary Golay code obtained from an extended cyclic code over F
�

Europ J� Combinatorics � ��	���� 
�	�
���

����� A binary extremal doubly�even self�dual code ��
� 
�� ��� obtained from an extended

Reed�Solomon code over F��� PGIT �� ��	���� ��������

����� Projections et images binaries de codes sur F�m � Rev� CETHEDEC � ��	���� 
�����

����� Binary images of some self�dual codes over GF ��m� with respect to trace�orthogonal

basis� DM �� ��	���� ������	�

���
� N� J� Patterson� personal communication� �	���

���
� P� M� Piret� Algebraic construction of cyclic codes over Z
 with a good Euclidean mini�

mum distance� PGIT �� ��		��� ��������

����� V� Pless� The number of isotropic subspaces in a �nite geometry� Rend� Cl� Scienze

�siche� matematiche e naturali� Acc� Naz� Lincei �� ��	���� 
���
���

����� On the uniqueness of the Golay codes� JCT 	 ��	���� ��������

����� On a new family of symmetry codes and related new �ve�designs� Bull� Amer� Math�

Soc� �	 ��	�	�� �

	��

��

����� A classi�cation of self�orthogonal codes over GF ���� DM � ��	���� ��	��
��

���	� Symmetry codes over GF �
� and new �ve�designs� JCT A �� ��	���� ��	��
��

��
�� �
 does not divide the order of the group of a ����
����� doubly even code� PGIT

�� ��	���� ��
�����

��
�� The children of the �
����� doubly even codes� PGIT �� ��	���� �
���
��

��
�� A decoding scheme for the ternary Golay code� in Proc� 
�th Allerton Conf� Comm�

Control�� Univ� of Ill�� Urbana� ���
� pp� ��������

��

� On the existence of some extremal self�dual codes� in D� M� Jackson and S� A�

Vanstone� editors� Enumeration and Design� Academic Press� �	�
� pp� �
������

���



��

� Q�codes� JCT A �� ��	���� ��������

��
�� Decoding the Golay codes� PGIT �� ��	���� ��������

��
�� Extremal codes are homogeneous� PGIT �	 ��	�	�� �
�	��

��

��
�� Parents� children� neighbors and the shadow� Contemporary Math� �
� ��		
��

��	��	��

��
�� J� S� Leon and J� Fields� All Z� codes of Type II and length �� are known� JCT A

�� ��		��� 
�����

��
	� and J� N� Pierce� Self�dual codes over GF �q� satisfy a modi�ed Varshamov�Gilbert

bound� Information and Control �� ��	�
�� 
��
��

��
�� and Z� Qian� Cyclic codes and quadratic residue codes over Z�� PGIT �� ��		���

��	
������

��
�� and N� J� A� Sloane� On the classi�cation and enumeration of self�dual codes� JCT

A �� ��	���� 
�
�

��

��
�� and H� N� Ward� Ternary codes of minimum weight � and the classi�cation of

self�dual codes of length ��� PGIT �
 ��	���� 
���
���

��

� P� Sol'e and Z� Qian� Cyclic self�dual Z��codes� Finite Fields Appl� � ��		��� 
���	�

��

� and J� G� Thompson� �� does not divide the order of a group of a ����
����� code�

PGIT �� ��	���� �
���
��

��
�� and V� D� Tonchev� Self�dual codes over GF ���� PGIT �� ��	���� ��
�����

��
�� and J� Leon� On the existence of a certain ��
� 
�� ��� extremal code� PGIT

�� ��		
�� ��
�����

��
�� A� Poli and C� Rigoni� Enumeration of self�dual �k circulant codes� Lect� Notes� Comput�

Sci� ��� ��	���� ������

��
�� E� M� Rains� Nonbinary quantum codes� preprint�

��
	� Shadow bounds for self�dual codes� �� ��		��� �

��
	�

��	



����� Quantum shadow enumerators� preprint�

����� Quantum weight enumerators� preprint�

����� Polynomial invariants of quantum codes� preprint�

���
� Optimal self�dual codes over Z�� preprint�

���
� Bounds for self�dual codes over Z�� preprint�

����� and N� J� A� Sloane� The shadow theory of modular and unimodular lattices�

preprint�

����� S� J� Rallis� New and old results in invariant theory with applications to arithmetic

groups� in Symmetric Spaces� W� M� Boothby and G� L� Weiss� Eds�� Dekker� NY� �	���

pp� 


�
���

����� M� Ran and J� Snyders� On maximum likelihood soft decoding of binary self�dual codes�

IEEE Trans� Commun� �� ��		
�� 

	�


�

����� Constrained designs for maximum likelihood soft decoding of RM��� m� and

the extended Golay codes� IEEE Trans� Commun� �� ��		��� ��������

���	� A cyclic ��� 
� 
� group code and the hexacode over GF �
�� PGIT �� ��		���

��������
�

����� C� Reid� Hilbert� Springer�Verlag� NY� �	���

����� C��G� Rota� Combinatorial Theory and Invariant Theory� Bowdoin College� �	���

����� B� Runge� On Siegel modular forms I� J� reine angew� Math� ��
 ��		
�� ������

���
� On Siegel modular forms II� Nagoya Math� J� ��� ��		��� ��	��	��

���
� Thetafunctions and Siegel�Jacobi forms� Acta Math� ��	 ��		��� �����	��

����� Codes and Siegel modular forms� DM ��� ��		��� ������
�

����� R� P� Ruseva� Uniqueness of the �
�� ��� �� double circulant code� in Proc� Internat� Work�

shop on Optimal Codes and Related Topics� May ���June �� �		�� Sozopol� Bulgaria�

������	�

�
�



����� New extremal self�dual codes of length 
�� in Proc� of the ��th Spring Conf� of the

UBM� �		�� ������
�

����� On the extremal self�dual binary codes of length 
� with an automorphism of order

�� preprint�

���	� J� A� Rush� A lower bound on packing density� Invent� Math� �� ��	�	�� 
		���	�

����� A bound� and a conjecture� on the maximum lattice�packing density of a superball�

Mathematika �� ��		
�� �
���

�

����� and N� J� A� Sloane� An improvement to the Minkowski�Hlawka bound for packing

superballs� Mathematika �� ��	���� �����

����� R� A� Sack� Interpretation of Lagrange�s expansion and its generalization to several vari�

ables as integration formulas� J� SIAM �� ��	���� 
���	�

���
� Generalization of Lagrange�s expansion for functions of several implicitly de�ned

variables� J� SIAM �� ��	���� 	�
�	���

���
� Factorization of Lagrange�s expansion by means of exponential generating functions�

J� SIAM �� ��	���� �����

����� W� Scharlau and D� Schomaker� personal communication� April �		��

����� J��P� Serre� Linear Representations of Finite Groups� Springer�Verlag� NY� �	���

����� P� Shankar� On BCH codes over arbitrary integer rings� PGIT �	 ��	�	�� 
���
�
�

����� G� C� Shephard and J� A� Todd� Finite unitary re$ection groups� Canad� J� Math� 


��	�
�� ��
�
�
�

���	� K� Shiromoto� A new MacWilliams type identity for linear codes� Hokkaido Math� J� �	

��		��� ��������

����� P� W� Shor and R� La$amme� Quantum analog of the MacWilliams identities in classical

coding theory� Phys� Rev� Lett� �� ��		��� ����������

����� N� J� A� Sloane� Is there a ���� 
�� d � �� self�dual code%� PGIT �� ��	�
�� ����

�
�



����� Weight enumerators of codes� in Combinatorics� M� Hall Jr� and J� H� van Lint�

Eds�� Mathematical Centre� Amsterdam and Reidel Publishing Co�� Dordrecht� Holland�

�	��� pp� �����
��

���
� Error�correcting codes and invariant theory� New applications of a nineteenth�

century technique� Amer� Math� Monthly �� ��	���� �������

���
� Binary codes� lattices and sphere�packings� in Combinatorial Surveys� Proceedings

of the Sixth British Combinatorial Conference� P� J� Comeron� Ed�� Academic Press� NY�

�	��� pp� ������
�

����� Codes over GF �
� and complex lattices� J� Algebra 	� ��	���� ��������

����� Self�dual codes and lattices� in Relations Between Combinatorics and Other Parts

of Mathematics� Proc� Symp� Pure Math�� Vol 

� American Mathematical Society� Prov�

idence� RI� �	�	� pp� ��
�
���

����� and J� G� Thompson� Cyclic self�dual codes� PGIT �� ��	�
�� 
�
�
���

����� L� Smith� Polynomial Invariants of Finite Groups� Peters� Wellesley� MA� �		��

���	� Polynomial invariants of �nite groups� A survey of recent developments� Bull� Amer�

Math� Soc� �� ��		��� ��������

��	�� S� L� Snover� The uniqueness of the Nordstrom�Robinson and the Golay binary codes�

Ph�D� Dissertation� Department of Mathematics� Michigan State Univ�� �	�
�

��	�� J� Snyders and Y� Be�ery� Maximum likelihood soft decoding of binary block codes and

decoders for the Golay codes� PGIT �	 ��	�	�� 	�
�	���

��	�� E� Spence and V� D� Tonchev� Extremal self�dual codes from symmetric designs� DM

��� ��		��� ��������

��	
� T� A� Springer� Invariant Theory� Lect� Notes� Math� 	�	� Springer�Verlag� NY� �	���

��	
� R� P� Stanley� personal communication�

��	�� Invariants of �nite groups and their applications to combinatorics� Bull� Amer�

Math� Soc� � ��	�	�� 
�������

�
�



��	�� D� Stanton� editor� Invariant Theory and Tableaux� Springer�Verlag� NY� �		��

��	�� B� Sturmfels� Algorithms in Invariant Theory� Springer�Verlag� NY� �		
�

��	�� J� G� Thompson� Weighted averages associated to some codes� Scripta Math� �� ��	�
��



	�
���

��		� V� D� Tonchev� Block designs of Hadamard type and self�dual codes� Probl� Pered� In�

form� �� ��	�
�� No� 
� ���
�� English translation in Prob� Inform� Trans� �� ��	�
��

������
�

�
��� On the inequivalence of certain extremal self�dual codes� Compt� Rend� Acad� Bulg�

Sci� �
 ��	�
� ������
�

�
��� Quasi�symmetric designs and self�dual codes� European J� Combin� � ��	��� ����
�

�
��� Combinatorial Con�gurations� Longman� London� �	���

�
�
� Symmetric designs without ovals and extremal self�dual codes� Ann� Discr� Math�

�� ��	��� 
���
���

�
�
� Self�orthogonal designs and extremal doubly�even codes� JCT A 	� ��	�	�� �	��

����

�
��� Self�orthogonal designs� Contemporary Math� ��� ��		��� ��	��
��

�
��� Self�dual codes and Hadamard matrices� Discr� Appl� Math� �� ��		��� �
���
��

�
��� and R� V� Raev� Cyclic ������ �� �� designs and related doubly even codes� Comput�

Rend� Acad� Bulg� Sci� �	 ��	����

�
��� and V� Y� Yorgov� The existence of certain extremal ��
� ��� ��� self�dual codes�

PGIT �� ��		��� �������
��

�
�	� H��P� Tsai� Existence of certain extremal self�dual codes� PGIT �� ��		��� ������
�

�
��� Existence of some extremal self�dual codes� PGIT �� ��		��� ���	���

�

�
��� The covering radius of extremal self�dual code D�� and its application� PGIT ��

��		��� 
���
�	�

�





�
��� J� V� Uspensky� Theory of Equations� McGraw�Hill� NY� �	
��

�
�
� A� Vardy� The Nordstrom�Robinson code� representation over GF �
� and e!cient de�

coding� PGIT �� ��		
�� �������	
�

�
�
� Even more e!cient bounded�distance decoding of the hexacode� the Golay code�

and the Leech lattice� PGIT �� ��		��� �
	���
		�

�
��� and Y� Be�ery� More e!cient soft�decision decoding of the Golay codes� PGIT ��

��		��� ��������

�
��� M� Ventou and C� Rigoni� Self�dual doubly circulant codes� DM 	
 ��	���� �	���	��

�
��� G� E� Wall� On Cli�ord collineation� transform and similarity groups IV� Nagoya Math�

J� �� ��	���� �		�����

�
��� H� N� Ward� A restriction on the weight enumerator of self�dual codes� JCT �� ��	����

��
�����

�
�	� Divisible codes� Archiv Math� �Basel� �
 ��	���� 
���
	
�

�
��� personal communication�

�
��� A bound for divisible codes� PGIT �� ��		��� �	���	
�

�
��� and J� A� Wood� Characters and the equivalence of codes� JCT A �� ��		��� 

��


���

�
�
� A� Weil� Sur certaines groupes d�op'erateurs unitaires� Acta Arith� �� ��	�
�� �

�����

�
�
� H� Weyl� Invariants� Duke Math� J� 	 ��	
	�� 
�	�����

�
��� The Classical Groups� Princeton Univ� Press� Princeton� NJ� �	
��

�
��� E� T� Whittaker and G� N� Watson� A Course of Modern Analysis� Cambridge Univ�

Press� 
th ed�� �	�
�

�
��� J� Wolfmann� A new construction of the binary Golay code ��
� ��� �� using a group

algebra over a �nite �eld� DM �� ��	���� 

��

��

�
��� A class of doubly even self�dual binary codes� DM 	
 ��	���� �		�
�
�

�





�
�	� A group algebra construction of binary even self�dual codes� DM 
	 ��	���� ����	�

�

�� J� A� Wood� Duality for modules over �nite rings and applications to coding theory� �		��

submitted to Amer� J� Math�

�

�� V� Y� Yorgov� Binary self�dual codes with automorphisms of odd order� Probl� Pered�

Inform� �� ��	�
�� English translation in Prob� Inform� Trans� �� ��	�
�� ����
�

�

�� A method for constructing inequivalent self�dual codes with applications to length

��� PGIT �� ��	���� ������

�


� Doubly�even codes of length �
� Probl� Pered� Inform� �� ��	���� 
��
�� English

translation in Prob� Inform� Trans� �� ��	���� ������
�

�


� and R� Ruseva� Two extremal codes of length 
� and 

� Probl� Pered� Inform� ��

��		
�� 		���
� English translation in Prob� Inform� Trans� �� ��		
�� 
���
���

�

�� and N� Yankov� On the extremal binary codes of lengths 
� and 
� with an automor�

phism of order �� Proc� of the �th International Workshop on Algebraic and Combinatorial

Coding Theory� June ���� �		�� Sozopol� Bulgaria� 
���
���

�

�� and N� P� Ziapkov� Doubly�even self�dual �
�� ��� �� codes with an automorphism of

odd order� Probl� Pered� Inform� �� ��		��� 
��
�� English translation in Prob� Inform�

Trans� �� ��		��� ��
�����

�

�� S� Zhang� On the nonexistence of extremal self�dual codes� preprint� �		��

�
�



Index

�� gluing notation� ��

SC�x� y�� weight enumerator of shadow� ��

Z�n�� cyclic group� ��

�n� k� d�q� ��

�n� k� d���� ��

Z��linear code� �

Zm�linear code� �

e
� Hamming code� �

g��� ternary Golay code� �


g��� binary Golay code� �


h�� hexacode� �


o
� octacode� ��

t�� tetracode� �


z��� dodecacode� ��


ZII �even self�dual over Z��� �



ZI �Type I self�dual over Z��� �



Z�self�dual over Z��� �


H�II �Type II additive self�dual over F��� �



H�I �Type I additive self�dual over F��� �



H� �additive trace�self�dual over F��� �


E �Euclidean self�dual over F��� �

mZII �Type I self�dual over Zm�� �


mZI �Type I self�dual over Zm�� �


mZ�self�dual over Zm�� �

�II �doubly�even self�dual�� �


�I �singly�even self�dual�� �


� �family of binary self�dual codes�� �

qE �Euclidean self�dual over Fq�� �

qH �Hermitian self�dual over Fq�� �


H �Hermitian self�dual over F��� �


 �family of ternary self�dual codes�� �

��adic Golay code� ��

��adic Hamming code� ��

algebraically dependent� 
�

algebraically independent� 

� 
�

Assmus�Mattson theorem� ��

automorphism group� �� 	�

average weight enumerator� ��

averaging� 
�

B*urmann�Lagrange theorem� ��� �


binary linear code� �

biweight enumerator� ��

Bonnecaze� Sol'e� Bachoc and Mourrain bound�

�


bound

Bonnecaze� Sol'e� Bachoc and Mourrain�

�


Conway and Sloane� ��

Gilbert�Varshamov� ��� ��

Krasikov and Litsyn� ��

linear programming� ��

Mallows and Sloane� ��

Rains� ��

Singleton� ��

Cayley� A�� 
�

center set� ��

Cli�ord group� 
	� ��

code

additive� �

�
�



component� ��

dodecacode� q�v�� ��

double circulant� 	�

doubly�even� �


dual� 


equivalent� 


even� �


extremal� �
� 	�

formally self�dual� ��

Golay� ��

Golay� q�v�� �
� ��

half�Golay� ��

Hamming� q�v�� �


hexacode� q�v�� �


isodual� ��

Lee�extremal� ��

linear� �

Nordstrom�Robinson� ��

norm�extremal� ��

octacode� q�v�� ��

odd Golay� ��

optimal� 	�

p�adic� �� 


Pless symmetry� 	


quadratic residue� 	�

quantum� ��� 
	� �	

quarter�Golay� �


Ran and Snyders� ��

Reed�Muller� ��

Reed�Solomon� ��

self�dual� 


self�orthogonal� 


shadow� ��

singly�even� �


symmetry� 	


tetracode� q�v�� �


Type I� �


Type II� �


Type III� �


Type IV� �


weakly self�orthogonal� 


zero�sum� ��

codes

number of� �

over Z�� �

over Frobenius rings� �

complete weight enumerator� ��

component code� ��

conjugation� �

Construction A� �	� 		

Conway and Sloane bound� ��

cwe� ��

cyclic code

parenthesis notation for� ��

cyclic group Z�n�� ��

decoding

self�dual codes� 	�

dodecacode z��� ��

double circulant code� 	�

dual� 


enumeration

self�dual codes� ��

equivalent� 


�
�



Euclidean inner product� �

Euclidean norm� 	

extremal code� �
� 	�

extremal weight enumerator� ��

formally self�dual� ��

Fourier transform� ��

Frobenius ring� 


full weight enumerator� ��

Gaborit� P�� �

geometry

orthogonal� �

symplectic� �

unitary� �

Gilbert�Varshamov bound� ��� ��

Gleason theorem� 
�� 
�

Gleason� A� M�� 
�

Gleason�Pierce theorem� ��

glue word� ��

gluing theory� ��

Golay code� ��� ��

��adic� ��


�adic� ��

binary �g���� �


cyclic �g���� ��

half�� ��

odd� ��

over Z�� ��

quarter� �


ternary �g���� �


good polynomial basis� 



good self�dual codes exist� ��

Grae�e�s method� ��

Gray map� ��� ��� ��

group

alternating A�n�� ��

automorphism� �

Cli�ord� 
	� ��

cyclic Z�n�� ��

Mathieu� �
� �


re$ection� 
�

symmetric S�n�� �


symmetry� �

trivial� 	�

Hadamard matrix� ��

Hadamard transform� ��

half�Golay code� ��

Hamming code� �

e�� ��

e
� �� �
� ��

��adic� ��

Hamming weight� 	

Hamming weight enumerator� ��

Hecke theorem� 		

Hermitian inner product� �

hexacode h�� �
� ��� ��

Hilbert� 
�

Hilbert modular form� �	

Hilbert series� 
�

Hironaka decomposition� 



Hirzebruch� F�� �	

Hu�man�Sloane theorem� ��

hwe� ��

�
�



induced matrix� 
�

inner product� �

Euclidean� �

Euclidean trace� �

Hermitian� �

trace� �

integrity basis� 
	

invariant� 
�

relative� 
�

invariant theory� ��

isodual� ��

isotropic subspace� �

Jacobi identity� 		

Jacobi polynomial� ��

Klein� F�� �	

Krasikov and Litsyn bound� ��

Krawtchouk polynomial� �	

Krawtchouk transform� ��

lattice� 
� 		

E
� 		

Leech� 		

unimodular� 


Lee weight� 	

Leech lattice� 		

lifting to Z�� ��

linear character� 
�

linear codes over Fq � �

linear programming bound� ��

lower bounds� ��

LP bound� ��

MacWilliams theorem� 
� ��

MacWilliams transform� ��

MacWilliams� F� J�� ��

MAGMA� 
�

Mallows and Sloane bound� ��

map

Gray� ��

mass formula� �

Mathieu group� �
� �


matrix

Hadamard� ��

maximally self�orthogonal code� ��

modular form

Hilbert� �	

modular forms� ��

Molien series� �	� 
�

Molien theorem� �	� 
�

Molien� T�� �	

negative coe!cients exist� ��

neighbors� ��

Noether theorem� 
�

Noether� E�� 
�

Nordstrom�Robinson code� ��� ��

norm

Euclidean� 	

norm�extremal� ��

octacode o
� ��� ��

odd Golay code� ��

open problems� 	�

optimal code� 	�

orthogonal geometry� �

�
	



p�adic code� �

parentheses notation� ��

Pless symmetry code� 	


Poincar'e series� 
�

Poisson summation formula� ��

polynomial

Jacobi� ��

Krawtchouk� �	

polynomial basis� 
	

primary invariants� 



projective plane� ��� 	�

quadratic residue code� 	�

quantum code� ��� 
	� �	

quarter�Golay code� �


quaternary additive code� �

quaternary linear code� �

Rains bound� ��

Ran and Snyders code� ��

Reed�Muller code� ��

Reed�Solomon code� ��

re$ection group� 
�

relative invariant� 
�

repetition code� �


ring

of invariants� 
�

rings

codes over� �

root lattice E
� 		

secondary invariants� 



self�dual� 


self�dual codes

enumeration of� ��

self�glue� ��

self�orthogonal� 


series

Hilbert� 
�

Molien� �	

Poincar'e� 
�

shadow� ��� �	� ��

Shephard and Todd classi�cation� 
�

Singleton bound� ��

split Hamming weight enumerator� ��

strictly Type I� �


Sturmfels� B�� 
�

subtraction� ��� ��� ��

swe� ��

symmetrized weight enumerator� ��

symplectic geometry� �

syzygy� 
	

tensor product� �


ternary Golay code� �


ternary linear code� �

tetracode t�� �


tetrad� �	

theorem

Assmus�Mattson� ��

B*urmann�Lagrange� ��� �


Gleason� 
�� 
�

Gleason�Pierce� ��

Hecke� 		

Hu�man�Sloane� ��

MacWilliams� 
� ��

Molien� �	� 
�

�
�



Noether� 
�

theta series� 		

totally singular subspace� �

transform

Fourier� ��

Hadamard� ��

Krawtchouk� ��

MacWilliams� ��

trivial group� 	�

Type I� �


Type II� �


unitary geometry� �

unitary groups generated by re$ections� 
�

upper bounds� ��

Ward� H� N�� ��

weakly self�orthogonal� 


weight

Hamming� 	

Lee� 	

weight distribution� ��

weight enumerator� ��

average� ��

biweight� ��

complete� ��

full� ��

Hamming� ��

Lee� ��

left� ��

of translate� ��

right� ��

split� ��

symmetrized� ��

weights

divisibility of� ��

Weyl� H�� 
�

Wood� J� A�� 


zero�sum code� ��

�
�



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


