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Abstract� We prove a conjecture of Irving Kaplansky which asserts that between any pair

of consecutive positive squares there is a set of distinct integers whose product is twice a

square� This follows from our main theorem which asserts that if prime p divides some

integer in �z� z � �
p
z�� � �� �with z � ��� then there is a set of integers in the interval

whose product is p times a square� This is essentially best possible because it seems that

arbitrarily large counterexamples would exist if we shorten the interval to �z� z � �
p
z��

�� Introduction

In several modern algorithms	 such as the quadratic sieve	 one gradually constructs

a set of integers	 and tries to e
ciently �nd a �nonempty� subset whose product is a

square� Recently researchers have been analyzing when it is likely that there is a subset

of a given set whose product is a square� In ��� Pomerance shows that if we randomly

select exp�
p
�� � �� log x log log x� integers up to x then	 with probability� � as x��	

there is a subset of these integers whose product is a square
 whereas if we only have

exp�
p
�� � �� log x log log x� such integers then the probability� � as x��� This allows

him to give a plausible heuristic to analyze the running time of several important practical

algorithms
 however	 this is only a heuristic since the sets of integers constructed are not

really random numbers but rather are determined by some procedure� To unconditionally

analyze these algorithms	 we need to understand whether there is a subset of certain types

of given sets whose product is a square	 though this appears to be extremely di
cult in

the cases of interest� In this paper we study this type of problem	 and variants	 where our

given set of integers is perhaps as simple as is possible	 the integers in a short interval�

In July ����	 Irving Kaplansky conjectured that there is a set of distinct integers	

between any pair of consecutive squares	 whose product is twice a square� We deduce this

as a �trivial� corollary to our

Theorem �� For every integer u � �� there is a set of integers in the closed interval

��u� ���� u�� whose product is twice a square�

Our proof uses the �Walk method� of ���� For the interval from �� to ��	 for example	

we consider the sequence �� �� �� �� �� �� �� �� �� Note that the product of any two consec�

utive integers in this sequence lies in the closed interval ���� ���� Therefore	 as we �walk�



along the sequence from � to �	 we get the pairs ���� ���� ���� ���� ���� ��� giving the inte�

gers ��� ��� ��� ��� ��� �� from the interval	 whose product is ������������������������������ �

�������������� � �������� To deduce Kaplansky�s conjecture	 we need to cull pairs of the

same integer ��� and ���	 as well as squares ����	 from our sequence ��� ��� ��� ��� ��� ��	

to obtain the set f��g� In the proof of Theorem � we generalize this method to the interval
between any pair of consecutive squares�

Kaplansky�s problem is susceptible to various generalizations� For example	 when is

there a set of integers in ��u � ���� u�� whose product is � times a square� Or � times a
square� etc� Alternatively	 we might ask for �large� intervals which do not contain a set

of integers whose product is twice a square� In Theorem � there is no restriction placed

on the size of our set of integers	 though presumably one doesn�t usually need more than

a few
 so	 how small is the smallest such set of integers� We will attack these and related

problems in the rest of this article�

Our main theorem is the following�

Theorem �� Fix real number z � ������ Suppose that p is a prime which divides some

integer in the interval J � �z� z � �
p
z�� � ��� Then there is some set of integers in the

interval J whose product equals p times a square�

If we only allow z to run through integers	 then the theorem holds for all integers

z � �� However	 for z � ����� we have J � ���� ���	 and there is no set of integers in this
interval whose product is twice a square�

We note that as an easy consequence of Theorem � we can deduce that there is some

set of integers in the interval J whose product equals n times a square	 for any squarefree

n dividing the product of the integers in J � For if a and b are coprime	 squarefree integers	

and A and B are sets of integers such that the product of the elements in A �and in

B� equals a �and b	 respectively� times the square of an integer	 then the product of the

elements in �A�B�n �A�B� evidently equals ab times the square of an integer� The result
follows by induction on the number of prime divisors of n� Thus in general we may restrict

our attention to constructing sets of integers whose product is a prime times a square�

Next we show that the interval in Theorem � cannot be taken to be much shorter� If

z � p�� p� �	 where p is prime then z��
p
z � p�� p if � � � is su
ciently small	 so that

p� is the only integer in �z� z ��
p
z� � �p� � p� p� � p� divisible by p� Thus p divides some

integer in the interval	 yet there does not exist any set of integers in the interval whose

product is p times a square� This is a substantially shorter interval than that in Theorem



�	 but similar ideas account for the construction in�

Corollary �� Suppose that for real number z � ��� there exists some prime p which

divides an integer in the interval J � �z� z � �
p
z���� yet for which there is no set of

integers in J whose product equals p times a square� Then

Either there exist primes q� �q � �� one of which is p� such that

�q� � q � � � z � �q� � �q� � q � z � �
p
z�� � �q� � �q�

Or there exist primes q� �q � �� one of which is p� such that

�q� � �q � z � �q� � q � �q� � z � �
p
z�� � �q� � q � ��

Thus if there are	 as we expect	 in�nitely many prime pairs of the form q� �q��	 or of

the form q� �q � � then Theorem � is �best possible� in that it does not hold for in�nitely
many intervals of the form �z� z � �

p
z����

Corollary � follows from the much more general �and technical� Theorem � below	

which classi�es all such p when the interval length is � �
p
z�� � ��

Returning to the intervals Iu � ��u����� u�� considered by Kaplansky	 but now thought
of as subintervals of �z� z � �

p
z��� with z � �u� ��� for u � ��	 we note that primes ���

and ���� both divide ��� �����	 which lies in the interval ������� ������	 yet there is no set
of integers in the interval whose product is ��� times a square �this is an example of the

type discussed in the �rst part of Corollary ��� We ask	 for which of the primes p which

divide an integer in Iu does there exist a set of integers in Iu whose product equals p times

a square� In Proposition � we see that this is so for any prime p � u������	 and then show

that this is so for any prime p � Cu� logu	 where C is some constant � �	 assuming�

Conjecture B� There exists some constant c � � such that there is an integer� all of

whose prime factors are � px� in the interval �x� c logx� x�� for all x � ��
As we shall discuss	 Theorem � below suggests that we should be able to get a good

estimate for the number of exceptional p�

Conjecture A� There exists a constant � � � such that there are 	 �u� log� u primes

p � u for which there is no subset of the integers in I � ��u� ���� u�� whose product is p

times a square�

We can use Theorem � to improve our knowledge about a function de�ned by Erd�os

in a problem in the American Mathematical Monthly� For each positive integer n	 de�ne

g�n� to be the minimum integer ak � � such that there exists a sequence of integers

n � n � a� � n � a� � � � � � n � ak for which n�n � a�� � � � �n � ak� is a square� For



example	 g��� � �� g��� � �� g��� � � �taking ������ ������ ������ respectively�� Our task

is to obtain good estimates for g�n�� De�ne p�n� to be the largest prime which divides n

to an odd power� Evidently our sequence of numbers must contain an integer	 other than

n	 which is divisible by p�n�
 since that integer is � n� p�n�	 we must have g�n� � p�n��

In particular	 if p is prime then g�p� � p� Now it is easily shown that every interval �p� �p�

contains an integer that is twice a square when p � �	 so that g�p� � p� For various other

integers n we will show that g�n� � p�n�� In this paper we slightly re�focus our description

of g�n� by viewing it as the smallest integer such that there is some set of integers in the

interval �n� n� g�n�� whose product equals n times a square�

Corollary �� For any integer n� de�ne p�n� to be the largest prime divisor of n� If

p�n� �
p
�n� � then g�n� � p�n�� Otherwise p�n� � g�n� � �pn�� � ��

Proof� If p � p�n� �
p
�n�� then write n � ap	 so that p � �a�� since p�p��� � �n � �ap�

Then the product of the integers

n � ap � a�p � ��� ��a � ���p � ����� ��a � ���p � ����� �a � ���p� �� � �a � ��p

is a square	 implying that g�n� � p� The result follows since we always have g�n� � p�n��

On the other hand if p�n� � p
�n � � then every prime p dividing n satis�es p �

p�n� � �
p
n�� � � so	 by Theorem � with z � n � �	 there is some set of integers in the

interval �n� n� �
p
n�� � �� whose product equals n times a square�

Corollary � is close to �best possible�� For	 if p and �p�� are both prime	 with p � �	

then g�n� � �p�n� for n � p��p� �� �note that p�n� � p since �p� � is divisible by ��� By
Corollary � we have g�n� � �p�n� � � so g�n� � �p�n� �� �

p
n�� � �����

One can modify Erd�os�s problem to ask for gk�n�	 the minimum integer ak � �	 such
that there exists a sequence of integers n � n � a� � n � a� � � � � � n � ak for which

n�n � a�� � � � �n � ak� is a square� It is easy to determine g��n� since if n � rs� with r

squarefree then evidently n � g��n� � r�s � ���� Conjecture � of ��� states that if n is

not a square and n 
� � or ��� then g��n� � g��n�� In other words	 there exist integers

a� b � �rs�� r�s����� for which rab is a square� �Note that if n � s� is a square and uv� � n

with u � � then u�v � ��� � n� �uv � u � s� � �s
p
u� � � �s� ���	 so g��s�� � g��s����

The conjecture is proved in ��	 Theorems �	�	�� except when r � �
 and in this case except

for intervals ��s�� ��s����� where s � u�m��v�m with um�
p
�vm � ���

p
��m� The �rst

two examples here	 u�v� � � and u�v� � �� yield n � � and n � ��� respectively�
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�� The Key Proposition

For integers a and b we write a � b �mod Q�� if a�b is a rational square
 it is

easy to show that this is an equivalence relation� Any equivalence class is most naturally

represented by the �unique� squarefree integer in that equivalence class� Given an interval

I	 we will denote by SI the set of equivalence classes of products of integers in I� Note

that SI is closed under multiplication	 a fact that we will repeatedly use�

Proposition �� Fix real numbers � � x � y� Let I � �x� y��� and J � �xy� xy�x�y����

unless xy is an integer� in which case we take J � �xy� xy � x� y��

i� For any pair of integers m � n in the interval I� there exists some set of integers in

the interval J whose product is mn times a square �of an integer��

ii� Suppose that the interval I contains a square� If the product of some subset of the

integers in I equals N times a square� then there is some set of integers in the interval J

whose product equals N times a square�

Proof�

i� Suppose that a is an integer in the range x � a � y	 and de�ne b to be the

smallest integer � xy�a so that xy�a � b � xy�a � �	 and xy � ab � xy � a� Therefore

�a� ��b � ab� b � �xy � a� � �xy�a � �� � xy � x� y � � in this range for a� If xy is an

integer then ab � xy � a � �	 so that �a � ��b � xy � a � xy�a � xy � x � y� Thus both

ab and �a � ��b are in J and therefore in SJ � But then a�a � �� � SJ since SJ is closed

under multiplication and a�a � �� � ab 
 �a � ��b �mod Q���

Since x � m � n � � � y we deduce from the paragraph above that m�m� ��� �m �

���m � ��� � � � � �n � ��n � SJ 	 and so mn � SJ since mn � m�m� ��
 �m� ���m � ��

� � �
 �n� ��n �mod Q�� and SJ is closed under multiplication�

ii� Let m� be a square in I	 and let m��m�� � � � �mk be that subset of the integers in

I whose product equals N times the square of a rational number� We may assume that

k � �� is even	 without loss of generality	 for if not	 we could remove mi from the list if

it equalled m�	 or add m� to the list if it does not already appear� We may also assume

that the mj are distinct �else we cull any pair of occurences of one number from the list�

and so m� � m� � � � � � mk� But then	 by i�	 we have m�i��m�i � SJ for i � �� �� � � � � ��



Now N � �m�m���m�m�� � � � �m����m��� �mod Q��	 and thus N � SJ 	 since SJ is closed

under multiplication�

Proof of Theorem �� Let x � u�p�u� � � � and y � u�
p
�u� � in Proposition �	 so

that xy � �u � ��� is an integer� Let a and b be the smallest positive integers for which

a�� �b� � x	 so that �a����� ��b���� � x	 implying that a���p��b��� � p
x �

p
u���p��

Therefore a�� �b� � I since

a� � �a � ��� � ��a� �� � � � x� �
p
u � y�

�b� � ��b � ��� � �
p
��
p
��b� ��� � � � x � �

p
�u � y � ��

The result follows from Proposition ��i�	 by taking fm�ng to be fa�� �b�g�

�� Iterating the key Proposition� The proof of Theorem �

Corollary �� Fix real number z � �p�� ���� Suppose that the product of some subset

of the integers in I � �
p
�z �pz�p�z �pz � ��� equals N times the square of a rational

number� Then there is some set of integers in the interval J � �z� z � �
p
�z � �� whose

product is N times the square of a rational number�

Proof� This follows from Proposition ��ii� by taking x �
p
�z �pz and y �

p
�z �

p
z	

provided we can show that there is a square in the interval I� If �
p
����� � z � �p�����

then �� � I� If z � �
p
� � ��� then select r to be the smallest positive integer for which

r� � p�z �pz � �� Since r � �	 thus r � ��r � �� and so r� � I as

r� � ��r � ��� � ��
p
�� ��pz � �

p
� � ��

p
z �

p
�z �

p
z�

Lemma �� Fix real number z � �p�� ���� If p is a prime � p�z �pz � � then there is

an integer k such that pk� � I � �
p
�z �pz�p�z �pz � ���

Proof� If p � I take k � �� Otherwise p �
p
�z �pz in which case we select k to be the

smallest integer for which pk� � p
�z � pz
 evidently k � �� But then k � ��k � �� so

that pk� � �p�k � ��� � ��p�z �pz� � p
�z �

p
z	 and the result follows�

Corollary �� Fix real number z � �� Suppose that p is a prime which divides some

integer in the interval J � �z� z � �
p
�z � ��� Then there is some set of integers in the

interval J whose product equals p times a square�

Proof� If p � p�z �pz � � then	 by Lemma �	 there is an integer k such that pk� � I �

�
p
�z �pz�p�z �pz � ��� The result follows from an immediate application of Corollary

� with N � p�



If p �
p
�z �

p
z � � then write mp for the smallest integer in J which is divisible by

p� Evidently

m � z � �
p
�z � �

p
�

z � �
p
�z � �p

�z �
p
z � �

�
p
�z �

p
z � ��

so that all of the prime factors of m are certainly � m � p�z�pz��� But then	 all of the
prime factors of m belong to SJ �as we saw in the �rst paragraph of this proof�	 and so m

belongs to SJ 	 since SJ is closed under multiplication� Moreover mp � J so that mp � SJ 	

and so p � SJ since p �m
mp �mod Q�� and SJ is closed under multiplication�

Proof of Theorem �� For ����� � z � ���	 we proved the result by a computation� For

z � ���	 let I � �x� �x � �� where x �
p
z��� Let p be any prime � �x � �� Note

that p divides some integer	 call it mp	 in I	 for if not then evidently p � x	 so select

integer a � � to be the largest integer for which ap � x
 then �a � ��p � �x so that

� � �a � ���a � �a � ��p�ap � �x�x � � giving a contradiction�
Now x��

p
�x�� � �x�� since x � �� Therefore the interval I contains an interval

of the form �y� y��
p
�y��� containingmp
 and so	 by Corollary �	 there is a set of integers

in �y� y � �
p
�y � �� � I whose product equals p times a square�

We now apply Proposition ��ii�	 noting that I contains a square	 to deduce that there

is some set of integers in the interval J � ��x�� �x� � �x � �� whose product is p times a

square� Therefore every prime � �x � � belongs to SJ �
Now suppose p is some prime � �x�� dividing an integer in J � Let�s call that integer

mp	 and observe that m � ��x� � �x � �����x � �� � x � � � �x � �� Thus every prime
factor of m is � �x � �	 and so m � SJ �since SJ is closed under multiplication�� By

de�nition	 mp � J and thus mp � SJ 
 but then p � SJ since p �m
mp �mod Q�� and

SJ is closed under multiplication�

�� Classifying the exceptional primes

Theorem �� Fix real number z � ��� and let K � �z� z ���� where �
p
z�� � � � � �

�
p
z�� � �� Suppose that prime � divides some integer in the interval K� There is no set

of integers in the interval K whose product equals � times a square if and only if one of

the following cases holds�

i� There exist primes p� q� �p � �� �q � �� one of which is �� such that p � q and

��q � ���p� �� � z � �pq � p��q � �� � z �� � q��p � ���



ii� There exist primes p� q� �p � �� �q � �� one of which is �� such that p � q and

��q � ���p� �� � z �� � �pq � p��q � �� � z � q��p � ���

Proof� For �� � z � ���� we proved the result by a computation� So assume z � ����
Let x �

p
�z�� and y �

p
�z��	 so that x � ����� Note that J �� �xy� �x � ���y � ��� �

K � �xy� �x � ���y � ����
Any prime � � x�� � � � �y � �� � x evidently divides some integer in I � �x� y � ��

since the interval is longer than �� Moreover if x�� � � � �y � ���� then �� � I	 and if

x � � � y � � then � � I� This accounts for all primes � that divide some integer in I�

Suppose that � divides some integer in the interval I
 since y � x � �
p
x�� � �� for

x � ��	 we see that this integer is contained in some interval �v� v��
p
v����� � I and so

� � SI by Theorem �� If �� � x � ���� then ��� ��� �� � I so that �� �� � � SI
 moreover

if � � � and m� � I then m� � �� so that m � �� thus m � SI and so � � SI � Since I

contains a square	 we deduce from Proposition ��ii� that there is some set of integers in the

interval J � K whose product equals � times a square� This contradicts the hypothesis	

and thus either � � ��y � ����� x� or � � y � ��

Suppose that � � y � � and it divides �� � K� Evidently � 
� SK 	 for if it were then

� � K �contradicting the hypothesis� since SK is closed under multiplication� Moreover

�� � �x����y ��� so that � � �x����y ����� � �x���� Therefore � is prime	 otherwise
all of its prime factors are � �x � ���� � �y � ���� and so belong to SK 	 so that � � SK

�since SK is closed under multiplication�	 giving a contradiction� We also note that � then

divides only one integer in K
 otherwise the second such integer would be ��� � �� but
�� � cannot be a prime since � is	 and �� � � SK �

If � � y � � we take p � � �de�ned as in the paragraph above�
 otherwise we take

p � �� Therefore p � ��y � ����� x � �� and p 
� SK �

Note that if pm � K then m � r or �r for some prime r� For	 if not then m � ab

for some integers a� b � �	 and abp � �x � ���y � ��	 so that a� b � �x � ���y � ����p �

��x � ���� � �y � ����� Therefore all of the prime factors of m � ab are � �y � ���� and

thus in SK 	 so that m � SK �as SK is closed under multiplication�� But then p � SK since

pm � SK 	 and p � m 
 pm �mod Q��	 which contradicts the hypothesis� We also note

that r 
� SK 	 for if it were then we would have m � SK 	 and thus p � SK �since SK is

closed under multiplication��

Since �p is less than �	 the length of the interval K	 we see that p divides at least two

integers in that interval� In fact p divides exactly two integers in K	 for if it divided three	



call them pm� p�m� ��� p�m � ��	 then one of them must be divisible by �	 contradicting

what we proved in the previous paragraph�

Suppose that the two integers in K that p divides are pm� p�m � ��� Evidently �

divides one of m and m� �	 and we have already seen that these two numbers must each

be either prime or twice a prime	 so they can be written as �q and �q��	 where q and �q��
are both prime but not in SK � Since q 
� SK and q � �x����y �����p � x�� � y�� we

can draw the same conclusions for q as we did for p above� that is	 q divides exactly two

integers in SK 	 namely �pq	 and q��p��� or q��p���	 where �p�� or �p�� �respectively�
is prime and not in SK �note that we already knew that q divides �pq � K�� We claim

that if we have �pq� p��q � 	�� q��p � �� � K above �where 	� � � ���	 then we must have
	 � �� For	 if q � p then q��p�	� lies between �pq and p��q�	� so must be in K
 similarly

if p � q then p��q � �� lies between �pq and q��p � �� so must be in K� Note that either

� � p or � � �q � 	�

We deduce then that p� q� �p� 	� �q� 	 must all be prime	 and that the only multiples

of these primes that belong to K are �pq� p��q � 	�� q��p � 	�� To guarantee that these

are the only such multiples belonging to K we need to verify that certain inequalities are

satis�ed� If � � � these are�

z � �pq� p��q � ��� q��p � �� � z ��

p��q � ��� q��p � ��� ��p � ���q � ��� ��q � ���p � �� � z

p��q � ��� q��p � ��� ��p � ���q � ��� ��q � ���p � �� � z ���

Now	 by swapping the roles of p and q in the argument above if necessary	 we may assume

that p � q� Then we need only check that

��q � ���p � �� � z � �pq� p��q � �� � z �� � q��p� ���

A similar argument works when � � ���
It is easy to check that none of the primes p� q� �p�	� �q�	 belong to SK if �pq� p��q�

	�� q��p�	� are their only multiples inK	 since no subset of pq� p��q�	�� q��p�	� multiplies

together to give p� q� �p� 	 or �q � 	 times a square�

Remark� For z � ����� we have I � �z� z � �
p
z�� � �� � ���� ���� It turns out that all

primes that divide some number in I	 belong to SI 	 except �� �� ��� ��� ���

Proof of Corollary 	� Take K � J� z � �� and � � �pz�� in Theorem �	 so that either

�i� or �ii� there holds� We note that q � p	 otherwise q � p� �a	 for some positive integer



a� In case �i� this implies that �p��� �a � �q� �� p � q��p���� ��q ����p� �� � �	
and in case �ii� this implies that �p����a � �q�p�� � ��q����p���� q��p��� � ��
Therefore p �

p
z�� � ��a � ���� � pz�� � � and q �

p
z�� � ��a � ���� �pz��� We

thus have z � �
p
z�� � z �� � �pq � z � �

p
z��	 giving a contradiction�

�� The interval Iu � ��u� ���� u�� revisited

It is intriguing to determine exactly what primes belong to the set SI� When u is

small we can easily show that if prime p divides an integer in I	 then p � SI�

For u � � we have � � �
 ��� � � �
 ���
For u � � we have � � �
 ��� �
 � � �
 ��� � � �
 ��� � � �
 ���
For u � � we have ��
��
�� � �
���� �� � �
��� ��
�� � �
��� ��
��
��
�� �

�
 ���� �� � ��
 ��� �� � ��
 ���
If we assume widely believed conjectures about the distribution of prime pairs	 then

from Corollary �	 it seems likely that there are in�nitely many integers u	 such that there

is some prime p dividing an integer in Iu	 yet p 
� SI� Computations in Maple yielded the

following prime pairs p� �p�� with p��p��� � �u���� � �p� � p��p��� � u� � �p�p���

and u � ����

�u� p� � ������ ����� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������

������ ������ ������ ������ ������ ������ ������ ������

In each case here neither p nor �p� � belong to SI	 by Corollary ��

The construction in Theorem ��i� can be used here	 if there are primes q � p �

�q � � � �p� � for which

��q � ���p � �� � �u� ��� � �pq � p��q � �� � u� � q��p� ���

We consider primes p in the interval ���u���� �u��� for which �p � � is also prime� Then

select q to be the largest integer such that �q�� � u��p� So if � � u�p	 then q 	 �u�� and

we need	 essentially	 ��� � � u��p � ��� ��	 which should hold for a positive proportion

of such primes p� Standard heuristics suggest that the �probability� that q and �q�� are

both prime is � �� log� u� Thus we expect that there should be � u� log� u such prime

quadruplets	 and so we propose Conjecture A�

On the other hand	 we can prove that many primes do belong to SI� As an immediate

consequence of the following result we see that every prime p � u������ belongs to SI�



Proposition �� Let u � � be an integer� If prime p divides some integer in the interval

�u� u������� u� then there is some set of integers in the interval I � ��u � ���� u�� whose
product equals p times the square of an integer�

We shall prove this result below after a discussion of what we expect to be true� As we

shall see	 in the proof of Proposition � we show that there exists an integer in any interval

�x � �x��� � �� x�	 all of whose prime factors are � �px� If this could be strengthened as
suggested in Conjecture B then we deduce that every prime p � Cu� logu belongs to SI 	 for

some constant C � �� For if u������ � p � Cu� logu then let x � �u��p� and select integer

m � �x� c logx� x�	 as in Conjecture B	 so that all prime factors of m are � px � u�
p
p �

u������	 and so belong to SI� Thus m � SI	 and mp � �u� � p�� � c log�u��p��� u�� � I


therefore p � SI �

We now proceed to the proof of Proposition ��

Corollary �� Fix integer u � �� and suppose that p is a prime which divides some

integer in the interval J � �u � p
�u� �� u � p�u� � � ��� �In particular any prime

p � �
p
�u� �� � divides some integer in the interval�� Then there is some set of integers

in the interval ��u� ���� u�� whose product equals p times the square of an integer�

Proof� Let z � u � p�u� �	 so that z � � and z � �
p
�z � � � u �

p
�u� � � �� By

Corollary � we know that there is some set of integers in J whose product equals p times

the square of a rational number� The result then follows from Proposition ��i� by taking

x � z � � and y � z � �
p
�z � � � u �

p
�u� � �so that xy � �u � ��� is an integer�	

and noting that in the above proof of Theorem � we proved that there is a square in the

interval �x� y � ���

Lemma �� There is always an integer n� all of whose prime factors are � �
p
x� in the

interval �x� �x��� � �� x� when x � ��
Proof� For x � ���� we proved the result by direct computation� When x � ���� we

select a to be the smallest integer � p
x	 and then b to be the smallest positive integer

� pa� � x� We �nd that a � ��
p
x	 so that a� � x � �� �

p
x � �

� ��x
��� � ���	 and thus

b�� � p
a� � x � ��x��������� Let n � a��b� � �a�b��a�b�	 so that the prime factors

of n are � a� b � � �
p
x� � � ��x��� � ���� � �px� Moreover x � n � b� � �a� � x� so

that	 by de�nition of b	 � � x � n � ��b � �� � �x��� � ��

Proof of Proposition �� The result follows directly from Corollary � in the range � � u �
�
 ��� since then u������ � p

�u� �� We may thus assume that u � �
 ����



Suppose that p divides u� a where a is a positive integer � u������� If p � pu then
we know that p � SI by Corollary �� If p �

p
u then �u� a��p � pu and so belongs to SI�

Thus	 since SI is closed under multiplication	 we see that p � SI if and only if u� a � SI�

Note that the result follows from Corollary � if a � p�u� �
 so we assume henceforth
that a �

p
�u� �� Let n be the largest integer � �u������ By Lemma � there are integers	

in both of the intervals �u� a�n� u� a� or �u� a� u� a�n�	 which have all of their prime

factors � �
p
u �we will call such an integer u � b below�� By Corollary � u � b � SI�

We shall show that for one of these choices of u � b	 we have �u � b��u � a� � SI� Thus

�u� a� � SI �and so p � SI�	 since SI is closed under multiplication�

Select k to be the greatest integer � a���u�a� so that u���u�a� � �u�a��u�a�k� �
u�� We note that n� � � �u��� and k � u��������� ��u����� � u��������

If �u� a��u � a� k� � u� � u�a
� then for A � a� a � �� � � � � a � n we have

u� � �u� a��u� a � k� � �u�A��u�A� k� � �u�A � ���u�A� k�

� �u� a� �n� ����u � a� k � n� � u� � ��u� a�

�
� �n� ����a � k � n��

Now

�n� ����a � k � n� � �u���
�
u���

��
�

u���

���
� �u���

�
� u

�
�

u���

���
� �u��� �

u

�

for u � ��� and so the lower bound above is � �u� ���� Therefore �u�A��u�A� k� and

�u � A � ���u � A � k� both belong to I and so to SI� Multiplying these together gives

�u�A����u�A� � SI
 and then multiplying together this result for A � a� a��� � � � � b��
to get that �u� b��u� a� � SI and the result follows�

If �u� a��u� a� k� � u� � u�a
� then note that �u� a��u� a� k � �� � �u� a��u�

a� k�� �u� a� � u� � ��u� a� � �u� ���� Thus for A � a� a � �� � � � � a � n we have

�u� ��� � �u� a��u � a � k � �� � �u�A��u�A� k � ��
� �u�A� ���u�A � k � �� � �u� a � �n� ����u� a � k � �n� ���
� u� � u� a

�
� �n� ����a � k � �n� ����

Now	 proceeding as above	 we have

�n� ����a � k� � a�� �
u

�
�
�u���

���
�

u

�

for u � ��� and so the upper bound here is � u�� Therefore �u �A��u �A � k � �� and
�u�A����u�A� k� �� both belong to I and so to SI� Multiplying these together gives



�u�A��u�A� �� � SI 
 and then multiplying together this result for A � b� �� � � � � a to

get that �u� a��u� b� � SI and the result follows�

�� Minimal sets whose product is twice a square

It is interesting to consider what is the smallest set of integers S � Iu whose product

is twice a square�

Suppose that jSj � �� That is	 there exists an integerm such that �u���� � �m� � u��

This is equivalent to requiring that the fractional part of u�
p
� is � ��

p
�� It is well known

that this occurs for 	 U�
p
� of the integers u � U �

Suppose that jSj � �� That is	 there exist integers g�m� n	 with g odd and squarefree	

such that �u���� � �gm�� gn� � u�� Notice that the jSj � � case is just the case g � � here�
Do we get all intervals Iu covered with the constructions so far� We ran a program to check

this
 simply for each u we took each odd and squarefree g � �u and then looked to see if
there are such integersm and n with �u���� � �gm�� gn� � u�� There are ��� exceptional

values of u � ���	 namely �� ��� ��� ��� ��� ��� ���� � � � � ����� ����� ����� ����� �����

Now	 for a �xed g	 the existence of an integer n for which �u � ��� � gn� � u�	

is equivalent to having that fu�pgg � ��
p
g	 where ftg denotes the fractional part of

t� If we randomly choose a value of u � U 	 then the probability that this happens for

one given odd	 squarefree value of g is 	 ��
p
g� By ergodic theory we know that such

probabilities are independent so that the �probability� that a randomly chosen value of

u satis�es fu�pgg � ��
p
g and fu�p�gg � ��

p
�g simultaneously is ��g

p
�� Indeed	

for any �xed G	 we can prove that the number of integers u � U for which there is no

triple g�m� n satisfying �u � ��� � �gm�� gn� � u�	 where g � G is odd and squarefree	

is 	 U
Q

g�� � ��g
p
�� where the product is over odd	 squarefree integers g � G� Now	

it is easily shown that
Q

g�� � ��g
p
�� � G��

p
�����o��� as G � �� Thus there are

o�U� exceptional u � U � If we were to suppose that our formula held with appropriate

uniformity �i�e� taking G � �U above� then we�d expect that the number of integers u � U 	

such that there are no two integers in ��u � ���� u�� whose product is twice a square	 is
U���p�����o���	 and we note that this exponent is ��������� � � �� We�d thus expect about

��� such integers u � ���	 whereas we found above that the correct number is ���	 so our
heuristic is more�or�less borne out in practice�

Scott Contini then wrote a program checking that for each u in the above list	 there

does exist three numbers in ��u � ���� u�� whose product is twice a square
 for examples	



�� � ��� � ���� � ��� � ��	 then ��� � ����� � ���� � ������ � ���	 and ����� �

���������� � ��������� � ������� � ������ Thus we can conclude that there is a nonempty

set of integers	 with no more than three elements	 in any Iu for u � ���	 whose product is

twice a square� Presumably this is true for all u � ��
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