Sequence 102

Conjecture 1 (102) The generating function $f(x)=\sum_{n \geq 1}^{\infty} a_{n} x^{n}$ for the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of all positive integers whose binary representation do not begin with 100 is

$$
\begin{equation*}
\frac{x}{(1-x)^{2}}+\frac{x}{(1-x)} \cdot \sum_{k \cdot \geq 0} 2^{k} x^{3 \cdot 2^{k}} \tag{1}
\end{equation*}
$$

Proof. The integers whose binary representation do NOT begin with 100 reside in the intervals $I_{0}=[1,3]$ and $I_{M}=\left[5 \cdot 2^{M-1}, 4 \cdot 2^{M}-1\right]$ for $M \geq 1$. In particular we have $a_{1}=1$ and for $n \geq 1$

$$
a_{n+1}=\left\{\begin{array}{cc}
a_{n}+1+2^{M} & \text { if } a_{n}=4 \cdot 2^{M}-1 \text { for some } M \geq 0 \\
a_{n}+1 & \text { otherwise }
\end{array}\right.
$$

Since the sequence $\left\{a_{n}\right\}_{n \geq 1}$ progresses sequentially through the intervals $\left\{I_{M}\right\}_{M \geq 0}$. The "jumps" where $a_{n+1}=a_{n}+1+2^{M}$ is satisfied occur when n indexes the last value of some interval I_{k} in which case, we have

$$
n=\left|I_{0}\right|+\sum_{M=1}^{k}\left|I_{M}\right|=3+\sum_{M=1}^{k}\left(\left(4 \cdot 2^{M}-1\right)-5 \cdot 2^{M-1}+1\right)=3 \cdot 2^{k}
$$

We now restate the original recurrence as

$$
a_{n+1}=\left\{\begin{array}{cc}
a_{n}+1+2^{k} & \text { if } n=3 \cdot 2^{k} \text { for some } k \geq 0 \\
a_{n}+1 & \text { otherwise }
\end{array}\right.
$$

Finally, multiplying by x^{n} and summing this relationship we have

$$
\begin{aligned}
\sum_{n \geq 1} a_{n+1} x^{n} & =\sum_{n \geq 1}\left(a_{n}+1\right) x^{n}+\sum_{k \geq 0} 2^{k} x^{3 \cdot 2^{k}} \\
\frac{f(x)-x}{x} & =f(x)+\frac{x}{1-x}+\sum_{k \geq 0} 2^{k} x^{3 \cdot 2^{k}}
\end{aligned}
$$

Solving $f(x)$ yields (1).

Lawrence Sze

Cal Poly Department of Math
lsze@calpoly.edu

