Sequence 102

Conjecture 1 (102) The generating function $f(x) = \sum_{n\geq 1}^{\infty} a_n x^n$ for the sequence $\{a_n\}_{n=1}^{\infty}$ of all positive integers whose binary representation do not begin with 100 is

$$\frac{x}{(1-x)^2} + \frac{x}{(1-x)} \cdot \sum_{k > 0} 2^k x^{3 \cdot 2^k} \tag{1}$$

Proof. The integers whose binary representation do NOT begin with 100 reside in the intervals $I_0 = [1,3]$ and $I_M = \left[5 \cdot 2^{M-1}, 4 \cdot 2^M - 1\right]$ for $M \geq 1$. In particular we have $a_1 = 1$ and for $n \geq 1$

$$a_{n+1} = \begin{cases} a_n + 1 + 2^M & \text{if } a_n = 4 \cdot 2^M - 1 \text{ for some } M \ge 0 \\ a_n + 1 & \text{otherwise} \end{cases}$$

Since the sequence $\{a_n\}_{n\geq 1}$ progresses sequentially through the intervals $\{I_M\}_{M\geq 0}$. The "jumps" where $a_{n+1}=a_n+1+2^M$ is satisfied occur when n indexes the last value of some interval I_k in which case, we have

$$n = |I_0| + \sum_{M=1}^k |I_M| = 3 + \sum_{M=1}^k ((4 \cdot 2^M - 1) - 5 \cdot 2^{M-1} + 1) = 3 \cdot 2^k.$$

We now restate the original recurrence as

$$a_{n+1} = \begin{cases} a_n + 1 + 2^k & \text{if } n = 3 \cdot 2^k \text{ for some } k \ge 0 \\ a_n + 1 & \text{otherwise} \end{cases}$$

Finally, multiplying by x^n and summing this relationship we have

$$\sum_{n\geq 1} a_{n+1} x^n = \sum_{n\geq 1} (a_n + 1) x^n + \sum_{k\geq 0} 2^k x^{3 \cdot 2^k}$$
$$\frac{f(x) - x}{x} = f(x) + \frac{x}{1 - x} + \sum_{k\geq 0} 2^k x^{3 \cdot 2^k}$$

Solving f(x) yields (1).

Lawrence Sze Cal Poly Department of Math lsze@calpoly.edu