SOLUTIONS TO ASSIGNMENT \#7

1. Find the linearizations $L(x)$ of the following functions $f(x)$ near $x=0$.
(a) $f(x)=\sqrt{25+x^{2}+x}$.
(b) $f(x)=(1-2 x)^{\beta}$, where β is some constant.
(c) $f(x)=\ln \left(x+\sqrt{1-x^{2}}\right)$.

Solution: In all cases the linearization near $x=0$ is $L(x)=f(0)+f^{\prime}(0) x$.
(a) $f^{\prime}(0)=\left.\frac{2 x+1}{2 \sqrt{25+x^{2}+x}}\right|_{x=0}=\frac{1}{10}$ and $f(0)=5 \Longrightarrow L(x)=5+\frac{1}{10} x$.
$\left(\mathrm{b} f^{\prime}(0)=-\left.2 \beta(1-2 x)^{\beta-1}\right|_{x=0}=-2 \beta\right.$ and $f(0)=1 \Longrightarrow L(x)=1-2 \beta x$.
(c) $f^{\prime}(0)=\left.\left(\frac{1+\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2}(-2 x)}{x+\sqrt{1-x^{2}}}\right)\right|_{x=0}=1$ and $f(0)=0 \Longrightarrow L(x)=x$.
2. Two towns on the trans Canada Hiway are 100 km apart. Two cars leave the first town at $1: 00 \mathrm{pm}$ and both arrive at the second town one hour later. Show that at sometime between 1:00 pm and 2:00 pm they had the same velocity.

Solution: Let the positions of the 2 cars be $x_{1}(t)$ and $x_{2}(t)$ respectively, and set $x(t)=$ $x_{1}(t)-x_{2}(t)$. Then $x(0)=0$ and $x(1)=0$, and so by the Mean Value Theorem there exists t such that $0<t<1$ and $x^{\prime}(t)=0$. Therefore the cars have the same speed at this time.
3. Find the length of the longest ladder that can be carried horizontally around a corner, from a corridor $a m$ wide to one that is $b m$ wide.
Solution:
The problem is equivalent to minimizing $L(x)=L_{1}+L_{2}$, see the diagram below. Now $L_{1}=\sqrt{b^{2}+x^{2}}$ and $L_{2}=a L_{1} / x$, where $0<x<\infty$. Thus $L(x)=\sqrt{b^{2}+x^{2}}+\frac{a \sqrt{b^{2}+x^{2}}}{x}$.

$$
\begin{aligned}
L^{\prime}(x) & =\frac{x}{\sqrt{b^{2}+x^{2}}}+\frac{a}{\sqrt{b^{2}+x^{2}}}-\frac{a \sqrt{b^{2}+x^{2}}}{x^{2}}=0 \\
& \Longleftrightarrow x+a-\frac{a\left(b^{2}+x^{2}\right)}{x^{2}}=0 \Longleftrightarrow x=\left(a b^{2}\right)^{1 / 3}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
L_{\min } & =\left.\sqrt{b^{2}+x^{2}}\left(1+\frac{a}{x}\right)\right|_{x=\left(a b^{2}\right)^{1 / 3}}=\sqrt{b^{2}+\left(a b^{2}\right)^{2 / 3}}\left(1+\frac{a}{\left(a b^{2}\right)^{1 / 3}}\right) \\
& =b^{2 / 3} \sqrt{b^{2 / 3}+a^{2 / 3}}\left(1+\frac{a}{\left(a b^{2}\right)^{1 / 3}}\right)=\left(b^{2 / 3}+a^{2 / 3}\right)^{3 / 2}
\end{aligned}
$$

Figure 1: Diagram for question 3

4. Let $f(x)=x^{3}-3 x^{2}+1,-\infty<x<\infty$.
(a) Determine all critical points of $f(x)$.
(b) Determine all intervals of increase of $f(x)$.
(c) Determine all intervals of decrease of $f(x)$.
(d) Determine all intervals where $f(x)$ is concave up.
(e) Determine all intervals where $f(x)$ is concave down.

Solution:
(a) $f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2)=0 \Longleftrightarrow x=0,2$.
(b) The intervals of increase are $-\infty<x<0$ and $2<x<\infty$.
(c) The interval of decrease is $0<x<2$.
(d) $f^{\prime \prime}(x)=6 x-6$, and therefore $f(x)$ is concave up for $1<x<\infty$.
(e) $f(x)$ is concave down for $-\infty<x<1$.
5. Let $f(x)=\frac{x^{2}+1}{x^{2}+2},-\infty<x<\infty$.
(a) Determine all critical points of $f(x)$.
(b) Determine all intervals of increase of $f(x)$.
(c) Determine all intervals of decrease of $f(x)$.
(d) Determine all intervals where $f(x)$ is concave up.
(e) Determine all intervals where $f(x)$ is concave down.

Solution:
(a) $f^{\prime}(x)=\frac{2 x}{\left(x^{2}+2\right)^{2}}=0 \Longleftrightarrow x=0$.
(b) $f(x)$ is increasing for $0<x<\infty$.
(c) $f(x)$ is decreasing for $-\infty<x<0$.
(d) $f^{\prime \prime}(x)=\frac{4-6 x^{2}}{\left(x^{2}+2\right)^{3}}>0 \Longleftrightarrow-\sqrt{\frac{2}{3}}<x<\sqrt{\frac{2}{3}}$.
(e) $f(x)$ is concave down for $-\infty<x<-\sqrt{\frac{2}{3}}$ and $\sqrt{\frac{2}{3}}<x<\infty$.
6. Let $f(x)=\frac{e^{x}-1}{e^{2 x}+1},-\infty<x<\infty$.
(a) Determine all critical points of $f(x)$.
(b) Determine all intervals of increase of $f(x)$.
(c) Determine all intervals of decrease of $f(x)$.

Solution:
(a) $f^{\prime}(x)=-e^{x} \frac{e^{2 x}-2 e^{x}-1}{\left(e^{2 x}+1\right)^{2}}=0 \Longleftrightarrow x=\ln (1+\sqrt{2})$.
(b) $f(x)$ is increasing for $-\infty<x<\ln (1+\sqrt{2})$.
(c) $f(x)$ is decreasing for $\ln (1+\sqrt{2})<x<\infty$.
7. Let $f(x)=\frac{\ln x}{x}, x>0$.
(a) Determine all critical points of $f(x)$.
(b) Determine all intervals of increase of $f(x)$.
(c) Determine all intervals of decrease of $f(x)$.
(d) Determine all intervals where $f(x)$ is concave up.
(e) Determine all intervals where $f(x)$ is concave down.

Solution:
(a) $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}=0 \Longleftrightarrow x=e$.
(b) $f(x)$ is increasing for $0<x<e$.
(c) $f(x)$ is decreasing for $e<x<\infty$.
(d) $f^{\prime \prime}(x)=\frac{2 \ln x-3}{x^{3}}=0 \Longleftrightarrow x=e^{3 / 2}$. Thus $f(x)$ is concave up for $e^{3 / 2}<x<\infty$.
(e) $f(x)$ is concave down for $0<x<e^{3 / 2}$.
8. Use implicit differentiation to find $\frac{d y}{d x}$ for the following:
(a) $\frac{\arcsin x}{\pi}+y^{2}=\frac{7}{6}$.
(b) $\arctan \left(x^{2}\right)+\arctan y=\frac{7 \pi}{12}$.
(c) $x^{3}+y^{3}=6 x y-3$
(d) $x y=e^{-y^{2}+y}$.

Solution:
(a) $\frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}}+2 y y^{\prime}=0 \Longrightarrow y^{\prime}=-\frac{1}{2 \pi y \sqrt{1-x^{2}}}$.
(b) $\frac{2 x}{1+x^{4}}+\frac{y^{\prime}}{1+y^{2}}=0 \Longrightarrow y^{\prime}=-\frac{2 x\left(1+y^{2}\right)}{1+x^{4}}$.
(c) $3 x^{2}+3 y^{2} y^{\prime}=6 y+6 x y^{\prime} \Longrightarrow y^{\prime}=\frac{3 x^{2}-6 y}{6 x-3 y^{2}}$.
(d) $y+x y^{\prime}=e^{-y^{2}+y}\left(-2 y y^{\prime}+y^{\prime}\right) \Longrightarrow y^{\prime}=\frac{y}{e^{-y^{2}+y}(-2 y+1)-x}$.
9. Find the equation of the tangent lines for each of the curves in question 8 , at the given point (a, b).
(a) $(a, b)=(1 / 2,1)$.
(b) $(a, b)=(-1, \sqrt{3})$.
(c) $(a, b)=(2,1)$.
(d) $(a, b)=(1,1)$.

Solution: In each case we evaluate y^{\prime} at the indicated value to compute the slope. The tangent line will have the equation $y=b+y^{\prime}(a)(x-a)$.
(a) $y=1-\frac{1}{\pi \sqrt{3}}(x-1 / 2)$.
(b) $y=\sqrt{3}+4(x+1)$.
(c) $y=1+\frac{2}{3}(x-2)$.
(d) $y=1-\frac{1}{2}(x-1)$.
10. Show that $\cos x>1-\frac{1}{2} x^{2}$ for $x>0$.

Solution: Let $f(x)=\cos x-1+\frac{1}{2} x^{2}$. Then $f(0)=0$ and $f^{\prime}(x)=-\sin x+x>0$ for $x>0$, and therefore $f(x)>f(0)=0$ for $x>0$.
11. Show that $\arcsin x=\arctan \frac{x}{\sqrt{1-x^{2}}}$.

Solution: Let $f(x)=\arcsin x-\arctan \frac{x}{\sqrt{1-x^{2}}}$. Then $f(0)=0$ and

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{1+\frac{x^{2}}{1-x^{2}}} \times \frac{\sqrt{1-x^{2}}+x^{2}\left(1-x^{2}\right)^{-1 / 2}}{1-x^{2}}=0 \text { (by some algebra.) }
$$

Therefore $f(x)$ is identically zero (on any interval on which it is defined).

