
Sorted and�or sortable permutations

Mireille Bousquet�M�lou�

LaBRI� Universit� Bordeaux �

��� cours de la Lib�ration

����� Talence Cedex� FRANCE

bousquet�labri�u�bordeaux�fr

Abstract

In his Ph	D	 thesis
���� Julian West studied in depth a map � that acts on permutations of the symmetric
group Sn by partially sorting them through a stack	 The main motivation of this paper is to characterize
and count the permutations of ��Sn�� which we call sorted permutations	 This is equivalent to counting
preorders of increasing binary trees	 We rst nd a local characterization of sorted permutations	 Then�
using an extension of Zeilberger�s factorisation of two�stack sortable permutations
���� we obtain for the
generating function of sorted permutations an unusual functional equation	

Out of curiosity� we apply the same treatment to four other families of permutations �general permuta�
tions� one�stack sortable permutations� two�stack sortable permutations� sorted and sortable permutations�
and compare the functional equations we obtain	 All of them have similar features� involving a divided
di�erence	 Moreover� most of them have interesting q�analogs obtained by counting inversions	 We solve
�some of� our equations	

� Introduction

To begin with� we de�ne the sorting procedure and the families of permutations we shall enumerate�

��� The sorting procedure

In his Ph�D� thesis ����� Julian West studied a procedure � that permutes the letters of a word � having distinct
letters in the alphabet f�� �� �� � � �g� The procedure uses a stack and works as follows 	Fig��
� At the beginning�
the word � � ���� lies to the right of the stack� which is empty� If � has m letters� the procedure will have �m
steps� After the ith step� for i � �� a word ��i� lies to the right of the stack� while a word � �i� lies to the left
of the stack� If ��i� is not empty� and if its �rst letter� say a� is smaller than the top letter of the stack 	or if
the stack is empty
� we add a to the top of the stack� Otherwise� we remove the top letter from the stack and
add it at the end of � �i�� In other words� we add letters to the stack as long as it remains a �Hano� tower� and
otherwise remove letters from the stack� The word � ��m� has m letters� and we de�ne it to be ����� the word
obtained by sorting � through a stack� Fig�� shows four steps of this procedure applied to � � ��	�
���

��	�
�� � � �������

�
�

�� ���� � ���	
�����

Figure �� The sorting algorithm applied to � � ��	�
���

This procedure extends a procedure described by Knuth ���� p� ���� 	although Knuth�s procedure� nicely
described in terms of railway switching networks� goes somehow backwards
� As observed by West ����� the

�Partially supported by the Conseil R�gional d�Aquitaine�

�

map � can alternatively be described recursively by

���Ln�R� � ���L����R�n� 	�

where n is the largest letter of the word � � �Ln�R� We observe that� if � has m letters� then �m����� is an
increasing word� this shows that � really sorts the letters of � 	although not very fast�
�

Clearly� we can restrict our attention to the action of � on permutations� Let Sn be the set of permutations
of length n� Following West ����� we represent the action of � on Sn by a sorting tree� the nodes of this tree
are the elements of Sn� and an edge connects � to ���� for all � � Sn 	Fig��
�

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

���

���

���

���

��� ���

����

����

����

����

����

����

����

����

����

Figure �� The sorting trees for S� and S��

We can visualize on this tree the four classes of permutations we will consider in this paper�
� One�stack sortable permutations

A permutation � � Sn is one�stack sortable if ���� � �� � � � n� i�e�� if it occurs in the last two columns
of the sorting tree� It is known ���� p����� that the number of such permutations is the Catalan number
Cn �

�
�n
n

�
��n ��� and that these permutations are exactly the permutations avoiding the pattern ���� there

exists no triple �i� j� k� with � � i � j � k � n such that ��k� � ��i� � ��j��

� Two�stack sortable permutations
A permutation � � Sn is two�stack sortable if ������� � �� � � � n� i�e�� if it occurs in the last three columns
of the sorting tree� West characterized these permutations in terms of forbidden patterns ���� and conjectured
that their number is bn � ���n������n ����n ����� This conjecture was �rst proved by Zeilberger ����� Two
bijective proofs ���� ��� were found later� based on the fact that bn is the number of non�separable planar maps
��� ��� Note that the corresponding generating function

P
bnx

n is cubic over IR�x��

� Sorted permutations
A permutation � � Sn is sorted if it belongs to ��Sn�� In other words� the sorted permutations are the inner
nodes of the sorting tree� or� using West�s terminology ����� the nodes of positive fertility�

Characterizing and counting these permutations is the main motivation of this paper�
We shall give a linear algorithm that decides whether a permutation is sorted 	and� in this case� exhibits one

of its pre�images
� and a functional equation satis�ed by their generating function� So far� we have not been
able to say whether this generating function is D��nite ����� or at least di�erentiably algebraic ����

� Sorted and �one�stack� sortable permutations
We can describe these permutations by any of the three equivalent conditions�

� � � ��Sn� and ���� � �� � � � n�
� � is the image by � of a two�stack sortable permutation�
� � is an inner node of one of the last two columns of the sorting tree�

We will show that their generating function is algebraic of degree ��

�

One of the main tools of this paper is a factorisation of permutations� due to Zeilberger� that stabilizes
the four classes of permutations described above� essentially� a permutation will be one�stack sortable 	resp�
two�stack sortable� sorted� sorted and sortable
 if and only if its factors are one�stack sortable 	resp� two�stack
sortable� sorted� sorted and sortable
� This property enables us to write� for each of these four classes� a
functional equation de�ning its generating function�

��� Functional equations

The initial motivation of this work was the enumeration of sorted permutations� After various attempts� we
realized that Zeilberger�s factorisation could be applied to these permutations� and led to an unusual functional
equation� It was then natural to ask whether the same factorisation� applied to other families of permutations�
would also yield interesting functional equations� The answer turned out to be �yes� and we �nally got very
much interested in the equations themselves� This explains why this paper studies in parallel �ve families of
permutations� general permutations� one�stack sortable permutations� two�stack sortable permutations� sorted
permutations� and sorted and sortable permutations�

For each of them� we obtain a functional equation that de�nes implicitly a bivariate power series F �x� y��
and involves a divided di�erence

�F �x� y�
def
�

F �x� y�� F �x� ��

y
�

In all cases� we are mostly interested in F �x� ��� but there is no obvious way to derive from the equation that
de�nes F �x� y� an equation satis�ed by the one�variable series F �x� ���

Such equations are quite frequent in enumerative combinatorics� Examples can be found in the enumeration
of permutations ��� ��� ��� p���������� of polygons ��� ���� and of maps ��� �� �� �� ���� To our knowledge� all
examples that have been solved so far are polynomial in F �x� y� and F �x� ��� and their solution is algebraic over
the �eld IR�x� y��

Three out of our �ve equations are polynomial in F �x� y� and F �x� ��� and can be solved using previously
known tools� The last two involve a partial derivative �F��x�x� y� 	Proposition ���
� They look very much
like each other� but one of them is related to general permutations and has a rational solution� while the other
is related to sorted permutations and will remain quite mysterious� However� we have found a method of
deriving� from the functional�di�erential equation satis�ed by F �x� y�� a 	strange
 equation satis�ed by F �x� ��
	Proposition ���
�

Finally� we will enrich our collection of equations with some q�analogs� obtained by enumerating our classes
of permutations by their inversion number 	or one of its variations
�

��� Structure of the paper

In Section �� we study the combinatorial properties of sorted permutations� In particular� we de�ne a class
of permutations 	called canonical permutations
 such that every sorted permutation has a unique canonical
pre�image by �� We also give a local characterization of canonical permutations� and a simple algorithm that
decides whether a permutation is sorted� In Section � we describe a factorisation of permutations and show it
is well�suited to the study of the sorting procedure� In Section �� we establish and compare our �ve functional
equations� We also give q�analogs of four of them� Section � is devoted to the solution of 	some of
 these
equations�

� Combinatorial properties of sorted permutations

��� Some examples

We begin this section with a few very simple remarks that should show some of the di�culties one meets when
trying to characterize and count sorted permutations�

First of all� we observe that the last entry of a sorted permutation � of Sn is n� However� this condition is
not su�cient to guarantee that � is sorted� as shown by � � ����� which is not sorted 	see Fig��
� So� let us
consider a permutation � of Sn ending with n� and let us write � � �L�n� ���Rn� If �R is not empty� then 	�

implies that

� � is sorted if and only if �L�n� �� and �R are sorted words�

�

� more precisely� the pre�images of � are the permutations �Ln�R where ���L� � �L�n��� and ���R� � �R�

If �R is empty� i�e�� � � �L�n���n� there is no obvious way of deciding whether � is sorted or not� In particular�
� might be sorted while �L�n � �� is not sorted� as shown by � � ����	 � ���	����� Also� the permutation
� � ����	 can be written ���L�	� with �L � ����� or ���L����R�	� with �L � �� and �R � ��� In other
words� the pre�images of � can give rise to di�erent factorisations of � of the form �L�Rn� with �L and �R

sorted�
The aim of this section is to �x the ambiguities illustrated by the above examples� In particular� we shall

prove that� given a sorted permutation� one of its pre�images has strictly more inversions than all others 	see
an example on Fig��
� A permutation � having more inversions than any other pre�image of ���� will be called
canonical� We shall�

�
 give a linear algorithm that decides whether a permutation is sorted� and in this case� builds its canonical
pre�image�

�
 give a local characterization of canonical permutations 	which are obviously in one�to�one correspondence
with sorted permutations
�

����	

��	�� ����	

��	�� ��	��

��	���	���

	����

	����

Figure �� The pre�images of the sorted permutation � � ����	� ranked by their inversion number 	the underlying
order is the strong Bruhat order
�

��� Permutations and trees

It will be convenient to represent permutations by trees� Let us begin with some terminology� A decreasing
binary tree is a binary tree whose nodes are labelled by distinct positive integers in such a way that each node
has a larger label than its children� The tree is said to be normalized if the number of its nodes coincides with
the label of the root� The set of normalized trees having n nodes is denoted Tn�

Reading a decreasing binary tree in symmetric order establishes a one�to�one correspondence with words
on the alphabet f�� �� � � �g having all their letters distinct� The symmetric order S�t� of a tree t is de�ned
recursively by reading �rst the left subtree of t� then its root� and �nally its right subtree� In particular� S
induces a standard bijection between normalized trees and permutations� The reverse bijection of S is denoted
T 	Fig��
�

� � 	���
����

�

�

�

�

	

�

 � T ���

�

�

Figure �� The bijection between permutations and normalized trees�

Let t be a decreasing binary tree having n nodes� and let L be the set of its labels� Let f be the unique
order preserving bijection from L to f�� �� � � � � ng� Normalizing the tree t means replacing the label i by f�i��
for all i � L� We de�ne similarly the normalization of words having distinct letters�

�

We de�ne recursively the leftmost branch and the leftmost path of a tree� If tL 	resp� tR
 is the left 	resp�
right
 subtree of t� then the leftmost branch of t consists of the root of t and the leftmost branch of tL� The
leftmost path of t consists of the root of t and the leftmost path of tL if tL is not empty � otherwise� it consists of
the root of t and the leftmost path of tR� Hence the leftmost path joins the root to the �leftmost leaf� for the
tree of Fig��� it consists of the nodes labelled �� 	� �� We de�ne symmetrically the rightmost branch and path�

We can now explain why we chose to represent permutations by trees� It turns out that displaying the
entries of a permutation � as the labels of the corresponding tree allows us to say at �rst glance what is the
sorted permutation ����� Recall that the postorder P �t� of a tree t is recursively de�ned by reading �rst the
left subtree of t� then its right subtree� and �nally its root� A simple comparison with the recursive de�nition
of the sorting procedure 	�
 gives the following result�

Proposition ��� Let � be a permutation and t � T ��� the corresponding tree� Then the permutation ����
obtained by sorting � through a stack is exactly the word P �t� obtained by reading t in postorder� In other words�
� � P � T �
This proposition relates the sorting procedure to a very basic operation of theoretical computer science� It also
enables us to reformulate in terms of trees all questions related to the sorting procedure� In particular� it gives
what is probably the simplest way of counting one�stack sortable permutations�

Corollary ���
�� A permutation � � Sn is one�stack sortable if and only if the associated tree T ��� has postorder �� � � � n�
Consequently� the number of one�stack sortable permutations of length n is the Catalan number

�
�n
n

�
��n ���

�� A permutation � is two�stack sortable if and only if the postorder of T ��� avoids the pattern ����
�� A permutation is sorted if and only if it is the postorder of a decreasing binary tree�

Proof
�� The �rst assertion is obvious� By induction on the size of T ���� we observe that P �T ���� � �� � � � n if and
only if � avoids ���� To prove the second assertion� take an unlabelled binary tree� and label its vertices with
�� �� � � � � n by visiting them in postorder� We thus obtain a normalized tree whose postorder is �� � � � n�
�� A permutation � is two�stack sortable if and only if ���� is one�stack sortable� i�e�� avoids the pattern ����

A consequence of the above corollary is that sorted permutations cannot be described by forbidding a set of
patterns�

Corollary ��� Any pattern occurs as a factor in some sorted permutation� More precisely� if � � �� � � � �m �
Sm� then the permutation �� � � � �m�m ���m �� � � � ��m� �� is sorted �see the �gure below��

�m�m��

��
�� m �

�m� �

In the enumeration of sorted permutations� we shall take into account the inversion number� The following
lemma explains how to determine the inversion number of a sorted permutation from one of its pre�images�

Lemma ��	 �West
���� Let � be a permutation� We de�ne inv��� to be the number of pairs �i� k� where
i � k such that there exists j � �i� k� such that ��k� � ��i� � ��j�� Then inv��� is the number of inversions of
�����

Using Rawlings� notations ����� we could call inv��� the number of ��� patterns� For instance� the permutation
� � ��	�
�� has four ��� patterns 	corresponding to the pairs of letters ��� ��� ��� ��� �	� �� and �
� ��
 and
���� � ���	
�� has four inversions 	given by the same pairs of letters
�

�

��� Canonical permutations

Clearly� di�erent trees might have the same postorder 	Fig��
� In order to characterize sorted permutations� we
are going to describe a canonical representative of the pre�images of a sorted permutation�

De�nition �� A permutation � is said to be canonical if the tree T ��� satis�es the following properties	

� each node that has a left child x has a nonempty right subtree tR

� moreover� the �rst node of tR �for the symmetric order� has a label y smaller than x�

We shall say that a tree t is canonical 	resp� one�stack sortable� two�stack sortable
 if the permutation � � S�t�
is canonical 	resp� one�stack sortable� two�stack sortable
�

Examples� The �rst tree of Fig�� is not canonical because the left child of the node 	 has label x � �� whereas
the �rst node of its right subtree has label y � � � �� The second tree of the �gure is canonical�

	 	

�

�

�

�

�

��
�

Figure �� Two trees having postorder ����	�

The following proposition implies that the procedure � induces a bijection between canonical permutations
and sorted permutations�

Proposition ��� Any sorted permutation � has a unique canonical pre�image �� Moreover� � has strictly more
inversions than any other pre�image of � �

Proof� We begin by proving that at least one of the pre�images of � is canonical� i�e�� that � is the postorder
of at least one canonical tree�

As � is sorted� we know there exists a tree u whose postorder is � � If u is canonical� we are done� Otherwise�
we can perform on u at least one of the following transformations�

First transformation� If u has a node z that has a left child but no right child� we transform the left subtree
of z into its right subtree�
Second transformation� If u has a node z that has a left child x and a nonempty right subtree tR whose �rst
node 	in symmetric order
 is y � x� we remove the left subtree of z and attach it as the left subtree of y�

We note that both transformations
� give a decreasing tree�
� do not change the postorder�
� increase the inversion number of the permutation obtained by reading the tree in symmetric order�

These properties imply that repeating these transformations in any order will �nally provide a canonical tree
whose postorder is � � having strictly more inversions than u� Observe that the �rst transformation is somehow
a limit case of the second one�

Let us now prove by induction on the length n of � that � has a unique canonical pre�image� If n � � or
n � �� the result is obvious� Otherwise� let x be the �rst letter of � � and write � � x� �� Let t be a canonical
tree whose postorder is � � Then x labels a leaf of t� Moreover� removing this leaf gives a canonical tree t� whose
postorder is � �� By the induction hypothesis� t� is the unique canonical tree of postorder � �� Let us prove that
the position of the leaf x in the tree t is also uniquely determined�

Let z be the father of x in t� Then�
�
 z must be a vertex of the leftmost path of t� having no left child 	because the postorder of t must start

with x
�
�
 z must be larger than x�
�
 all vertices of the leftmost path of t� having no left child that lie below z must have labels smaller than

x 	as t must be canonical
�

�

These three conditions determine at most one vertex of t�� the smallest node of the leftmost path of t� that
is larger than x and has no left child� We know that � has at least one canonical pre�image� this guarantees
the existence of this node z� If z is a leaf of t�� then x will be its right child� Otherwise� x will be its left child�

Remark� We can also prove that any sorted permutation � has a 	unique
 pre�image �� having strictly fewer
inversions than all others 	Fig��
� The corresponding tree T ���� is� among all trees having postorder � � the
only one that satis�es the following property� each node having a nonempty right subtree tR has a left child x�
Moreover� the �rst node of tR 	for the symmetric order
 has a label y smaller than x� This tree is obtained from
the canonical tree of � when a strong wind blows from the east� if z is a node having no left child� then the
right subtree of z becomes its left subtree� For instance� Fig�� shows the canonical tree of postorder � � ����	
and its windy version�

� � 	���� �� � ����	

	 	

�

�
�

�

��
�

�

Figure �� The pre�images of � � ����	 having the largest 	resp� smallest
 inversion number�

The proof of Proposition ��� has an interesting consequence� which concerns the number of pre�images of a
sorted permutation� called fertility by West �����

Proposition ��� The number of pre�images of a sorted permutation only depends on the shape of its canonical
pre�image �� i�e�� on the binary tree obtained by removing the labels from T ����

Proof� Starting from the canonical tree of postorder � � we construct all other pre�images of � by reversing the
�rst and second transformations described in the proof of Proposition ���� The two reverse transformations can
be described in uni�ed terms as follows�

Reverse transformation� Assume the tree u has a node z having a nonempty right subtree tR but no left
child� Let x be a vertex of the leftmost branch of tR� Remove the subtree of root x and append it as the left
subtree of z� Label this transformation by the pair �z� x��

The set of trees of postorder � is obtained by applying this reverse transformation any number of times� in
any order� starting from the canonical tree of � � We observe that the transformations one can perform on a
tree u do not depend on the labels of u� but only on its shape� Fig�� shows the set of trees having postorder
� � ����	� The edges are labelled by the pairs �z� x��

Remarks
�� West proved ���� p���� that the permutations 	n�k � �� � � � k ��k ���k �� � � � n and
n�k � �� � � � �k �
��k�k � ���k �� � � � n have the same number of pre�images� This is a consequence of the above proposition� as
the corresponding canonical trees are respectively

k � �

�
�

k �
k �

n� �
n

k � �
and

�
�

k � �k
k �

n
n� �

and have the same shape�

�� It would be interesting to determine� other than recursively� the number of pre�images of a sorted permutation
from the shape of its canonical tree�

�

��� ��

�	� �� �	� ����� ��

��� �� �	� �� ��� ��

��� ��

	

��� ��

	 	

		

	

	 	

Canonical tree

	

�

�

�

� �

� �

�

� �
�

� �

�
�

�

�	� ���	� ��

�

�

�

�

��

��

� �

�

��

�

� �

�

�

�

�

Figure �� The trees having postorder � � ����	�

��� An algorithm that decides whether a permutation is sorted

In the proof of Proposition ���� we have described how the unique canonical tree having postorder � can be
constructed in an iterative way� by reading � from right to left� and adding a leaf to the tree at each step� We
give below a more concise description of this construction by adding at the same time all nodes that belong to
the same increasing factor of � �

Assume that � has k descents and write � � � �k�� �k��� � � � � ��� where the � �j� are the maximal increasing
factors of � � For � � j � k� if � �j� � i� � � � im� with i� � i� � � � � � im� let u�j� be the 	linear
 tree
T �imim�� � � � i���

im

i�
i�

u�j� �

Observe the arrow attached to the root of u�j�� and note that P �u�j�� � � �j�� We now build canonical trees
t���� t���� � � � as follows�
Step �� Start from the tree t��� � u����
Step i� i � �� � � � � k� If all nodes of the leftmost path of the tree t�i��� that have no left child are smaller
than the root of u�i�� then � is not sorted and we stop� Otherwise� let t�i� be obtained by attaching u�i� to the
smallest node in the leftmost path of t�i��� that is larger than the root of u�i� and has no left child�
The tree t�k� 	when we can construct it
 is the canonical pre�image of � �

�

Example� Let � �
����������	�������������� � S��� This permutation has k � � descents� and we obtain the
following elementary trees�

u��� �
�� � 	

�
�

u��� �
�

��u��� �u��� � u��� �
��

�
�

�

We can attach them to each other� step by step� we �nally obtain the canonical pre�image of � �

	

��

�
�

�

�
�

�

��

�
��

�

Hence � � ��
�����������	�������������� is sorted�

� Zeilberger�s factorisation of permutations

��� Factoring permutations

We shall extend to all permutations the factorisation of two�stack sortable permutations described by Zeilberger
in ����� It requires the introduction of a new statistic� For � � Sn� we de�ne z��� by�

z��� � maxf� � ����n� � ����n� �� � � � � � ����n� � ��g�
For instance� z�	���
����� � �� If � is the empty permutation� of length �� we set z��� � �� For m�n � �� we
de�ne the sets Sm�n and Sm�n by

Sm�n � f� � Sm�n � z��� � ng and Sm�n � f� � Sm�n � z��� � ng�
Note that Sm�� � Sm and that for m � �� Sm�n is the disjoint union of Sm���n�� and Sm�n�

The principle of the factorisation is very simple� it splits a permutation into two factors� a pre�x and a su�x�
Letm�n � � and take � � Sm�n� This means that � has lengthmn� that the numbersmn�mn��� � � � �m�
appear in this order in �� and that m lies to the left of m �� Let j � f�� �� � � � � n� �g be the largest number
such that m lies to the left of m j �� We have

� � � � � �m n� � � � �m n� �� � � � � � � �m j �� � � � �m� � � � �m j �� � � � �m j� � � � � � � �m �� � � �

Let us write � � �����m j ������� The length of ���� is i j for some i � f�� �� � � � �m� �g� Let L be the set
of numbers smaller than m occurring in ����� Then L has cardinality i� Finally� let �� 	resp� ��
 be obtained by
normalizing ���� 	resp� ����
� Note that �� � Sm�i���n�j and �� � Si�j�� Let us denote ���� � �i� j� L� ��� ����

Example� Let m �
 and n � �� For � � 	���
���� � S	�� we �nd j � �� ���� � 	���
 and ���� � ����
We have i � � and L � f�� �g� Normalizing the permutations gives �� � ��	�� and �� � ���� and �nally
���� � ��� �� f�� �g� ��	��� �����

We obtain by inspection the following proposition�

Proposition ��� For m�n � �� the map � establishes a one�to�one correspondence between Sm�n and the
�ve�tuples �i� j� L� ��� ��� such that

� � i � m� � � j � n� L 	 f�� � � � �m� �g� jLj � i� �� � Sm�i���n�j and �� � Si�j �

Moreover� if ���� � �i� j� L� ��� ���� then

inv��� � inv���� inv���� inv�m�L�

where inv�m�L� � jf�a� b� � a � ���m� n L� b � L� a � bgj�

�

Example� For the permutation � of the previous example� we have inv��� � 	� inv���� � �� inv���� � ��
inv�
� L� � � and we check that inv���� inv���� inv�m�L� � � � � � inv��� � 	�

Remark� Several other standard statistics can be carried through our factorisation of permutations� See for
instance ��� for the enumeration of two�stack sortable permutations� using this factorisation� according to the
length� number of descents� number of left�to�right and right�to�left maxima� The inversion number satis�es

inv��� � inv���� inv���� inv�m�L� �n� j��i j ��� ��

and this kind of relation does not give simple functional equations�

��� Factoring trees

Let us now describe the factorisation in terms of trees� First of all� we note that the statistic z��� is easily
determined from the tree t � T ���� if t has n nodes� then z��� is the largest � such that n� n� �� � � � � n� � �
lie on the rightmost branch of t� When we do not want to make the underlying permutation explicit� we will
use the notation z�t� instead of z���� By analogy with Sm�n and Sm�n� we de�ne� for m�n � �� the sets Tm�n

and T m�n by
Tm�n � ft � Tm�n � z�t� � ng and T m�n � ft � Tm�n � z�t� � ng�

Let m�n � � and take t � T m�n� This means that the nodes mn�mn��� � � � �m� lie on the rightmost
branch of t� and that m is the left child of one of them � say� of m j �� with � � j � n� Let t��� be the right
subtree of the node m j �� Let i j be the number of its nodes� and L the set of its labels smaller than m�
Then jLj � i� Let t��� be obtained from t by replacing the subtree of root m j � by the subtree of root m�
Let t� 	resp� t�
 be obtained by normalizing t��� 	resp� t���
� De�ne ��t� � �i� j� L� t�� t��� Then � establishes
a one�to�one correspondence between T m�n and the �ve�tuples �i� j� L� t�� t�� such that

� � i � m� � � j � n� L 	 f�� � � � �m� �g� jLj � i� t� � Tm�i���n�j and t� � Ti�j �
The factorisation of trees is schematized in Fig���

t��� �

t��� �

mm j �

m n
m n� �

m

tn
tn��

tj��

m j
m j �

m �
m �

t� t�

m n
m n� �

tn
tn��

tj�� tj��

m j �

m j

m �
m �

t� t�

tj

tj

tj��

Figure �� The factorisation of trees 	the set of labels of the grey trees is L
�

��� Recursive characterizations

The following proposition provides recursive characterizations for one�stack sortable permutations� two�stack
sortable permutations and canonical permutations� We shall use it to obtain� in the next section� our functional
equations�

Proposition ��� Let � be a permutation of Sm�n� where m�n � �� and let t � T ��� be the corresponding
normalized tree� Let �i� j� L� t�� t�� be the �ve�tuple obtained by factoring t�

��

�� � is one�stack sortable if and only if L �
 and t� and t� are one�stack sortable�
�� � is two�stack sortable if and only if L � fm� i�m� i�� � � � �m� �g and t� and t� are two�stack sortable�
�� � is canonical if and only if t� and t� are canonical and either

� j � � and t� is nonempty� or
� j � � and t� has a nonempty left subtree�

In particular� if � is canonical� then i � ��

Proof� We use the pictorial description of the factorisation 	Fig��
� Observe that

P �T ���� � P �tn� � � �P �t���m �� � � � �m n��

P �t���� � P �tn� � � �P �tj����m j �� � � � �m n� and P �t���� � P �tj� � � �P �t���m �� � � � �m j��

We conclude using Corollary ��� for the �rst two characterizations and De�nition ��� for the last one�

� Functional equations

In this section� we establish and compare �ve functional equations that de�ne implicitly the generating functions
for the following �ve families of permutations� general permutations� one�stack sortable permutations� two�stack
sortable permutations� sorted permutations and sorted and sortable permutations� These functional equations
are derived from the factorisation of permutations described in the previous section�

Notations� We shall use the following standard de�nitions and notations� For n � �� the q�analog of n is

�n� � � q � � � qn�� �
�� qn

�� q
�

The q�analog of n� is �n�� � ������ � � � �n�� By convention� ���� � �� Finally� for � � k � n� the q�analog of the
binomial coe�cient

�
n
k

�
is �

n

k

�
�

�n��

�k���n� k��
�

Proposition ��� explains our interest in the following classical interpretation of the q�binomial coe�cient�

X
L�f������m��g
jLj�i

qinv�m�L� � qi
�
m� �

i

�
�

Let F be a set of permutations� By the ordinary 	resp� exponential
 generating function of F we mean the
two�variable series

F �x� y� �
X

m�n��

fm�n xmyn

�
�resp� F �x� y� �

X
m�n��

fm�n
xm

m�
yn

�
A �

where fm�n � jF �Sm�nj is the number of permutations � of F of length mn such that z��� � n� Similarly� let
inv denote any of the statistics inv 	the inversion number
 or inv� The ordinary 	resp� Eulerian
 inv�generating
function of F is

�F �x� y� �
X

m�n��

�fm�n xmyn

�
�resp� �F �x� y� �

X
m�n��

�fm�n
xm

�m��
yn

�
A �

where �fm�n �
P

��F�Sm�n
qinv���� Observe that F �x� �� and �F �x� �� are respectively the length generating

function and the length�inv generating function for the permutations of F �

��

Proposition 	�� Zeilberger�s factorisation� applied to our �ve classes of permutations� yields the following
functional equations�
Linear equation� The ordinary generating function A�x� y� for one�stack sortable permutations is completely
characterized by the equation

A�x� y� �
�

�� y

x

�� y

A�x� y��A�x� ��

y
� 	�

Quadratic equations� The ordinary generating functions for two�stack sortable permutations and for sorted
and sortable permutations �respectively� B�x� y� and C�x� y�� are completely characterized by the equations

B�x� y� �
�

�� y
 x �� yB�x� y��

B�x� y��B�x� ��

y
� 	�

C�x� y� �
�

�� y
 x��� y� �� yC�x� y��

C�x� y�� C�x� ��

y
� 	�

Di�erential equations� The exponential generating functions for general permutations and for sorted permu�
tations �respectively D�x� y� and E�x� y�� are completely characterized by the equations

�D

�x
�x� y� � �� yD�x� y��

D�x� y��D�x� ��

y
� 	�

�E

�x
�x� y� � ��� y� �� yE�x� y��

E�x� y�� E�x� ��

y
� 	�

and the initial conditions D��� y� � E��� y� � ����� y��

We delay the proof of this proposition to make a few comments�

�� The series A�x� y�� B�x� y�� C�x� y�� D�x� y� and E�x� y� are uniquely de�ned by these equations� in each of
these series� the coe�cient of xn is a rational function in y that can be computed by induction on n using the
relevant equation� In particular� we obtain for sorted permutations and for sorted and sortable permutations of
length at most �� the data presented in Table ��

�� The �ve equations involve a common factor� a discrete derivative 	or divided di�erence

�F �x� y�
def
�

F �x� y�� F �x� ��

y
�

As we wrote in the introduction� such equations arise frequently in enumerative combinatorics� Observe that
there is no obvious way to derive an equation satis�ed by F �x� �� itself�

�� Two pairs of equations are very similar� and only di�er by a factor ��� y�� Equation 	�
 is equivalent to the
equation obtained by Zeilberger for two�stack sortable permutations �����

�� The series D�x� y� has an extremely simple expression� Let dm�n be the number of permutations � � Sm�n

such that z��� � n� Clearly� dm�n � �m n���n� 	shu�e the word �m n��m n � �� � � � �m �� with any
permutation of Sm
� Consequently� the exponential generating function for general permutations is D�x� y� �
���� � x � y�� It is very easy to check that ���� � x � y� satis�es 	�
� but how can one derive this rational
expression from 	�

�� Using Proposition ���� we can also take into account the statistics inv in the factorisation of permutations�
We thus obtain for four of our equations a nice q�analog�

Proposition 	�� The equations of Proposition ��� admit the following q�analogs�
Quadratic equations� The ordinary inv�generating function for two�stack sortable permutations and the
ordinary inv�generating function for sorted and sortable permutations �respectively� �B�x� y� and �C�x� y�� are
completely characterized by the equations

�B�x� y� �
�

�� y
 x

�
� y �B�xq� y�

	 �B�x� y�� �B�x� ��

y
� 	�

�C�x� y� �
�

�� y
 x��� y�

�
� y �C�xq� y�

	 �C�x� y�� �C�x� ��

y
� 	�

��

q�Di�erential equations� The Eulerian inv�generating function for general permutations and the Eulerian
inv�generating function for sorted permutations �respectively �D�x� y� and �E�x� y�� are completely characterized
by the equations

�D�x� y�� �D�xq� y�

x��� q�
�
�
� y �D�xq� y�

	 �D�x� y�� �D�x� ��

y
� 	�

�E�x� y�� �E�xq� y�

x��� q�
� ��� y�

�
� y �E�xq� y�

	 �E�x� y�� �E�x� ��

y
� 	��

and the initial conditions �D��� y� � �E��� y� � ����� y��

Remarks
�� Clearly� the last four equations of Proposition ��� are obtained from Proposition ��� in the limit case q � ��
Enumerating one�stack sortable permutations according to the statistic inv is irrelevant� as these permutations
avoid the pattern ���� For their enumeration according to the number of inversions� see ����

�� We obtain a di�erent information on the series �D�x� y� 	general permutations
 if we use the standard
factorisation of trees into their left and right subtrees� We �nd�

�D�x� ��� �D�xq� ��

x��� q�
� �D�x� ��� and �D�x� y� � �D�x� ��

�
� y �D�x� y�

	
� 	��

One checks easily that 	��
 implies 	�
� But conversely� deriving 	��
 from 	�
 does not seem so simple� Note
that Rawlings ���� ��� has studied a close relative to the statistics inv� and essentially obtained the �rst equation
in 	��
�

Proof of Propositions 	�� and 	��
�� We begin with the enumeration of general permutations� Let �d�m�n� denote the polynomial in q that counts
permutations of Sm�n according to the statistics inv�

The set S��n is reduced to fn�n � �� � � � �g and hence �d��n � � for n � �� This gives �D��� y� � ���� � y��
Moreover� for m � �� we have Sm�n � Sm���n�� �Sm�n and Proposition ��� gives�

�dm�n � �dm���n��
m��X
i��

n��X
j��

�
m� �

i

�
qi �dm�i���n�j

�di�j � 	��

Multiplying by ynxm����m� ��� and summing on m � � and n � � gives the result�

�� For one�stack sortable permutations� we use Proposition ��� to obtain an analog of Eq� 	��
� Let am�n be
the number of one�stack sortable permutations � of length m n such that z��� � n� Then for m � ��

am�n � am���n��

n��X
j��

am���n�j a��j �

Using a��j � � and summing on m and n gives the result�

�� For two�stack sortable permutations� we �nd� for m � ��

�bm�n � �bm���n��

m��X
i��

n��X
j��

qi �bm�i���n�j
�bi�j �

where �bm�n is the polynomial in q that counts two�stack sortable permutations ofSm�n according to the statistics
inv� Again� �b��n � � and we obtain our functional equation by summing on m and n�

�� Counting sorted permutations according to their inversions is equivalent to counting canonical permutations
according to the statistic inv 	see Proposition ��� and Lemma ���
� Using Proposition ���� we �nd� for m � ��

�em�n � �em���n��
m��X
i��

n��X
j��

�
m� �

i

�
qi �em�i���n�j ��ei�j � �ei�j����

��

with the convention �ei��� � �� In the above equation� �em�n denotes the polynomial in q that counts sorted
permutations of Sm�n according to the statistics inv� We use �e��n � �� multiply by ynxm����m� ��� and sum
on m and n to obtain the result�

�� Counting sorted and sortable permutations according to their inversions is equivalent to counting two�stack
sortable canonical permutations according to the statistic inv� Hence� we need to combine two of the properties
we have already studied� We �nd� for m � ��

�cm�n � �cm���n��

m��X
i��

n��X
j��

qi �cm�i���n�j ��ci�j � �ci�j����

with the convention �ci��� � �� In the above equation� �cm�n denotes the polynomial in q that counts sorted and
sortable permutations of Sm�n according to the statistics inv� We sum on m and n to obtain the result�

Length Sorted Sorted and sortable Length Sorted Sorted and sortable

� � � �� ����������� �������
� � � �� ������������ �������
� � � �� ������������� ��������
� � � �� �������������� ��������
� �� �� �� ���������������� ���������
� �� �� �� ����������������� ���������
� ��� �� �� ������������������ ����������
� ���� ��� �� ������������������� ����������
� ����� ��� �� �������������������� �����������
�� ����� ���� �� ���������������������� �����������
�� ������ ���� �� ����������������������� ������������
�� ������� ����� �� ������������������������ ������������
�� �������� ����� �� ������������������������� �������������
�� ��������� ������ �� ��������������������������� ��������������
�� ���������� ������ �� ���������������������������� ��������������

Table �� The number of sorted 	resp� sorted and sortable
 permutations�

� Solving the functional equations

The �ve functional equations we have obtained are of three di�erent sorts� The simplest one is related to
one�stack sortable permutations� It is linear in A�x� y�� Two others are 	q�
quadratic in the unknown series�
They are related to two�stack sortable permutations and sorted and sortable permutations respectively� The
last two equations involve a 	q�
derivative with respect to x�

Notations� Given a ring IL and n indeterminates x�� � � � � xn� we denote by
� IL�x�� � � � � xn� the ring of polynomials in x�� � � � � xn with coe�cients in IL�
� IL��x�� � � � � xn�� the ring of formal power series in x�� � � � � xn with coe�cients in IL�

and if IL is a �eld� we denote by
� IL�x�� � � � � xn� the �eld of rational functions in x�� � � � � xn with coe�cients in IL�

��� Linear equations and the kernel method

Proposition �� �Knuth
�	�� The ordinary length generating function A�x� �� for one�stack sortable permu�
tations is	

A�x� �� �
��p

�� �x

�x
�
X
n��

�

n �

�n

n

�
xn�

Proof� We use a method� sometimes called the kernel method � that can be found in several papers� e�g�
��� ��� ��� p������ Equation 	�
 can be rewritten as

�y��� y�� x�A�x� y� � y � xA�x� ���

��

Let Y � ���p
�� �x��� � xO�x��� Then Y ��� Y � � x� Substituting Y for y in the above equation shows

that A�x� �� � Y�x� Of course� we could also write an algebraic expression for A�x� y��

��� Quadratic equations and the quadratic method

The equations 	�
 for two�stack sortable permutations and 	�
 for sorted and sortable permutations can be
solved via the so�called quadratic method � which is due to Brown ��� ��� section �������

Proposition �� The ordinary length generating function B��x� � B�x� �� for two�stack sortable permutations
is cubic over the �eld IR�x�	

x�B��x�
� x�� �x�B��x�

� ��� ��x �x��B��x� x� ��x� � � ��

This implies that

B��x� � � �
X
n��

��n��

��n ����n ���
xn�

The ordinary length generating function C��x� � C�x� �� for sorted and sortable permutations is algebraic of
degree �	

x�C��x�
� x��� �x�C��x�

� x��� ��x
x��C��x�
� ��� �x ��x� �x��C��x� � ��� x�� � ��

Proof� In Eq� 	�
� let us form a perfect square containing all powers of B�x� y��

�y � �� ��xyB�x� y�� xyB��x� x� y�� � ��y� 	��

where ��y� is the following polynomial in y with coe�cients in IR�x�B��x���

��y� � �� xB��x��
�y� � ��� �x xB��x���� xB��x��y

� � x��xB��x�� x� ��y � x��

Let Y � Y �x� � x x� O�x�� be the 	unique
 power series in x such that Y � �xY B�x� Y �� xY B��x� x�
Substituting Y �x� for y in 	��
 shows that � has a double root at y � Y �x�� This implies that the resultant of
� and ����y� seen as polynomials in y� is zero� Computing this resultant gives the cubic equation satis�ed by
B��x��

It is not di�cult to conjecture the expression of the coe�cients of B��x� from their �rst values� This suggests
to introduce the auxiliary series U � U�x� de�ned by U � x�� U��� Then we check that B��x� � �U �U�

	both series satisfy the same equation
� We complete the proof by applying the Lagrange inversion formula�

We apply the same method to Eq� 	�
� We �nd�

��xy�y � ��C�x� y� xy��� y�C��x� x�y � �� y�
�
� ��y�

with
� � x�y�C��x�

� � �xC��x���� x xC��x��y
�

���� x�� �x��� �x�C��x� x�C��x�
�� �x�xC��x�� x� ��y x��

Again� � has a double root at y � Y �x� where Y � Y �x� is the formal power series in x de�ned by Y �
�xY ���Y �C�x� Y �xY �Y ���C��x�x���Y �� Computing the resultant of � and ����y gives the algebraic
equation satis�ed by C��x��

Remarks
�� The �rst part of the above proposition was already proved in ���� ��� ����

�� Let cn denote the coe�cient of xn in C��x�� The numbers cn have large prime factors 	see Table �
� We can
prove they are not hypergeometric as follows� we �rst construct the linear recurrence with polynomial coe�cients
they satisfy 	using� for instance� the Maple package Gfun ����
 and then look for all hypergeometric solutions

��

of this recurrence 	using the algorithm Hyper ����
� We �nd that there is no such solution� the sequence �cn�n
is not hypergeometric�

This does not rule out the existence of an expression of the form

cn �
X
k

Fn�k

where Fn�k would be 	doubly
 hypergeometric� Such an expression could� for example� derive from an appli�
cation of the Lagrange inversion formula� By manipulationg the equation that de�nes C��x�� we found that
Q �x�C��x�� � Q �x� V �x�� where

��� �x�V �x�� xV �x�� � xV �x� x� � ��

This equation is quadratic in x and hence� not suitable for a direct application of the Lagrange inversion formula
	which requires linear equations in x
� We can actually prove that we cannot write C��x� as a rational function
of x and U � where U would be related to x via an algebraic equation P �x� U� � � of degree one in x� Hence the
Lagrange inversion formula 	in its simplest form
 cannot be applied to obtain an expression of C��x��

�� So far� we have found no q�analog of the quadratic method that would enable us to solve Eqs� 	�
 and 	�
�

��� Di�erential equations

We �nally come to the functional�di�erential equation that de�nes the generating function for sorted permu�
tations 	�
� It is very similar to the equation obtained for general permutations 	�
� The case of general
permutations turns out to be extremely simple� as D�x� y� � ����� x� y�� The case of sorted permutations is
	and will remain
 much more intriguing� However� we shall obtain a characterization of the series E�x� �� that
does not involve the series E�x� y��

Notations� Let f�x� y� be a formal power series in x with rational coe�cients in y� We denote by f � the
derivative �f��x� We denote by Lf the formal Laplace transform of f with respect to x�

f�x� y� �
X
n��

an�y�
xn

n�
� Lf�x� y� �

X
n��

an�y� x
n�

The Laplace transform has the following integral representation�

Lf�x� y� �
�

x

Z �

�

e�u�xf�u� y�du�

Observe that
Lf�x� y� � f��� y� xL�f ���x� y�� 	��

Proposition �� Let

E�x� �
X
m��

em��
xm��

�m ���

where em�� is the number of sorted permutations of length m� Note that E�x� � R x
�
E�u� ��du�

Let f�x� y� be the following power series in x� with polynomial coecients in y	

f�x� y� � exp ��y � ��E�x�� �
Then the Laplace transform of f satis�es	

Lf

y

�� y
� y

�
� �� y� 	��

Equivalently� Z �

�

e�u���y��y exp ��y � ��E�u�� du � y�

This equation is equivalent to a recurrence relation de�ning the sequence �em���m� and hence� characterizes
completely the series E�x��

��

Proof� This proposition is a special case of a more general approach that also allows us to derive the simple
expression D�x� y� � ����� x� y� from Eq� 	�
�

Equations 	�
 and 	�
 have the following form�

�F

�x
�x� y� � c�y� �� yF �x� y��

F �x� y�� F �x� ��

y
� 	��

where c�y� � � for general permutations and c�y� � �� y for sorted permutations� Eq� 	��
� together with the
initial condition F ��� y� � ����� y�� de�nes F �x� y� as a formal power series in x with rational coe�cients in y�
More precisely� F �x� y� admits an expansion of the following form�

F �x� y� �
X
n��

Pn�y�

��� y�n��

xn

n�

where Pn�y� � IR�y�� We observe that Eq� 	��
 is a Riccati equation in F �x� y�� We linearize it by introducing
the series

G�x� y� � exp

�
�c�y�

Z x

�

F �u� y�du

�
� 	��

so that F � �G���c�y�G�� We �nd

G��� y� � �� G���� y� �
c�y�

y � �
� 	��

and
y G�� c�y��yF �x� ��� �� G� � c�y��F �x� �� G � ��

This equation can be rewritten as

�yG�� � c�y�G�� c�y�F �x� �� �yG� � c�y�G� � ��

which� using 	��
� gives

yG� � c�y�G �
c�y�

y � �
f�x� y� 	��

with

f�x� y� � exp

�
�c�y�

Z x

�

F �u� ��du

�
�

Taking the Laplace transform in 	��
 gives� thanks to 	��
�

�y � xc�y��L�G���x� y�� c�y� �
c�y�

y � �
Lf�x� y�� 	��

The de�nition 	��
 of G implies that it admits an expansion of the form

G�x� y� �
X
n��

Qn�y�

��� y�n
xn

n�

where Qn�y� � IR�y�� Hence we can set x � y�c�y� in 	��
 	this should remind the reader of the kernel method
used in Section ���
� We obtain

Lf

y

c�y�
� y

�
� �� y� 	��

Let us now apply this result to Eqs� 	�
 and 	�
�

�General permutations� When c�y� � �� the series F �x� y� is the exponential generating function D�x� y�
for general permutations� The series f�x� y� � exp

�� R x
�
D�u� ��du

	
only depends on x� and we shall denote

it f�x�� Eq� 	��
 gives Lf�x� � � � x� Hence f�x� � � � x� and D�x� �� � ���� � x�� This is exactly
	fortunately�
 the exponential generating function for general permutations� Then� we integrate 	��
 and �nd
G�x� y� � ��� x� y����� y�� and �nally�

D�x� y� �
�

�� x� y
�

X
m�n��

�m n��

n�

xm

m�
yn�

��

Hence� our � admittedly complicated � method is at least able to recover the expected result� the number of
permutations � of length m n such that z��� � n is �m n���n��

� Sorted permutations� The success of our method on a problem we knew how to solve encourages
us to apply the same method to the more tricky equation 	�
� When c�y� � � � y� the series F �x� y� is the
exponential generating function E�x� y� for sorted permutations� With the notations of Proposition ���� we have
f�x� y� � exp ��y � ��E�x��� Equation 	��
 gives 	��
�

To complete the proof of this proposition� we have to show that the functional equation we obtained com�
pletely characterizes E�x�� Let us write ei�� � ei for short� We have�

f�x� y� � exp ��y � ��E�x�� �
Y
i��

exp
h
�y � ��

ei��

i�
xi
i
�

This gives

Lf�x� y� �
X

r��r��r�������

x
P

iri
�
P

iri��Q
ri�

�y � ��
P

ri
Y
i��

�ei��

i�

ri
� 	��

Let us observe that the identity 	��
 can be rewritten as

Lf

x�

x

� x

�
�

�

� x
�

Thus� let us replace y by x��� x� in 	��
 and expand the series we obtain� Taking the coe�cient of xn gives�
for n � �� X

�

���������j�j j�j�Q
ri�

n� j�j ����� �

����� �

�Y
i��

�ei��

i�

ri
� ��

where the sum is over all nonempty partitions � of weight at most n� ���� denotes the number of parts of ��
and ri is the number of parts equal to i� This equation de�nes en�� in terms of e�� e�� � � � � en��� and hence the
series E�x� is completely characterized by the functional equation we obtained�

Final comments� Obviously� we have not completely solved the equations of Section �� Two main questions
arise�

� Eq� 	�
 de�nes a series E�x� y�� Proposition ��� gives a characterization of E�x� �� that does not involve
E�x� y�� but is of a very unusual form� Is there a more standard equation de�ning E�x� �� for instance�
an algebraic di�erential equation

� Eqs� 	�
 and 	�
 cry for a q�analog of the quadratic method� Do �B�x� �� and �C�x� �� satisfy a q�algebraic
equation� i�e�� a polynomial equation P �x� q� �F �x�� �F �xq�� � � � � �F �xqk�� � �

Acknowledgements� I would like to thank Cyril Banderier� Philippe Flajolet and Bruno Salvy for interesting
discussions about the possible singularity structure of the series E�x� ��� as well as Bruno Gauthier for his
assistance in the use of the package Hyperg�

References

��� E� Barcucci� A� Del Lungo� S� Lanini� M� Macr! and R� Pinzani� The inversion number of some permutations
with forbidden subsequences� Proceedings of SOCA���� Tianjin 	����
 ������

��� F� Bergeron and C� Reutenauer� Combinatorial resolution of systems of di�erential equations III� a special
class of di�erentially algebraic series� Europ� J� Combinatorics �� 	����
 ��������

��� M� Bousquet�M"lou� A method for the enumeration of various classes of column�convex polygons� Discrete
Math� �	 	����
 �����

��

��� M� Bousquet�M"lou� Multi�statistic enumeration of two�stack sortable permutations� Electronic J� Combin�
 	����
 R���

��� W� G� Brown� Enumeration of non�separable planar maps� Canad� J� Math� � 	����
 ��������

��� W� G� Brown� On the existence of square roots in certain rings of power series� Math� Annalen �� 	����

������

��� W� G� Brown and W� T� Tutte� On the enumeration of rooted non�seperable planar maps� Canad� J� Math�
�� 	����
 ��������

��� R� Cori� B� Jacquard and G� Schae�er� Description trees for some families of planar maps� Proceedings of
the �th Conference �Formal Power Series and Algebraic Combinatorics� Vienna� ����� pp� ��������

��� R� Cori and J� Richard� #num"ration des graphes planaires $ l�aide des s"ries formelles en variables non
commutatives� Discrete Math� � No�� 	����
 ��������

���� S� Dulucq� S� Gire and O� Guibert� A combinatorial proof of J� West�s conjecture� Discrete Math� ���
	����
 ������

���� S� Fereti% and D� Svrtan� On the number of column�convex polyominoes with given perimeter and num�
ber of columns� in Proceedings of the 	th conference Formal Power Series and Algebraic Combinatorics�
A� Barlotti� M� Delest� and R� Pinzani eds�� pages �������� Florence� june �����

���� I� P� Goulden and D� M� Jackson� Combinatorial enumeration� John Wiley and Sons� New York� �����

���� I� P� Goulden and J� West� Raney paths and a combinatorial relationship between rooted non�separable
planar maps and two�stack�sortable permutations� J� Combin� Theory Ser� A � 	����
 ��������

���� D� E� Knuth� The art of computer programming Vol��� Fundamental algorithms� Addison�Wesley� Reading�
Massachusetts� �����

���� M� Petkov&sek� H� S� Wilf� and D� Zeilberger� A � B� A� K� Peters� Wellesley� Massachusetts� �����

���� D� Rawlings� The ABC�s of classical enumeration� Ann� Sci� Math� Qu�bec �� No�� 	����
 ��������

���� D� Rawlings� The Euler�Catalan identity� Europ� J� Combinatorics � 	����
 ������

���� B� Salvy and P� Zimmermann� Gfun� a Maple package for the manipulation of generating and holonomic
functions in one variable� ACM Transactions on Mathematical Software� �� 	����
 ��������

���� R� P� Stanley� Di�erentiably �nite power series� Europ� J� Combinatorics � 	����
 ��������

���� W� T� Tutte� On the enumeration of planar maps� Bull� Amer� Math� Soc� �	 	����
 ������

���� J� West� Permutations with restricted subsequences and stack�sortable permutations� Ph�D� thesis� MIT�
�����

���� J� West� Sorting twice through a stack� Theoret� Comput� Sci� ��� 	����
 ��������

���� D� Zeilberger� A proof of Julian West�s conjecture that the number of two�stack�sortable permutations of
length n is ���n�����n �����n ����� Discrete Math� ��� 	����
 ������

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

