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Abstract

In his Ph	D	 thesis 
���� Julian West studied in depth a map � that acts on permutations of the symmetric
group Sn by partially sorting them through a stack	 The main motivation of this paper is to characterize
and count the permutations of ��Sn�� which we call sorted permutations	 This is equivalent to counting
preorders of increasing binary trees	 We 
rst 
nd a local characterization of sorted permutations	 Then�
using an extension of Zeilberger�s factorisation of two�stack sortable permutations 
���� we obtain for the
generating function of sorted permutations an unusual functional equation	

Out of curiosity� we apply the same treatment to four other families of permutations �general permuta�
tions� one�stack sortable permutations� two�stack sortable permutations� sorted and sortable permutations�
and compare the functional equations we obtain	 All of them have similar features� involving a divided
di�erence	 Moreover� most of them have interesting q�analogs obtained by counting inversions	 We solve
�some of� our equations	

� Introduction

To begin with� we de�ne the sorting procedure and the families of permutations we shall enumerate�

��� The sorting procedure

In his Ph�D� thesis ����� Julian West studied a procedure � that permutes the letters of a word � having distinct
letters in the alphabet f�� �� �� � � �g� The procedure uses a stack and works as follows 	Fig��
� At the beginning�
the word � � ���� lies to the right of the stack� which is empty� If � has m letters� the procedure will have �m
steps� After the ith step� for i � �� a word ��i� lies to the right of the stack� while a word � �i� lies to the left
of the stack� If ��i� is not empty� and if its �rst letter� say a� is smaller than the top letter of the stack 	or if
the stack is empty
� we add a to the top of the stack� Otherwise� we remove the top letter from the stack and
add it at the end of � �i�� In other words� we add letters to the stack as long as it remains a �Hano� tower
� and
otherwise remove letters from the stack� The word � ��m� has m letters� and we de�ne it to be ����� the word
obtained by sorting � through a stack� Fig�� shows four steps of this procedure applied to � � ��	�
���
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Figure �� The sorting algorithm applied to � � ��	�
���

This procedure extends a procedure described by Knuth ���� p� ���� 	although Knuth�s procedure� nicely
described in terms of railway switching networks� goes somehow backwards
� As observed by West ����� the
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map � can alternatively be described recursively by

���Ln�R� � ���L����R�n� 	�


where n is the largest letter of the word � � �Ln�R� We observe that� if � has m letters� then �m����� is an
increasing word� this shows that � really sorts the letters of � 	although not very fast�
�

Clearly� we can restrict our attention to the action of � on permutations� Let Sn be the set of permutations
of length n� Following West ����� we represent the action of � on Sn by a sorting tree� the nodes of this tree
are the elements of Sn� and an edge connects � to ���� for all � � Sn 	Fig��
�
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Figure �� The sorting trees for S� and S��

We can visualize on this tree the four classes of permutations we will consider in this paper�
� One�stack sortable permutations

A permutation � � Sn is one�stack sortable if ���� � �� � � � n� i�e�� if it occurs in the last two columns
of the sorting tree� It is known ���� p����� that the number of such permutations is the Catalan number
Cn �

�
�n
n

�
��n
 ��� and that these permutations are exactly the permutations avoiding the pattern ���� there

exists no triple �i� j� k� with � � i � j � k � n such that ��k� � ��i� � ��j��

� Two�stack sortable permutations
A permutation � � Sn is two�stack sortable if ������� � �� � � � n� i�e�� if it occurs in the last three columns
of the sorting tree� West characterized these permutations in terms of forbidden patterns ���� and conjectured
that their number is bn � ���n������n
 ����n 
 ����� This conjecture was �rst proved by Zeilberger ����� Two
bijective proofs ���� ��� were found later� based on the fact that bn is the number of non�separable planar maps
��� ��� Note that the corresponding generating function

P
bnx

n is cubic over IR�x��

� Sorted permutations
A permutation � � Sn is sorted if it belongs to ��Sn�� In other words� the sorted permutations are the inner
nodes of the sorting tree� or� using West�s terminology ����� the nodes of positive fertility�

Characterizing and counting these permutations is the main motivation of this paper�
We shall give a linear algorithm that decides whether a permutation is sorted 	and� in this case� exhibits one

of its pre�images
� and a functional equation satis�ed by their generating function� So far� we have not been
able to say whether this generating function is D��nite ����� or at least di�erentiably algebraic ����

� Sorted and �one�stack� sortable permutations
We can describe these permutations by any of the three equivalent conditions�

� � � ��Sn� and ���� � �� � � � n�
� � is the image by � of a two�stack sortable permutation�
� � is an inner node of one of the last two columns of the sorting tree�

We will show that their generating function is algebraic of degree ��

�



One of the main tools of this paper is a factorisation of permutations� due to Zeilberger� that stabilizes
the four classes of permutations described above� essentially� a permutation will be one�stack sortable 	resp�
two�stack sortable� sorted� sorted and sortable
 if and only if its factors are one�stack sortable 	resp� two�stack
sortable� sorted� sorted and sortable
� This property enables us to write� for each of these four classes� a
functional equation de�ning its generating function�

��� Functional equations

The initial motivation of this work was the enumeration of sorted permutations� After various attempts� we
realized that Zeilberger�s factorisation could be applied to these permutations� and led to an unusual functional
equation� It was then natural to ask whether the same factorisation� applied to other families of permutations�
would also yield interesting functional equations� The answer turned out to be �yes
� and we �nally got very
much interested in the equations themselves� This explains why this paper studies in parallel �ve families of
permutations� general permutations� one�stack sortable permutations� two�stack sortable permutations� sorted
permutations� and sorted and sortable permutations�

For each of them� we obtain a functional equation that de�nes implicitly a bivariate power series F �x� y��
and involves a divided di�erence

�F �x� y�
def
�

F �x� y�� F �x� ��

y
�

In all cases� we are mostly interested in F �x� ��� but there is no obvious way to derive from the equation that
de�nes F �x� y� an equation satis�ed by the one�variable series F �x� ���

Such equations are quite frequent in enumerative combinatorics� Examples can be found in the enumeration
of permutations ��� ��� ��� p���������� of polygons ��� ���� and of maps ��� �� �� �� ���� To our knowledge� all
examples that have been solved so far are polynomial in F �x� y� and F �x� ��� and their solution is algebraic over
the �eld IR�x� y��

Three out of our �ve equations are polynomial in F �x� y� and F �x� ��� and can be solved using previously
known tools� The last two involve a partial derivative �F��x�x� y� 	Proposition ���
� They look very much
like each other� but one of them is related to general permutations and has a rational solution� while the other
is related to sorted permutations and will remain quite mysterious� However� we have found a method of
deriving� from the functional�di�erential equation satis�ed by F �x� y�� a 	strange
 equation satis�ed by F �x� ��
	Proposition ���
�

Finally� we will enrich our collection of equations with some q�analogs� obtained by enumerating our classes
of permutations by their inversion number 	or one of its variations
�

��� Structure of the paper

In Section �� we study the combinatorial properties of sorted permutations� In particular� we de�ne a class
of permutations 	called canonical permutations
 such that every sorted permutation has a unique canonical
pre�image by �� We also give a local characterization of canonical permutations� and a simple algorithm that
decides whether a permutation is sorted� In Section � we describe a factorisation of permutations and show it
is well�suited to the study of the sorting procedure� In Section �� we establish and compare our �ve functional
equations� We also give q�analogs of four of them� Section � is devoted to the solution of 	some of
 these
equations�

� Combinatorial properties of sorted permutations

��� Some examples

We begin this section with a few very simple remarks that should show some of the di�culties one meets when
trying to characterize and count sorted permutations�

First of all� we observe that the last entry of a sorted permutation � of Sn is n� However� this condition is
not su�cient to guarantee that � is sorted� as shown by � � ����� which is not sorted 	see Fig��
� So� let us
consider a permutation � of Sn ending with n� and let us write � � �L�n� ���Rn� If �R is not empty� then 	�

implies that

� � is sorted if and only if �L�n� �� and �R are sorted words�
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� more precisely� the pre�images of � are the permutations �Ln�R where ���L� � �L�n��� and ���R� � �R�

If �R is empty� i�e�� � � �L�n���n� there is no obvious way of deciding whether � is sorted or not� In particular�
� might be sorted while �L�n � �� is not sorted� as shown by � � ����	 � ���	����� Also� the permutation
� � ����	 can be written ���L�	� with �L � ����� or ���L����R�	� with �L � �� and �R � ��� In other
words� the pre�images of � can give rise to di�erent factorisations of � of the form �L�Rn� with �L and �R

sorted�
The aim of this section is to �x the ambiguities illustrated by the above examples� In particular� we shall

prove that� given a sorted permutation� one of its pre�images has strictly more inversions than all others 	see
an example on Fig��
� A permutation � having more inversions than any other pre�image of ���� will be called
canonical� We shall�

�
 give a linear algorithm that decides whether a permutation is sorted� and in this case� builds its canonical
pre�image�

�
 give a local characterization of canonical permutations 	which are obviously in one�to�one correspondence
with sorted permutations
�
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Figure �� The pre�images of the sorted permutation � � ����	� ranked by their inversion number 	the underlying
order is the strong Bruhat order
�

��� Permutations and trees

It will be convenient to represent permutations by trees� Let us begin with some terminology� A decreasing
binary tree is a binary tree whose nodes are labelled by distinct positive integers in such a way that each node
has a larger label than its children� The tree is said to be normalized if the number of its nodes coincides with
the label of the root� The set of normalized trees having n nodes is denoted Tn�

Reading a decreasing binary tree in symmetric order establishes a one�to�one correspondence with words
on the alphabet f�� �� � � �g having all their letters distinct� The symmetric order S�t� of a tree t is de�ned
recursively by reading �rst the left subtree of t� then its root� and �nally its right subtree� In particular� S
induces a standard bijection between normalized trees and permutations� The reverse bijection of S is denoted
T 	Fig��
�
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Figure �� The bijection between permutations and normalized trees�

Let t be a decreasing binary tree having n nodes� and let L be the set of its labels� Let f be the unique
order preserving bijection from L to f�� �� � � � � ng� Normalizing the tree t means replacing the label i by f�i��
for all i � L� We de�ne similarly the normalization of words having distinct letters�
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We de�ne recursively the leftmost branch and the leftmost path of a tree� If tL 	resp� tR
 is the left 	resp�
right
 subtree of t� then the leftmost branch of t consists of the root of t and the leftmost branch of tL� The
leftmost path of t consists of the root of t and the leftmost path of tL if tL is not empty � otherwise� it consists of
the root of t and the leftmost path of tR� Hence the leftmost path joins the root to the �leftmost
 leaf� for the
tree of Fig��� it consists of the nodes labelled �� 	� �� We de�ne symmetrically the rightmost branch and path�

We can now explain why we chose to represent permutations by trees� It turns out that displaying the
entries of a permutation � as the labels of the corresponding tree allows us to say at �rst glance what is the
sorted permutation ����� Recall that the postorder P �t� of a tree t is recursively de�ned by reading �rst the
left subtree of t� then its right subtree� and �nally its root� A simple comparison with the recursive de�nition
of the sorting procedure 	�
 gives the following result�

Proposition ��� Let � be a permutation and t � T ��� the corresponding tree� Then the permutation ����
obtained by sorting � through a stack is exactly the word P �t� obtained by reading t in postorder� In other words�
� � P � T �
This proposition relates the sorting procedure to a very basic operation of theoretical computer science� It also
enables us to reformulate in terms of trees all questions related to the sorting procedure� In particular� it gives
what is probably the simplest way of counting one�stack sortable permutations�

Corollary ���
�� A permutation � � Sn is one�stack sortable if and only if the associated tree T ��� has postorder �� � � � n�
Consequently� the number of one�stack sortable permutations of length n is the Catalan number

�
�n
n

�
��n
 ���

�� A permutation � is two�stack sortable if and only if the postorder of T ��� avoids the pattern ����
�� A permutation is sorted if and only if it is the postorder of a decreasing binary tree�

Proof
�� The �rst assertion is obvious� By induction on the size of T ���� we observe that P �T ���� � �� � � � n if and
only if � avoids ���� To prove the second assertion� take an unlabelled binary tree� and label its vertices with
�� �� � � � � n by visiting them in postorder� We thus obtain a normalized tree whose postorder is �� � � � n�
�� A permutation � is two�stack sortable if and only if ���� is one�stack sortable� i�e�� avoids the pattern ����

A consequence of the above corollary is that sorted permutations cannot be described by forbidding a set of
patterns�

Corollary ��� Any pattern occurs as a factor in some sorted permutation� More precisely� if � � �� � � � �m �
Sm� then the permutation �� � � � �m�m
 ���m
 �� � � � ��m� �� is sorted �see the �gure below��

�m�m��

��
�� m
 �

�m� �

In the enumeration of sorted permutations� we shall take into account the inversion number� The following
lemma explains how to determine the inversion number of a sorted permutation from one of its pre�images�

Lemma ��	 �West 
���� Let � be a permutation� We de�ne inv��� to be the number of pairs �i� k� where
i � k such that there exists j � �i� k� such that ��k� � ��i� � ��j�� Then inv��� is the number of inversions of
�����

Using Rawlings� notations ����� we could call inv��� the number of ��� patterns� For instance� the permutation
� � ��	�
�� has four ��� patterns 	corresponding to the pairs of letters ��� ��� ��� ��� �	� �� and �
� ��
 and
���� � ���	
�� has four inversions 	given by the same pairs of letters
�
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��� Canonical permutations

Clearly� di�erent trees might have the same postorder 	Fig��
� In order to characterize sorted permutations� we
are going to describe a canonical representative of the pre�images of a sorted permutation�

De�nition ��
 A permutation � is said to be canonical if the tree T ��� satis�es the following properties	

� each node that has a left child x has a nonempty right subtree tR


� moreover� the �rst node of tR �for the symmetric order� has a label y smaller than x�

We shall say that a tree t is canonical 	resp� one�stack sortable� two�stack sortable
 if the permutation � � S�t�
is canonical 	resp� one�stack sortable� two�stack sortable
�

Examples� The �rst tree of Fig�� is not canonical because the left child of the node 	 has label x � �� whereas
the �rst node of its right subtree has label y � � � �� The second tree of the �gure is canonical�

	 	

�

�

�

�

�

��
�

Figure �� Two trees having postorder ����	�

The following proposition implies that the procedure � induces a bijection between canonical permutations
and sorted permutations�

Proposition ��� Any sorted permutation � has a unique canonical pre�image �� Moreover� � has strictly more
inversions than any other pre�image of � �

Proof� We begin by proving that at least one of the pre�images of � is canonical� i�e�� that � is the postorder
of at least one canonical tree�

As � is sorted� we know there exists a tree u whose postorder is � � If u is canonical� we are done� Otherwise�
we can perform on u at least one of the following transformations�

First transformation� If u has a node z that has a left child but no right child� we transform the left subtree
of z into its right subtree�
Second transformation� If u has a node z that has a left child x and a nonempty right subtree tR whose �rst
node 	in symmetric order
 is y � x� we remove the left subtree of z and attach it as the left subtree of y�

We note that both transformations
� give a decreasing tree�
� do not change the postorder�
� increase the inversion number of the permutation obtained by reading the tree in symmetric order�

These properties imply that repeating these transformations in any order will �nally provide a canonical tree
whose postorder is � � having strictly more inversions than u� Observe that the �rst transformation is somehow
a limit case of the second one�

Let us now prove by induction on the length n of � that � has a unique canonical pre�image� If n � � or
n � �� the result is obvious� Otherwise� let x be the �rst letter of � � and write � � x� �� Let t be a canonical
tree whose postorder is � � Then x labels a leaf of t� Moreover� removing this leaf gives a canonical tree t� whose
postorder is � �� By the induction hypothesis� t� is the unique canonical tree of postorder � �� Let us prove that
the position of the leaf x in the tree t is also uniquely determined�

Let z be the father of x in t� Then�
�
 z must be a vertex of the leftmost path of t� having no left child 	because the postorder of t must start

with x
�
�
 z must be larger than x�
�
 all vertices of the leftmost path of t� having no left child that lie below z must have labels smaller than

x 	as t must be canonical
�

�



These three conditions determine at most one vertex of t�� the smallest node of the leftmost path of t� that
is larger than x and has no left child� We know that � has at least one canonical pre�image� this guarantees
the existence of this node z� If z is a leaf of t�� then x will be its right child� Otherwise� x will be its left child�

Remark� We can also prove that any sorted permutation � has a 	unique
 pre�image �� having strictly fewer
inversions than all others 	Fig��
� The corresponding tree T ���� is� among all trees having postorder � � the
only one that satis�es the following property� each node having a nonempty right subtree tR has a left child x�
Moreover� the �rst node of tR 	for the symmetric order
 has a label y smaller than x� This tree is obtained from
the canonical tree of � when a strong wind blows from the east� if z is a node having no left child� then the
right subtree of z becomes its left subtree� For instance� Fig�� shows the canonical tree of postorder � � ����	
and its windy version�

� � 	���� �� � ����	

	 	

�

�
�

�

��
�

�

Figure �� The pre�images of � � ����	 having the largest 	resp� smallest
 inversion number�

The proof of Proposition ��� has an interesting consequence� which concerns the number of pre�images of a
sorted permutation� called fertility by West �����

Proposition ��� The number of pre�images of a sorted permutation only depends on the shape of its canonical
pre�image �� i�e�� on the binary tree obtained by removing the labels from T ����

Proof� Starting from the canonical tree of postorder � � we construct all other pre�images of � by reversing the
�rst and second transformations described in the proof of Proposition ���� The two reverse transformations can
be described in uni�ed terms as follows�

Reverse transformation� Assume the tree u has a node z having a nonempty right subtree tR but no left
child� Let x be a vertex of the leftmost branch of tR� Remove the subtree of root x and append it as the left
subtree of z� Label this transformation by the pair �z� x��

The set of trees of postorder � is obtained by applying this reverse transformation any number of times� in
any order� starting from the canonical tree of � � We observe that the transformations one can perform on a
tree u do not depend on the labels of u� but only on its shape� Fig�� shows the set of trees having postorder
� � ����	� The edges are labelled by the pairs �z� x��

Remarks
�� West proved ���� p���� that the permutations 	n�k � �� � � � k ��k 
 ���k 
 �� � � � n and 
n�k � �� � � � �k �
��k�k � ���k
 �� � � � n have the same number of pre�images� This is a consequence of the above proposition� as
the corresponding canonical trees are respectively

k � �

�
�

k �
k 
 �

n� �
n

k � �
and

�
�

k � �k
k 
 �

n
n� �

and have the same shape�

�� It would be interesting to determine� other than recursively� the number of pre�images of a sorted permutation
from the shape of its canonical tree�
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Figure �� The trees having postorder � � ����	�

��� An algorithm that decides whether a permutation is sorted

In the proof of Proposition ���� we have described how the unique canonical tree having postorder � can be
constructed in an iterative way� by reading � from right to left� and adding a leaf to the tree at each step� We
give below a more concise description of this construction by adding at the same time all nodes that belong to
the same increasing factor of � �

Assume that � has k descents and write � � � �k�� �k��� � � � � ��� where the � �j� are the maximal increasing
factors of � � For � � j � k� if � �j� � i� � � � im� with i� � i� � � � � � im� let u�j� be the 	linear
 tree
T �imim�� � � � i���

im

i�
i�

u�j� �

Observe the arrow attached to the root of u�j�� and note that P �u�j�� � � �j�� We now build canonical trees
t���� t���� � � � as follows�
Step �� Start from the tree t��� � u����
Step i� i � �� � � � � k� If all nodes of the leftmost path of the tree t�i��� that have no left child are smaller
than the root of u�i�� then � is not sorted and we stop� Otherwise� let t�i� be obtained by attaching u�i� to the
smallest node in the leftmost path of t�i��� that is larger than the root of u�i� and has no left child�
The tree t�k� 	when we can construct it
 is the canonical pre�image of � �

�



Example� Let � � 
����������	�������������� � S��� This permutation has k � � descents� and we obtain the
following elementary trees�

u��� � 
�� � 	

�
�

u��� �
�

��u��� �u��� � u��� �
��

�
�

�

We can attach them to each other� step by step� we �nally obtain the canonical pre�image of � �
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�
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�

�
�

�

��

�
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�

Hence � � ��
�����������	�������������� is sorted�

� Zeilberger�s factorisation of permutations

��� Factoring permutations

We shall extend to all permutations the factorisation of two�stack sortable permutations described by Zeilberger
in ����� It requires the introduction of a new statistic� For � � Sn� we de�ne z��� by�

z��� � maxf� � ����n� � ����n� �� � � � � � ����n� �
 ��g�
For instance� z�	���
����� � �� If � is the empty permutation� of length �� we set z��� � �� For m�n � �� we
de�ne the sets Sm�n and Sm�n by

Sm�n � f� � Sm�n � z��� � ng and Sm�n � f� � Sm�n � z��� � ng�
Note that Sm�� � Sm and that for m � �� Sm�n is the disjoint union of Sm���n�� and Sm�n�

The principle of the factorisation is very simple� it splits a permutation into two factors� a pre�x and a su�x�
Letm�n � � and take � � Sm�n� This means that � has lengthm
n� that the numbersm
n�m
n��� � � � �m
�
appear in this order in �� and that m lies to the left of m
 �� Let j � f�� �� � � � � n� �g be the largest number
such that m lies to the left of m
 j 
 �� We have

� � � � � �m
 n� � � � �m
 n� �� � � � � � � �m
 j 
 �� � � � �m� � � � �m
 j 
 �� � � � �m
 j� � � � � � � �m
 �� � � �

Let us write � � �����m
 j 
������� The length of ���� is i
 j for some i � f�� �� � � � �m� �g� Let L be the set
of numbers smaller than m occurring in ����� Then L has cardinality i� Finally� let �� 	resp� ��
 be obtained by
normalizing ���� 	resp� ����
� Note that �� � Sm�i���n�j and �� � Si�j�� Let us denote ���� � �i� j� L� ��� ����

Example� Let m � 
 and n � �� For � � 	���
���� � S	�� we �nd j � �� ���� � 	���
 and ���� � ����
We have i � � and L � f�� �g� Normalizing the permutations gives �� � ��	�� and �� � ���� and �nally
���� � ��� �� f�� �g� ��	��� �����

We obtain by inspection the following proposition�

Proposition ��� For m�n � �� the map � establishes a one�to�one correspondence between Sm�n and the
�ve�tuples �i� j� L� ��� ��� such that

� � i � m� � � j � n� L 	 f�� � � � �m� �g� jLj � i� �� � Sm�i���n�j and �� � Si�j �

Moreover� if ���� � �i� j� L� ��� ���� then

inv��� � inv���� 
 inv���� 
 inv�m�L�

where inv�m�L� � jf�a� b� � a � ���m� n L� b � L� a � bgj�

�



Example� For the permutation � of the previous example� we have inv��� � 	� inv���� � �� inv���� � ��
inv�
� L� � � and we check that inv���� 
 inv���� 
 inv�m�L� � � 
 � 
 � � inv��� � 	�

Remark� Several other standard statistics can be carried through our factorisation of permutations� See for
instance ��� for the enumeration of two�stack sortable permutations� using this factorisation� according to the
length� number of descents� number of left�to�right and right�to�left maxima� The inversion number satis�es

inv��� � inv���� 
 inv���� 
 inv�m�L� 
 �n� j��i
 j 
 ��� ��

and this kind of relation does not give simple functional equations�

��� Factoring trees

Let us now describe the factorisation in terms of trees� First of all� we note that the statistic z��� is easily
determined from the tree t � T ���� if t has n nodes� then z��� is the largest � such that n� n� �� � � � � n� �
 �
lie on the rightmost branch of t� When we do not want to make the underlying permutation explicit� we will
use the notation z�t� instead of z���� By analogy with Sm�n and Sm�n� we de�ne� for m�n � �� the sets Tm�n

and T m�n by
Tm�n � ft � Tm�n � z�t� � ng and T m�n � ft � Tm�n � z�t� � ng�

Let m�n � � and take t � T m�n� This means that the nodes m
n�m
n��� � � � �m
� lie on the rightmost
branch of t� and that m is the left child of one of them � say� of m
 j 
�� with � � j � n� Let t��� be the right
subtree of the node m
 j 
�� Let i
 j be the number of its nodes� and L the set of its labels smaller than m�
Then jLj � i� Let t��� be obtained from t by replacing the subtree of root m
 j 
 � by the subtree of root m�
Let t� 	resp� t�
 be obtained by normalizing t��� 	resp� t���
� De�ne ��t� � �i� j� L� t�� t��� Then � establishes
a one�to�one correspondence between T m�n and the �ve�tuples �i� j� L� t�� t�� such that

� � i � m� � � j � n� L 	 f�� � � � �m� �g� jLj � i� t� � Tm�i���n�j and t� � Ti�j �
The factorisation of trees is schematized in Fig���

t��� �

t��� �

mm
 j 
 �

m
 n
m
 n� �

m

tn
tn��

tj��

m
 j
m
 j 
 �

m
 �
m
 �

t� t�

m
 n
m
 n� �

tn
tn��

tj�� tj��

m
 j 
 �

m
 j

m
 �
m
 �

t� t�

tj

tj

tj��

Figure �� The factorisation of trees 	the set of labels of the grey trees is L
�

��� Recursive characterizations

The following proposition provides recursive characterizations for one�stack sortable permutations� two�stack
sortable permutations and canonical permutations� We shall use it to obtain� in the next section� our functional
equations�

Proposition ��� Let � be a permutation of Sm�n� where m�n � �� and let t � T ��� be the corresponding
normalized tree� Let �i� j� L� t�� t�� be the �ve�tuple obtained by factoring t�

��



�� � is one�stack sortable if and only if L � 
 and t� and t� are one�stack sortable�
�� � is two�stack sortable if and only if L � fm� i�m� i
�� � � � �m� �g and t� and t� are two�stack sortable�
�� � is canonical if and only if t� and t� are canonical and either

� j � � and t� is nonempty� or
� j � � and t� has a nonempty left subtree�

In particular� if � is canonical� then i � ��

Proof� We use the pictorial description of the factorisation 	Fig��
� Observe that

P �T ���� � P �tn� � � �P �t���m
 �� � � � �m
 n��

P �t���� � P �tn� � � �P �tj����m
 j 
 �� � � � �m
 n� and P �t���� � P �tj� � � �P �t���m
 �� � � � �m
 j��

We conclude using Corollary ��� for the �rst two characterizations and De�nition ��� for the last one�

� Functional equations

In this section� we establish and compare �ve functional equations that de�ne implicitly the generating functions
for the following �ve families of permutations� general permutations� one�stack sortable permutations� two�stack
sortable permutations� sorted permutations and sorted and sortable permutations� These functional equations
are derived from the factorisation of permutations described in the previous section�

Notations� We shall use the following standard de�nitions and notations� For n � �� the q�analog of n is

�n� � � 
 q 
 � � �
 qn�� �
�� qn

�� q
�

The q�analog of n� is �n�� � ������ � � � �n�� By convention� ���� � �� Finally� for � � k � n� the q�analog of the
binomial coe�cient

�
n
k

�
is �

n

k

�
�

�n��

�k���n� k��
�

Proposition ��� explains our interest in the following classical interpretation of the q�binomial coe�cient�

X
L�f������m��g
jLj�i

qinv�m�L� � qi
�
m� �

i

�
�

Let F be a set of permutations� By the ordinary 	resp� exponential
 generating function of F we mean the
two�variable series

F �x� y� �
X

m�n��

fm�n xmyn

�
�resp� F �x� y� �

X
m�n��

fm�n
xm

m�
yn

�
A �

where fm�n � jF �Sm�nj is the number of permutations � of F of length m
n such that z��� � n� Similarly� let
inv denote any of the statistics inv 	the inversion number
 or inv� The ordinary 	resp� Eulerian
 inv�generating
function of F is

�F �x� y� �
X

m�n��

�fm�n xmyn

�
�resp� �F �x� y� �

X
m�n��

�fm�n
xm

�m��
yn

�
A �

where �fm�n �
P

��F�Sm�n
qinv���� Observe that F �x� �� and �F �x� �� are respectively the length generating

function and the length�inv generating function for the permutations of F �

��



Proposition 	�� Zeilberger�s factorisation� applied to our �ve classes of permutations� yields the following
functional equations�
Linear equation� The ordinary generating function A�x� y� for one�stack sortable permutations is completely
characterized by the equation

A�x� y� �
�

�� y



x

�� y

A�x� y��A�x� ��

y
� 	�


Quadratic equations� The ordinary generating functions for two�stack sortable permutations and for sorted
and sortable permutations �respectively� B�x� y� and C�x� y�� are completely characterized by the equations

B�x� y� �
�

�� y

 x �� 
 yB�x� y��

B�x� y��B�x� ��

y
� 	�


C�x� y� �
�

�� y

 x��� y� �� 
 yC�x� y��

C�x� y�� C�x� ��

y
� 	�


Di�erential equations� The exponential generating functions for general permutations and for sorted permu�
tations �respectively D�x� y� and E�x� y�� are completely characterized by the equations

�D

�x
�x� y� � �� 
 yD�x� y��

D�x� y��D�x� ��

y
� 	�


�E

�x
�x� y� � ��� y� �� 
 yE�x� y��

E�x� y�� E�x� ��

y
� 	�


and the initial conditions D��� y� � E��� y� � ����� y��

We delay the proof of this proposition to make a few comments�

�� The series A�x� y�� B�x� y�� C�x� y�� D�x� y� and E�x� y� are uniquely de�ned by these equations� in each of
these series� the coe�cient of xn is a rational function in y that can be computed by induction on n using the
relevant equation� In particular� we obtain for sorted permutations and for sorted and sortable permutations of
length at most �� the data presented in Table ��

�� The �ve equations involve a common factor� a discrete derivative 	or divided di�erence


�F �x� y�
def
�

F �x� y�� F �x� ��

y
�

As we wrote in the introduction� such equations arise frequently in enumerative combinatorics� Observe that
there is no obvious way to derive an equation satis�ed by F �x� �� itself�

�� Two pairs of equations are very similar� and only di�er by a factor ��� y�� Equation 	�
 is equivalent to the
equation obtained by Zeilberger for two�stack sortable permutations �����

�� The series D�x� y� has an extremely simple expression� Let dm�n be the number of permutations � � Sm�n

such that z��� � n� Clearly� dm�n � �m 
 n���n� 	shu�e the word �m 
 n��m 
 n � �� � � � �m 
 �� with any
permutation of Sm
� Consequently� the exponential generating function for general permutations is D�x� y� �
���� � x � y�� It is very easy to check that ���� � x � y� satis�es 	�
� but how can one derive this rational
expression from 	�
 

�� Using Proposition ���� we can also take into account the statistics inv in the factorisation of permutations�
We thus obtain for four of our equations a nice q�analog�

Proposition 	�� The equations of Proposition ��� admit the following q�analogs�
Quadratic equations� The ordinary inv�generating function for two�stack sortable permutations and the
ordinary inv�generating function for sorted and sortable permutations �respectively� �B�x� y� and �C�x� y�� are
completely characterized by the equations

�B�x� y� �
�

�� y

 x

�
� 
 y �B�xq� y�

	 �B�x� y�� �B�x� ��

y
� 	�


�C�x� y� �
�

�� y

 x��� y�

�
� 
 y �C�xq� y�

	 �C�x� y�� �C�x� ��

y
� 	�


��



q�Di�erential equations� The Eulerian inv�generating function for general permutations and the Eulerian
inv�generating function for sorted permutations �respectively �D�x� y� and �E�x� y�� are completely characterized
by the equations

�D�x� y�� �D�xq� y�

x��� q�
�
�
� 
 y �D�xq� y�

	 �D�x� y�� �D�x� ��

y
� 	�


�E�x� y�� �E�xq� y�

x��� q�
� ��� y�

�
� 
 y �E�xq� y�

	 �E�x� y�� �E�x� ��

y
� 	��


and the initial conditions �D��� y� � �E��� y� � ����� y��

Remarks
�� Clearly� the last four equations of Proposition ��� are obtained from Proposition ��� in the limit case q � ��
Enumerating one�stack sortable permutations according to the statistic inv is irrelevant� as these permutations
avoid the pattern ���� For their enumeration according to the number of inversions� see ����

�� We obtain a di�erent information on the series �D�x� y� 	general permutations
 if we use the standard
factorisation of trees into their left and right subtrees� We �nd�

�D�x� ��� �D�xq� ��

x��� q�
� �D�x� ��� and �D�x� y� � �D�x� ��

�
� 
 y �D�x� y�

	
� 	��


One checks easily that 	��
 implies 	�
� But conversely� deriving 	��
 from 	�
 does not seem so simple� Note
that Rawlings ���� ��� has studied a close relative to the statistics inv� and essentially obtained the �rst equation
in 	��
�

Proof of Propositions 	�� and 	��
�� We begin with the enumeration of general permutations� Let �d�m�n� denote the polynomial in q that counts
permutations of Sm�n according to the statistics inv�

The set S��n is reduced to fn�n � �� � � � �g and hence �d��n � � for n � �� This gives �D��� y� � ���� � y��
Moreover� for m � �� we have Sm�n � Sm���n�� �Sm�n and Proposition ��� gives�

�dm�n � �dm���n�� 

m��X
i��

n��X
j��

�
m� �

i

�
qi �dm�i���n�j

�di�j � 	��


Multiplying by ynxm����m� ��� and summing on m � � and n � � gives the result�

�� For one�stack sortable permutations� we use Proposition ��� to obtain an analog of Eq� 	��
� Let am�n be
the number of one�stack sortable permutations � of length m
 n such that z��� � n� Then for m � ��

am�n � am���n�� 


n��X
j��

am���n�j a��j �

Using a��j � � and summing on m and n gives the result�

�� For two�stack sortable permutations� we �nd� for m � ��

�bm�n � �bm���n�� 


m��X
i��

n��X
j��

qi �bm�i���n�j
�bi�j �

where �bm�n is the polynomial in q that counts two�stack sortable permutations ofSm�n according to the statistics
inv� Again� �b��n � � and we obtain our functional equation by summing on m and n�

�� Counting sorted permutations according to their inversions is equivalent to counting canonical permutations
according to the statistic inv 	see Proposition ��� and Lemma ���
� Using Proposition ���� we �nd� for m � ��

�em�n � �em���n�� 

m��X
i��

n��X
j��

�
m� �

i

�
qi �em�i���n�j ��ei�j � �ei�j����

��



with the convention �ei��� � �� In the above equation� �em�n denotes the polynomial in q that counts sorted
permutations of Sm�n according to the statistics inv� We use �e��n � �� multiply by ynxm����m� ��� and sum
on m and n to obtain the result�

�� Counting sorted and sortable permutations according to their inversions is equivalent to counting two�stack
sortable canonical permutations according to the statistic inv� Hence� we need to combine two of the properties
we have already studied� We �nd� for m � ��

�cm�n � �cm���n�� 


m��X
i��

n��X
j��

qi �cm�i���n�j ��ci�j � �ci�j����

with the convention �ci��� � �� In the above equation� �cm�n denotes the polynomial in q that counts sorted and
sortable permutations of Sm�n according to the statistics inv� We sum on m and n to obtain the result�

Length Sorted Sorted and sortable Length Sorted Sorted and sortable

� � � �� ����������� �������
� � � �� ������������ �������
� � � �� ������������� ��������
� � � �� �������������� ��������
� �� �� �� ���������������� ���������
� �� �� �� ����������������� ���������
� ��� �� �� ������������������ ����������
� ���� ��� �� ������������������� ����������
� ����� ��� �� �������������������� �����������
�� ����� ���� �� ���������������������� �����������
�� ������ ���� �� ����������������������� ������������
�� ������� ����� �� ������������������������ ������������
�� �������� ����� �� ������������������������� �������������
�� ��������� ������ �� ��������������������������� ��������������
�� ���������� ������ �� ���������������������������� ��������������

Table �� The number of sorted 	resp� sorted and sortable
 permutations�

� Solving the functional equations

The �ve functional equations we have obtained are of three di�erent sorts� The simplest one is related to
one�stack sortable permutations� It is linear in A�x� y�� Two others are 	q�
quadratic in the unknown series�
They are related to two�stack sortable permutations and sorted and sortable permutations respectively� The
last two equations involve a 	q�
derivative with respect to x�

Notations� Given a ring IL and n indeterminates x�� � � � � xn� we denote by
� IL�x�� � � � � xn� the ring of polynomials in x�� � � � � xn with coe�cients in IL�
� IL��x�� � � � � xn�� the ring of formal power series in x�� � � � � xn with coe�cients in IL�

and if IL is a �eld� we denote by
� IL�x�� � � � � xn� the �eld of rational functions in x�� � � � � xn with coe�cients in IL�

��� Linear equations and the kernel method

Proposition 
�� �Knuth 
�	�� The ordinary length generating function A�x� �� for one�stack sortable permu�
tations is	

A�x� �� �
��p

�� �x

�x
�
X
n��

�

n
 �



�n

n

�
xn�

Proof� We use a method� sometimes called the kernel method � that can be found in several papers� e�g�
��� ��� ��� p������ Equation 	�
 can be rewritten as

�y��� y�� x�A�x� y� � y � xA�x� ���

��



Let Y � ���p
�� �x��� � x
O�x��� Then Y ��� Y � � x� Substituting Y for y in the above equation shows

that A�x� �� � Y�x� Of course� we could also write an algebraic expression for A�x� y��

��� Quadratic equations and the quadratic method

The equations 	�
 for two�stack sortable permutations and 	�
 for sorted and sortable permutations can be
solved via the so�called quadratic method � which is due to Brown ��� ��� section �������

Proposition 
�� The ordinary length generating function B��x� � B�x� �� for two�stack sortable permutations
is cubic over the �eld IR�x�	

x�B��x�
� 
 x�� 
 �x�B��x�

� 
 ��� ��x
 �x��B��x� 
 x� 
 ��x� � � ��

This implies that

B��x� � � 
 �
X
n��

��n��

��n
 ����n
 ���
xn�

The ordinary length generating function C��x� � C�x� �� for sorted and sortable permutations is algebraic of
degree �	

x�C��x�
� 
 x��� 
 �x�C��x�

� 
 x��� ��x
 
x��C��x�
� 
 ��� �x
 ��x� 
 �x��C��x� � ��� x�� � ��

Proof� In Eq� 	�
� let us form a perfect square containing all powers of B�x� y��

�y � �� ��xyB�x� y�� xyB��x� 
 x� y�� � ��y� 	��


where ��y� is the following polynomial in y with coe�cients in IR�x�B��x���

��y� � �� 
 xB��x��
�y� � ��� �x
 xB��x���� 
 xB��x��y

� � x��xB��x�� x� ��y � x��

Let Y � Y �x� � x
 x� 
O�x�� be the 	unique
 power series in x such that Y � �xY B�x� Y �� xY B��x� 
 x�
Substituting Y �x� for y in 	��
 shows that � has a double root at y � Y �x�� This implies that the resultant of
� and ����y� seen as polynomials in y� is zero� Computing this resultant gives the cubic equation satis�ed by
B��x��

It is not di�cult to conjecture the expression of the coe�cients of B��x� from their �rst values� This suggests
to introduce the auxiliary series U � U�x� de�ned by U � x�� 
U��� Then we check that B��x� � �
U �U�

	both series satisfy the same equation
� We complete the proof by applying the Lagrange inversion formula�

We apply the same method to Eq� 	�
� We �nd�

��xy�y � ��C�x� y� 
 xy��� y�C��x� 
 x�y � �� 
 y�
�
� ��y�

with
� � x�y�C��x�

� � �xC��x���� x
 xC��x��y
�


���� x�� 
 �x��� �x�C��x� 
 x�C��x�
�� 
 �x�xC��x�� x� ��y 
 x��

Again� � has a double root at y � Y �x� where Y � Y �x� is the formal power series in x de�ned by Y �
�xY ���Y �C�x� Y �
xY �Y ���C��x�
x���Y �� Computing the resultant of � and ����y gives the algebraic
equation satis�ed by C��x��

Remarks
�� The �rst part of the above proposition was already proved in ���� ��� ����

�� Let cn denote the coe�cient of xn in C��x�� The numbers cn have large prime factors 	see Table �
� We can
prove they are not hypergeometric as follows� we �rst construct the linear recurrence with polynomial coe�cients
they satisfy 	using� for instance� the Maple package Gfun ����
 and then look for all hypergeometric solutions

��



of this recurrence 	using the algorithm Hyper ����
� We �nd that there is no such solution� the sequence �cn�n
is not hypergeometric�

This does not rule out the existence of an expression of the form

cn �
X
k

Fn�k

where Fn�k would be 	doubly
 hypergeometric� Such an expression could� for example� derive from an appli�
cation of the Lagrange inversion formula� By manipulationg the equation that de�nes C��x�� we found that
Q �x�C��x�� � Q �x� V �x�� where

��� �x�V �x�� 
 xV �x�� � xV �x� 
 x� � ��

This equation is quadratic in x and hence� not suitable for a direct application of the Lagrange inversion formula
	which requires linear equations in x
� We can actually prove that we cannot write C��x� as a rational function
of x and U � where U would be related to x via an algebraic equation P �x� U� � � of degree one in x� Hence the
Lagrange inversion formula 	in its simplest form
 cannot be applied to obtain an expression of C��x��

�� So far� we have found no q�analog of the quadratic method that would enable us to solve Eqs� 	�
 and 	�
�

��� Di�erential equations

We �nally come to the functional�di�erential equation that de�nes the generating function for sorted permu�
tations 	�
� It is very similar to the equation obtained for general permutations 	�
� The case of general
permutations turns out to be extremely simple� as D�x� y� � ����� x� y�� The case of sorted permutations is
	and will remain
 much more intriguing� However� we shall obtain a characterization of the series E�x� �� that
does not involve the series E�x� y��

Notations� Let f�x� y� be a formal power series in x with rational coe�cients in y� We denote by f � the
derivative �f��x� We denote by Lf the formal Laplace transform of f with respect to x�

f�x� y� �
X
n��

an�y�
xn

n�
�
 Lf�x� y� �

X
n��

an�y� x
n�

The Laplace transform has the following integral representation�

Lf�x� y� �
�

x

Z �

�

e�u�xf�u� y�du�

Observe that
Lf�x� y� � f��� y� 
 xL�f ���x� y�� 	��


Proposition 
�� Let

E�x� �
X
m��

em��
xm��

�m
 ���

where em�� is the number of sorted permutations of length m� Note that E�x� � R x
�
E�u� ��du�

Let f�x� y� be the following power series in x� with polynomial coe
cients in y	

f�x� y� � exp ��y � ��E�x�� �
Then the Laplace transform of f satis�es	

Lf



y

�� y
� y

�
� �� y� 	��


Equivalently� Z �

�

e�u���y��y exp ��y � ��E�u�� du � y�

This equation is equivalent to a recurrence relation de�ning the sequence �em���m� and hence� characterizes
completely the series E�x��

��



Proof� This proposition is a special case of a more general approach that also allows us to derive the simple
expression D�x� y� � ����� x� y� from Eq� 	�
�

Equations 	�
 and 	�
 have the following form�

�F

�x
�x� y� � c�y� �� 
 yF �x� y��

F �x� y�� F �x� ��

y
� 	��


where c�y� � � for general permutations and c�y� � �� y for sorted permutations� Eq� 	��
� together with the
initial condition F ��� y� � ����� y�� de�nes F �x� y� as a formal power series in x with rational coe�cients in y�
More precisely� F �x� y� admits an expansion of the following form�

F �x� y� �
X
n��

Pn�y�

��� y�n��

xn

n�

where Pn�y� � IR�y�� We observe that Eq� 	��
 is a Riccati equation in F �x� y�� We linearize it by introducing
the series

G�x� y� � exp

�
�c�y�

Z x

�

F �u� y�du

�
� 	��


so that F � �G���c�y�G�� We �nd

G��� y� � �� G���� y� �
c�y�

y � �
� 	��


and
y G�� 
 c�y��yF �x� ��� �� G� � c�y��F �x� �� G � ��

This equation can be rewritten as

�yG�� � c�y�G�� 
 c�y�F �x� �� �yG� � c�y�G� � ��

which� using 	��
� gives

yG� � c�y�G �
c�y�

y � �
f�x� y� 	��


with

f�x� y� � exp

�
�c�y�

Z x

�

F �u� ��du

�
�

Taking the Laplace transform in 	��
 gives� thanks to 	��
�

�y � xc�y��L�G���x� y�� c�y� �
c�y�

y � �
Lf�x� y�� 	��


The de�nition 	��
 of G implies that it admits an expansion of the form

G�x� y� �
X
n��

Qn�y�

��� y�n
xn

n�

where Qn�y� � IR�y�� Hence we can set x � y�c�y� in 	��
 	this should remind the reader of the kernel method
used in Section ���
� We obtain

Lf



y

c�y�
� y

�
� �� y� 	��


Let us now apply this result to Eqs� 	�
 and 	�
�

�General permutations� When c�y� � �� the series F �x� y� is the exponential generating function D�x� y�
for general permutations� The series f�x� y� � exp

�� R x
�
D�u� ��du

	
only depends on x� and we shall denote

it f�x�� Eq� 	��
 gives Lf�x� � � � x� Hence f�x� � � � x� and D�x� �� � ���� � x�� This is exactly
	fortunately�
 the exponential generating function for general permutations� Then� we integrate 	��
 and �nd
G�x� y� � ��� x� y����� y�� and �nally�

D�x� y� �
�

�� x� y
�

X
m�n��

�m
 n��

n�

xm

m�
yn�

��



Hence� our � admittedly complicated � method is at least able to recover the expected result� the number of
permutations � of length m
 n such that z��� � n is �m
 n���n��

� Sorted permutations� The success of our method on a problem we knew how to solve encourages
us to apply the same method to the more tricky equation 	�
� When c�y� � � � y� the series F �x� y� is the
exponential generating function E�x� y� for sorted permutations� With the notations of Proposition ���� we have
f�x� y� � exp ��y � ��E�x��� Equation 	��
 gives 	��
�

To complete the proof of this proposition� we have to show that the functional equation we obtained com�
pletely characterizes E�x�� Let us write ei�� � ei for short� We have�

f�x� y� � exp ��y � ��E�x�� �
Y
i��

exp
h
�y � ��

ei��

i�
xi
i
�

This gives

Lf�x� y� �
X

r��r��r�������

x
P

iri
�
P

iri��Q
ri�

�y � ��
P

ri
Y
i��

�ei��

i�


ri
� 	��


Let us observe that the identity 	��
 can be rewritten as

Lf



x�

x

� 
 x

�
�

�

� 
 x
�

Thus� let us replace y by x��� 
 x� in 	��
 and expand the series we obtain� Taking the coe�cient of xn gives�
for n � �� X

�

���������j�j j�j�Q
ri�



n� j�j
 ����� �

����� �

�Y
i��

�ei��

i�


ri
� ��

where the sum is over all nonempty partitions � of weight at most n� ���� denotes the number of parts of ��
and ri is the number of parts equal to i� This equation de�nes en�� in terms of e�� e�� � � � � en��� and hence the
series E�x� is completely characterized by the functional equation we obtained�

Final comments� Obviously� we have not completely solved the equations of Section �� Two main questions
arise�

� Eq� 	�
 de�nes a series E�x� y�� Proposition ��� gives a characterization of E�x� �� that does not involve
E�x� y�� but is of a very unusual form� Is there a more standard equation de�ning E�x� �� for instance�
an algebraic di�erential equation 

� Eqs� 	�
 and 	�
 cry for a q�analog of the quadratic method� Do �B�x� �� and �C�x� �� satisfy a q�algebraic
equation� i�e�� a polynomial equation P �x� q� �F �x�� �F �xq�� � � � � �F �xqk�� � � 
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