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Abstract

In his Ph.D. thesis [21], Julian West studied in depth a map II that acts on permutations of the symmetric
group &,, by partially sorting them through a stack. The main motivation of this paper is to characterize
and count the permutations of II(&, ), which we call sorted permutations. This is equivalent to counting
preorders of increasing binary trees. We first find a local characterization of sorted permutations. Then,
using an extension of Zeilberger’s factorisation of two-stack sortable permutations [23], we obtain for the
generating function of sorted permutations an unusual functional equation.

Out of curiosity, we apply the same treatment to four other families of permutations (general permuta-
tions, one-stack sortable permutations, two-stack sortable permutations, sorted and sortable permutations)
and compare the functional equations we obtain. All of them have similar features, involving a divided
difference. Moreover, most of them have interesting g-analogs obtained by counting inversions. We solve
(some of) our equations.

1 Introduction

To begin with, we define the sorting procedure and the families of permutations we shall enumerate.

1.1 The sorting procedure

In his Ph.D. thesis [21], Julian West studied a procedure II that permutes the letters of a word ¢ having distinct
letters in the alphabet {1,2,3,...}. The procedure uses a stack and works as follows (Fig.1). At the beginning,
the word o = o9 lies to the right of the stack, which is empty. If o has m letters, the procedure will have 2m
steps. After the ith step, for i > 0, a word ¢(?) lies to the right of the stack, while a word 7(¥ lies to the left
of the stack. If (¥ is not empty, and if its first letter, say a, is smaller than the top letter of the stack (or if
the stack is empty), we add a to the top of the stack. Otherwise, we remove the top letter from the stack and
add it at the end of 7("). In other words, we add letters to the stack as long as it remains a “Hanoi tower”, and
otherwise remove letters from the stack. The word 7(>™) has m letters, and we define it to be II(¢), the word
obtained by sorting o through a stack. Fig.1 shows four steps of this procedure applied to o = 2351674.

~—— 2351674 =0 23 ~— 51674 | 23 = 674 | II(0) = 2315647

. . i .

Figure 1: The sorting algorithm applied to o = 2351674.

This procedure extends a procedure described by Knuth [14, p. 238] (although Knuth’s procedure, nicely
described in terms of railway switching networks, goes somehow backwards). As observed by West [22], the

*Partially supported by the Conseil Régional d’Aquitaine.



map II can alternatively be described recursively by
(olne®) = (eI (cF)n, (1)

where n is the largest letter of the word o = o¥no®. We observe that, if o has m letters, then II"™ !(o) is an
increasing word; this shows that II really sorts the letters of o (although not very fast!).

Clearly, we can restrict our attention to the action of II on permutations. Let &,, be the set of permutations
of length n. Following West [21], we represent the action of IT on &,, by a sorting tree: the nodes of this tree
are the elements of &, and an edge connects o to II(o) for all o € &,, (Fig.2).
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Figure 2: The sorting trees for 63 and &y.

We can visualize on this tree the four classes of permutations we will consider in this paper.

e One-stack sortable permutations
A permutation ¢ € &, is one-stack sortable if II(c) = 12...n, i.e., if it occurs in the last two columns
of the sorting tree. It is known [14, p.531] that the number of such permutations is the Catalan number
Cn = (2”) /(n + 1), and that these permutations are exactly the permutations avoiding the pattern 231: there

n

exists no triple (7,7, k) with 1 <i < j < k < n such that o(k) < o(i) < o(j).

e Two-stack sortable permutations
A permutation o € &, is two-stack sortable if II(II(0)) = 12...n, i.e., if it occurs in the last three columns
of the sorting tree. West characterized these permutations in terms of forbidden patterns [22] and conjectured
that their number is b, = 2(3n)!/[(2n + 1)!(n + 1)!]. This conjecture was first proved by Zeilberger [23]. Two
bijective proofs [10, 13] were found later, based on the fact that b,, is the number of non-separable planar maps
[5, 7]. Note that the corresponding generating function > b,a™ is cubic over IR(z).

e Sorted permutations
A permutation 7 € &, is sorted if it belongs to II(&,,). In other words, the sorted permutations are the inner
nodes of the sorting tree, or, using West’s terminology [21], the nodes of positive fertility.

Characterizing and counting these permutations is the main motivation of this paper.

We shall give a linear algorithm that decides whether a permutation is sorted (and, in this case, exhibits one
of its pre-images), and a functional equation satisfied by their generating function. So far, we have not been
able to say whether this generating function is D-finite [19], or at least differentiably algebraic [2].

¢ Sorted and (one-stack) sortable permutations
We can describe these permutations by any of the three equivalent conditions:
-7 eIl(6,) and II(1) = 12...n,
— 7 is the image by II of a two-stack sortable permutation,
— 7 is an inner node of one of the last two columns of the sorting tree.
We will show that their generating function is algebraic of degree 4.



One of the main tools of this paper is a factorisation of permutations, due to Zeilberger, that stabilizes
the four classes of permutations described above: essentially, a permutation will be one-stack sortable (resp.
two-stack sortable, sorted, sorted and sortable) if and only if its factors are one-stack sortable (resp. two-stack
sortable, sorted, sorted and sortable). This property enables us to write, for each of these four classes, a
functional equation defining its generating function.

1.2 Functional equations

The initial motivation of this work was the enumeration of sorted permutations. After various attempts, we
realized that Zeilberger’s factorisation could be applied to these permutations, and led to an unusual functional
equation. It was then natural to ask whether the same factorisation, applied to other families of permutations,
would also yield interesting functional equations. The answer turned out to be “yes”, and we finally got very
much interested in the equations themselves. This explains why this paper studies in parallel five families of
permutations: general permutations, one-stack sortable permutations, two-stack sortable permutations, sorted
permutations, and sorted and sortable permutations.

For each of them, we obtain a functional equation that defines implicitly a bivariate power series F'(z,y),
and involves a divided difference

AF(x,y) déf F(xvy) - F(SU,O) )
Y
In all cases, we are mostly interested in F'(z,0); but there is no obvious way to derive from the equation that
defines F'(z,y) an equation satisfied by the one-variable series F(z,0).

Such equations are quite frequent in enumerative combinatorics. Examples can be found in the enumeration
of permutations [4, 23, 14, p.532-534], of polygons [3, 11], and of maps [5, 7, 8, 9, 20]. To our knowledge, all
examples that have been solved so far are polynomial in F'(z,y) and F(z,0), and their solution is algebraic over
the field R(x,y).

Three out of our five equations are polynomial in F(x,y) and F(z,0), and can be solved using previously
known tools. The last two involve a partial derivative 0F/0x(x,y) (Proposition 4.1). They look very much
like each other, but one of them is related to general permutations and has a rational solution, while the other
is related to sorted permutations and will remain quite mysterious. However, we have found a method of
deriving, from the functional-differential equation satisfied by F(z,y), a (strange) equation satisfied by F(z,0)
(Proposition 5.3).

Finally, we will enrich our collection of equations with some g-analogs, obtained by enumerating our classes
of permutations by their inversion number (or one of its variations).

1.3 Structure of the paper

In Section 2, we study the combinatorial properties of sorted permutations. In particular, we define a class
of permutations (called canonical permutations) such that every sorted permutation has a unique canonical
pre-image by II. We also give a local characterization of canonical permutations, and a simple algorithm that
decides whether a permutation is sorted. In Section 3 we describe a factorisation of permutations and show it
is well-suited to the study of the sorting procedure. In Section 4, we establish and compare our five functional
equations. We also give g-analogs of four of them. Section 5 is devoted to the solution of (some of) these
equations.

2 Combinatorial properties of sorted permutations

2.1 Some examples

We begin this section with a few very simple remarks that should show some of the difficulties one meets when
trying to characterize and count sorted permutations.

First of all, we observe that the last entry of a sorted permutation 7 of &,, is n. However, this condition is
not sufficient to guarantee that 7 is sorted, as shown by 7 = 3214, which is not sorted (see Fig.2). So, let us
consider a permutation 7 of &,, ending with n, and let us write 7 = 7% (n — 1)7%n. If 7% is not empty, then (1)
implies that

e 7 is sorted if and only if 77 (n — 1) and 7% are sorted words;



e more precisely, the pre-images of 7 are the permutations o”no® where Il(c*) = 7% (n—1) and (o ®) = 7&.
If 7% is empty, i.e., 7 = 7% (n — 1)n, there is no obvious way of deciding whether 7 is sorted or not. In particular,
7 might be sorted while 77(n — 1) is not sorted, as shown by 7 = 32145 = I1(35241). Also, the permutation
7 = 23145 can be written II(0l)5, with o% = 2341, or I(c1)II(c®)5, with oL = 23 and o® = 14. In other
words, the pre-images of 7 can give rise to different factorisations of 7 of the form 7%7%n, with 7% and 7%
sorted.

The aim of this section is to fix the ambiguities illustrated by the above examples. In particular, we shall
prove that, given a sorted permutation, one of its pre-images has strictly more inversions than all others (see
an example on Fig.3). A permutation ¢ having more inversions than any other pre-image of II(¢) will be called
canonical. We shall:

1) give a linear algorithm that decides whether a permutation is sorted, and in this case, builds its canonical
pre-image,

2) give a local characterization of canonical permutations (which are obviously in one-to-one correspondence
with sorted permutations).
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Figure 3: The pre-images of the sorted permutation 7 = 13245, ranked by their inversion number (the underlying
order is the strong Bruhat order).

2.2 Permutations and trees

It will be convenient to represent permutations by trees. Let us begin with some terminology. A decreasing
binary tree is a binary tree whose nodes are labelled by distinct positive integers in such a way that each node
has a larger label than its children. The tree is said to be normalized if the number of its nodes coincides with
the label of the root. The set of normalized trees having n nodes is denoted 7.

Reading a decreasing binary tree in symmetric order establishes a one-to-one correspondence with words
on the alphabet {1,2,...} having all their letters distinct. The symmetric order S(t) of a tree t is defined
recursively by reading first the left subtree of ¢, then its root, and finally its right subtree. In particular, S
induces a standard bijection between normalized trees and permutations. The reverse bijection of S is denoted
T (Fig.4).

o =1519268374 o

Figure 4: The bijection between permutations and normalized trees.

Let ¢t be a decreasing binary tree having n nodes, and let L be the set of its labels. Let f be the unique
order preserving bijection from L to {1,2,...,n}. Normalizing the tree ¢ means replacing the label i by f(i),
for all ¢ € L. We define similarly the normalization of words having distinct letters.



We define recursively the leftmost branch and the leftmost path of a tree. If t (resp. tF) is the left (resp.
right) subtree of ¢, then the leftmost branch of t consists of the root of ¢ and the leftmost branch of t£. The
leftmost path of t consists of the root of ¢ and the leftmost path of t¥ if t* is not empty; otherwise, it consists of
the root of t and the leftmost path of . Hence the leftmost path joins the root to the “leftmost” leaf: for the
tree of Fig.4, it consists of the nodes labelled 9,5,1. We define symmetrically the rightmost branch and path.

We can now explain why we chose to represent permutations by trees. It turns out that displaying the
entries of a permutation o as the labels of the corresponding tree allows us to say at first glance what is the
sorted permutation II(o). Recall that the postorder P(t) of a tree t is recursively defined by reading first the
left subtree of ¢, then its right subtree, and finally its root. A simple comparison with the recursive definition
of the sorting procedure (1) gives the following result.

Proposition 2.1 Let o be a permutation and t = T(o) the corresponding tree. Then the permutation II(o)
obtained by sorting o through a stack is exactly the word P(t) obtained by reading t in postorder. In other words,
II=PoT.

This proposition relates the sorting procedure to a very basic operation of theoretical computer science. It also
enables us to reformulate in terms of trees all questions related to the sorting procedure. In particular, it gives
what is probably the simplest way of counting one-stack sortable permutations.

Corollary 2.2

1. A permutation o € &,, is one-stack sortable if and only if the associated tree T'(o) has postorder 12...n.
Consequently, the number of one-stack sortable permutations of length n is the Catalan number (2:)/(11 +1).
2. A permutation o is two-stack sortable if and only if the postorder of T'(o) avoids the pattern 231.

3. A permutation is sorted if and only if it is the postorder of a decreasing binary tree.

Proof

1. The first assertion is obvious. By induction on the size of T'(c), we observe that P(T'(0)) = 12...n if and
only if o avoids 231. To prove the second assertion, take an unlabelled binary tree, and label its vertices with
1,2,...,n by visiting them in postorder. We thus obtain a normalized tree whose postorder is 12...n.

2. A permutation o is two-stack sortable if and only if II(c) is one-stack sortable, i.e., avoids the pattern 231.

A consequence of the above corollary is that sorted permutations cannot be described by forbidding a set of
patterns.

Corollary 2.3 Any pattern occurs as a factor in some sorted permutation. More precisely, if T = 11 ...Tm €
G, then the permutation 71 ... T(m + 1)(m +2) ... (2m — 1) is sorted (see the figure below).

2m —1
T Q/>
T:

2 m+1

Tm—1 O/O\orm

In the enumeration of sorted permutations, we shall take into account the inversion number. The following
lemma explains how to determine the inversion number of a sorted permutation from one of its pre-images.

Lemma 2.4 (West [22]) Let o be a permutation. We define inv(c) to be the number of pairs (i,k) where
i < k such that there exists j € [i,k] such that o(k) < o(i) < 0(j). Then inv(c) is the number of inversions of
II(o).

Using Rawlings’ notations [16], we could call inv(o) the number of 231 patterns. For instance, the permutation
o = 2351674 has four 231 patterns (corresponding to the pairs of letters (2, 1), (3,1), (5,4) and (6,4)) and
II(c) = 2315647 has four inversions (given by the same pairs of letters).



2.3 Canonical permutations

Clearly, different trees might have the same postorder (Fig.5). In order to characterize sorted permutations, we
are going to describe a canonical representative of the pre-images of a sorted permutation.

Definition 2.5 A permutation o is said to be canonical if the tree T (o) satisfies the following properties:
o each node that has a left child x has a nonempty right subtree t%;
e moreover, the first node of t' (for the symmetric order) has a label y smaller than x.

We shall say that a tree ¢ is canonical (resp. one-stack sortable, two-stack sortable) if the permutation o = S(t)
is canonical (resp. one-stack sortable, two-stack sortable).

Examples. The first tree of Fig.5 is not canonical because the left child of the node 5 has label © = 1, whereas
the first node of its right subtree has label y =3 > 1. The second tree of the figure is canonical.

)
1/>D4\U 4
3 2 3 2

Figure 5: Two trees having postorder 13245.

The following proposition implies that the procedure II induces a bijection between canonical permutations
and sorted permutations.

Proposition 2.6 Any sorted permutation T has a unique canonical pre-image o. Moreover, o has strictly more
inversions than any other pre-image of T.

Proof. We begin by proving that at least one of the pre-images of 7 is canonical, i.e., that 7 is the postorder
of at least one canonical tree.

As 7 is sorted, we know there exists a tree u whose postorder is 7. If w is canonical, we are done. Otherwise,
we can perform on u at least one of the following transformations.

First transformation. If © has a node z that has a left child but no right child, we transform the left subtree
of z into its right subtree.

Second transformation. If u has a node z that has a left child = and a nonempty right subtree t# whose first
node (in symmetric order) is y > x, we remove the left subtree of z and attach it as the left subtree of y.

We note that both transformations

— give a decreasing tree,

— do not change the postorder,

— increase the inversion number of the permutation obtained by reading the tree in symmetric order.
These properties imply that repeating these transformations in any order will finally provide a canonical tree
whose postorder is 7, having strictly more inversions than u. Observe that the first transformation is somehow
a limit case of the second one.

Let us now prove by induction on the length n of 7 that 7 has a unique canonical pre-image. If n = 0 or
n = 1, the result is obvious. Otherwise, let = be the first letter of 7, and write 7 = x7'. Let t be a canonical
tree whose postorder is 7. Then x labels a leaf of t. Moreover, removing this leaf gives a canonical tree t' whose
postorder is 7/. By the induction hypothesis, ¢’ is the unique canonical tree of postorder 7'. Let us prove that
the position of the leaf z in the tree t is also uniquely determined.

Let z be the father of = in t. Then:

1) z must be a vertex of the leftmost path of ¢’ having no left child (because the postorder of ¢ must start
with x);

2) z must be larger than x;

3) all vertices of the leftmost path of ¢ having no left child that lie below z must have labels smaller than
x (as t must be canonical).



These three conditions determine at most one vertex of ¢': the smallest node of the leftmost path of t' that
s larger than x and has no left child. We know that 7 has at least one canonical pre-image: this guarantees
the existence of this node z. If z is a leaf of ¢/, then x will be its right child. Otherwise, x will be its left child.

Remark. We can also prove that any sorted permutation 7 has a (unique) pre-image ¢’ having strictly fewer
inversions than all others (Fig.3). The corresponding tree T'(¢') is, among all trees having postorder 7, the
only one that satisfies the following property: each node having a nonempty right subtree ¢/ has a left child x.
Moreover, the first node of ¢/ (for the symmetric order) has a label y smaller than . This tree is obtained from
the canonical tree of 7 when a strong wind blows from the east: if z is a node having no left child, then the
right subtree of z becomes its left subtree. For instance, Fig.6 shows the canonical tree of postorder 7 = 13245
and its windy version.

) ) -
4 4 -
3 2 3 2
1 1 =
o = 53142 o' = 13425

Figure 6: The pre-images of 7 = 13245 having the largest (resp. smallest) inversion number.

The proof of Proposition 2.6 has an interesting consequence, which concerns the number of pre-images of a
sorted permutation, called fertility by West [21].

Proposition 2.7 The number of pre-images of a sorted permutation only depends on the shape of its canonical
pre-image o, i.e., on the binary tree obtained by removing the labels from T(c).

Proof. Starting from the canonical tree of postorder 7, we construct all other pre-images of 7 by reversing the
first and second transformations described in the proof of Proposition 2.6. The two reverse transformations can
be described in unified terms as follows.

Reverse transformation. Assume the tree u has a node z having a nonempty right subtree ¢/ but no left
child. Let & be a vertex of the leftmost branch of t%. Remove the subtree of root x and append it as the left
subtree of z. Label this transformation by the pair (z,x).

The set of trees of postorder 7 is obtained by applying this reverse transformation any number of times, in
any order, starting from the canonical tree of 7. We observe that the transformations one can perform on a
tree u do not depend on the labels of u, but only on its shape. Fig.7 shows the set of trees having postorder
7 = 13245. The edges are labelled by the pairs (z,z).

]
Remarks
1. West proved [21, p.94] that the permutations ppp = 23...k L(k+1)(k+2)...n and vp = 12...(k —
2)k(k —1)(k+1)...n have the same number of pre-images. This is a consequence of the above proposition, as
the corresponding canonical trees are respectively

R T,
k41 k41
kO@l and k k-1

k—1°. k—2°.
’.; 3 \“
o2 Lol

and have the same shape.

2. It would be interesting to determine, other than recursively, the number of pre-images of a sorted permutation
from the shape of its canonical tree.
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Figure 7: The trees having postorder 7 = 13245.

2.4 An algorithm that decides whether a permutation is sorted

In the proof of Proposition 2.6, we have described how the unique canonical tree having postorder 7 can be
constructed in an iterative way, by reading 7 from right to left, and adding a leaf to the tree at each step. We
give below a more concise description of this construction by adding at the same time all nodes that belong to
the same increasing factor of .

Assume that 7 has k descents and write 7 = 7(®)7(=1) 700 where the 7(/) are the maximal increasing
factors of 7. For 0 < j < k, if 70) = 4y ... iy, with i1 < @2 < --- < im, let ul) be the (linear) tree

T(imim,1 N il)i
im<

i
21

W) =

Observe the arrow attached to the root of ul/), and note that P(u)) = r(). We now build canonical trees
t© 1) as follows.

Step 0. Start from the tree ¢(9) = ¢(9).

Step i, i = 1,...,k. If all nodes of the leftmost path of the tree t(i=1) that have no left child are smaller
than the root of u(?), then 7 is not sorted and we stop. Otherwise, let t() be obtained by attaching u? to the
smallest node in the leftmost path of t¢"~1) that is larger than the root of (Y and has no left child.

The tree t*) (when we can construct it) is the canonical pre-image of 7.



Example. Let 7 = 6.3.11.1.4.5.2.7.9.8.10.12 € S&15. This permutation has &k = 4 descents, and we obtain the
following elementary trees:

u(o) —_ 2 u(l) —_ u(z) —_ 5 u(g) —_ 4 u(4) g O%
10 7 4 3
8 2 1

We can attach them to each other, step by step; we finally obtain the canonical pre-image of 7:

Hence 7 =11(6.11.3.12.9.5.4.1.7.2.10.8) is sorted.

3 Zeilberger’s factorisation of permutations

3.1 Factoring permutations

We shall extend to all permutations the factorisation of two-stack sortable permutations described by Zeilberger
in [23]. It requires the introduction of a new statistic. For o € &,,, we define z(o) by:

zo)=max{l:0 '(n) <o tn-1)<---<otmn—C+1)}

For instance, 2(519268374) = 3. If ¢ is the empty permutation, of length 0, we set z(o) = 0. For m,n > 0, we
define the sets &, , and &,, , by

Smn ={0 € Gpin : 2(0) > n} and Gmn=1{0 € Gpin:z(c) =n}.

Note that &,, 0 = 6,, and that for m > 1, &,,, ;, is the disjoint union of &, 1 ,+1 and @m,n.

The principle of the factorisation is very simple: it splits a permutation into two factors, a prefix and a suffix.
Let m,n > 1 and take 0 € &, . This means that o has length m+n, that the numbers m+n, m+n—1,...,m+1
appear in this order in o, and that m lies to the left of m + 1. Let j € {0,1,...,n — 1} be the largest number
such that m lies to the left of m + j + 1. We have

o=...(m+n)...(m+n—-1)...... (m+j+2)...0m)...(m+j+1)...(m+j)...... (m+1)...

Let us write 0 = o™ (m + j + 1)6(®. The length of ¢(?) is i + j for some i € {0,1,...,m —1}. Let L be the set
of numbers smaller than m occurring in o). Then L has cardinality i. Finally, let oy (resp. o2) be obtained by
normalizing 0" (resp. ¢(*)). Note that oy € Sm—i—1,n—j and o2 € &; ;.. Let us denote ®(c) = (i,4,L,01,02).

Example. Let m = 6 and n = 3. For o0 = 519268374 € G 3 we find j = 1, ¢V) = 51926 and 0(» = 374.
We have i = 2 and L = {3,4}. Normalizing the permutations gives o1 = 31524 and o2 = 132, and finally
®(0) = (2,1,{3,4},31524,132).

We obtain by inspection the following proposition.

Proposition 3.1 For m,n > 1, the map ® establishes a one-to-one correspondence between gm,n and the
five-tuples (i, j, L,o1,02) such that

0<i<m, 0<j<n, LC {1,...,m—1}, |L| =1, 01 € Gm—i—l,n—j and o9 € 6i,j~
Moreover, if ®(o) = (i,j,L,01,02), then
inv(o) = inv(o1) + inv(o2) + inv(m, L)

where inv(m, L) = |{(a,b) :a € [I,m]\ L, b€ L, a> b}|.



Example. For the permutation o of the previous example, we have inv(c) = 5, inv(oy) = 1, inv(o2) = 0,
inv(6, L) = 4 and we check that inv(o1) + inv(o2) +inv(m,L) =14+ 0+ 4 =inv(c) = 5.
Remark. Several other standard statistics can be carried through our factorisation of permutations. See for

instance [4] for the enumeration of two-stack sortable permutations, using this factorisation, according to the
length, number of descents, number of left-to-right and right-to-left maxima. The inversion number satisfies

inv(o) = inv(oy1) +inv(os) +inv(m, L) + (n — )i +j+ 1) — 1,

and this kind of relation does not give simple functional equations.

3.2 Factoring trees

Let us now describe the factorisation in terms of trees. First of all, we note that the statistic z(o) is easily
determined from the tree t = T'(¢): if t has n nodes, then z(o) is the largest ¢ such that n,n —1,...,.n —(+1
lie on the rightmost branch of ¢. When we do not want to make the underlying permutation explicit, we will
use the notation z(t) instead of z(¢). By analogy with &,,,, and &, ., we define, for m,n > 0, the sets Ty, »
and Tppn b

T = {t € Tmtn @ 2(t) > n} and Tmn = {t € Tman: 2(t) =n}.

Let m,n > 1 and take t € T, ,,. This means that the nodes m+mn,m+n—1,...,m+1 lie on the rightmost
branch of ¢, and that m is the left child of one of them — say, of m + j + 1, with 0 < j < n. Let ¢t(?) be the right
subtree of the node m + j + 1. Let i + j be the number of its nodes, and L the set of its labels smaller than m.
Then |L| = i. Let t(!) be obtained from t by replacing the subtree of root m + j + 1 by the subtree of root m.
Let t; (resp. t») be obtained by normalizing t(*) (resp. ¢(®)). Define ®(t) = (i, 4, L,t1,t>). Then ® establishes
a one-to-one correspondence between T, , and the five-tuples (i, j, L, t1,t2) such that

0<i<m, 0<j<n, LC{l,...,m—1}, |[L|=14, t1 € Tmeicin—; and t2 € T;;.

The factorisation of trees is schematized in Fig.8.

m-+n

CemAj+2
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bt ﬂ

tj+2 tj+1

m+]
2) _
" K ﬁm”
m+1

Figure 8: The factorisation of trees (the set of labels of the grey trees is L).

3.3 Recursive characterizations

The following proposition provides recursive characterizations for one-stack sortable permutations, two-stack
sortable permutations and canonical permutations. We shall use it to obtain, in the next section, our functional
equations.

Proposition 3.2 Let o be a permutation of @mm, where m,n > 1, and let t = T'(o) be the corresponding
normalized tree. Let (i,j,L,t1,t2) be the five-tuple obtained by factoring t.

10



1) o is one-stack sortable if and only if L = () and t; and ty are one-stack sortable.
2) o is two-stack sortable if and only if L={m —i,m—i+1,...,m —1} and t; and ts are two-stack sortable.
3) o is canonical if and only if t, and ty are canonical and either
-7 =0 and ty is nonempty, or
- j >0 and ty has a nonempty left subtree.
In particular, if o is canonical, then i > 0.

Proof. We use the pictorial description of the factorisation (Fig.8). Observe that
P(T(0)) = P(tn)--- P(t1)(m +2)---(m + n),

PAM) =P(ty) - P(tjs))(m+j+2)-- (m+n) and Pt?)=P(t;)-- P(t1)(m +2)---(m +j).

We conclude using Corollary 2.2 for the first two characterizations and Definition 2.5 for the last one.

4 Functional equations

In this section, we establish and compare five functional equations that define implicitly the generating functions
for the following five families of permutations: general permutations, one-stack sortable permutations, two-stack
sortable permutations, sorted permutations and sorted and sortable permutations. These functional equations
are derived from the factorisation of permutations described in the previous section.

Notations. We shall use the following standard definitions and notations. For n > 1, the g-analog of n is

1_ n
[n]:1+q+...+q”—1:—q.
1-g¢

The g-analog of n! is [n]! = [1][2]...[n]. By convention, [0]! = 1. Finally, for 0 < k < n, the g-analog of the
binomial coefficient (}) is

n] [n]!

[k] Bl — R]

k
Proposition 3.1 explains our interest in the following classical interpretation of the g-binomial coefficient:

inv(m,L) _ ifm—1
e

LcA{l,....m—1}:|L|=i

Let F be a set of permutations. By the ordinary (resp. exponential) generating function of F we mean the
two-variable series

m
F(%y) = Z fm,n xmyn resp. F(x,y) = Z fm,n W yn 7
m,n>0 m,n>0 ’

where fp, n = |FNGyy, p| is the number of permutations o of F of length m +n such that z(¢) > n. Similarly, let
inv denote any of the statistics inv (the inversion number) or inv. The ordinary (resp. Eulerian) inv-generating
function of F is

Fe,g)= > fona™y" resp.  F(z,9)= Y fun %yn ’

m,n>0 m,n>0

where frn = Y crne, . ¢i™V(@) . Observe that F(z,0) and F(z,0) are respectively the length generating
function and the length+inv generating function for the permutations of F.

11



Proposition 4.1 Zeilberger’s factorisation, applied to our five classes of permutations, yields the following
functional equations.
Linear equation. The ordinary generating function A(z,y) for one-stack sortable permutations is completely

characterized by the equation
1 z  Az,y) — Az,0)
A(z,y) = + . (2)
l—y 1-y y
Quadratic equations. The ordinary generating functions for two-stack sortable permutations and for sorted
and sortable permutations (respectively, B(xz,y) and C(x,y)) are completely characterized by the equations

1 C(x,y) — C(x,0)
Clavy) = 1o + a1 = ) [L+yClay)] SEL D, @
Differential equations. The exponential generating functions for general permutations and for sorted permu-

tations (respectively D(x,y) and E(x,y)) are completely characterized by the equations

9D (e,5) = 1+ yD(a ) 2N D@0 )
€ )
) ==y [+ yB(, ) DD, ©)

and the initial conditions D(0,y) = E(0,y) =1/(1 —y).

We delay the proof of this proposition to make a few comments.

1. The series A(z,y), B(z,y),C(z,y), D(z,y) and E(z,y) are uniquely defined by these equations: in each of
these series, the coefficient of ™ is a rational function in y that can be computed by induction on n using the
relevant equation. In particular, we obtain for sorted permutations and for sorted and sortable permutations of
length at most 30 the data presented in Table 1.

2. The five equations involve a common factor: a discrete derivative (or divided difference)

déf F(x,y) —F(I,O)

AF(z,y) ;

As we wrote in the introduction, such equations arise frequently in enumerative combinatorics. Observe that
there is no obvious way to derive an equation satisfied by F'(z,0) itself.

3. Two pairs of equations are very similar, and only differ by a factor (1 — y). Equation (3) is equivalent to the
equation obtained by Zeilberger for two-stack sortable permutations [23].

4. The series D(z,y) has an extremely simple expression. Let dp, ,, be the number of permutations o € Gp,4p,
such that z(c) > n. Clearly, dpmn = (m + n)!/n! (shuffle the word (m +n)(m +n —1)...(m + 1) with any
permutation of &,,). Consequently, the exponential generating function for general permutations is D(x,y) =
1/(1 —x —y). It is very easy to check that 1/(1 — xz — y) satisfies (5), but how can one derive this rational
expression from (5)7

5. Using Proposition 3.1, we can also take into account the statistics inv in the factorisation of permutations.
We thus obtain for four of our equations a nice g-analog.

Proposition 4.2 The equations of Proposition 4.1 admit the following g-analogs.

Quadratic equations. The ordinary inv-gemerating function for two-stack sortable permutations and the
ordinary inv-generating function for sorted and sortable permutations (respectively, B(z,y) and C(x,y)) are
completely characterized by the equations

C(z,y) = C(x,0)
; :

Clay) = 7=+ (1 =) [1+yC(ag.)]

12



¢-Differential equations. The Eulerian inv-generating function for general permutations and the Eulerian
inv-generating function for sorted permutations (respectively D(x,y) and E(x,y)) are completely characterized
by the equations

D(xvy)_l_)(x%y) D(x,y)—D(x,O)

=g~ LruPlay) ; : 9)
E(xvy)_E(x(Ly) _ n E(x,y)—E(x,O)
w0 —q) =(1-y) [l +yE(zq,y)] ; 7 (10)

and the initial conditions D(0,y) = E(0,y) = 1/(1 —y).

Remarks

1. Clearly, the last four equations of Proposition 4.1 are obtained from Proposition 4.2 in the limit case ¢ = 1.
Enumerating one-stack sortable permutations according to the statistic inv is irrelevant, as these permutations
avoid the pattern 231. For their enumeration according to the number of inversions, see [1].

2. We obtain a different information on the series D(x,y) (general permutations) if we use the standard
factorisation of trees into their left and right subtrees. We find:

D(,0) = D(x¢,0) =D(z,0° and  D(z,y) = D(2,0) [1 +yD(z,y)] . (11)

z(1—q)
One checks easily that (11) implies (9). But conversely, deriving (11) from (9) does not seem so simple. Note

that Rawlings [16, 17] has studied a close relative to the statistics inv, and essentially obtained the first equation
in (11).

Proof of Propositions 4.1 and 4.2 B
1. We begin with the enumeration of general permutations. Let d(m,n) denote the polynomial in ¢ that counts

permutations of &, , according to the statistics inv. - B
The set o,y is reduced to {n(n —1)...1} and hence dy,,, = 1 for n > 0. This gives D(0,y) = 1/(1 —y).
Moreover, for m > 1, we have &, , = G;—1,n+1 U &y, and Proposition 3.1 gives:

dmn = dm—1,n41 + Z i: [m h 1] q' dm—i—1n—j dij- (12)

Multiplying by y™z™ ! /[m — 1]! and summing on m > 1 and n > 0 gives the result.

2. For one-stack sortable permutations, we use Proposition 3.2 to obtain an analog of Eq. (12). Let ay, , be
the number of one-stack sortable permutations o of length m + n such that z(¢) > n. Then for m > 1,

n—1

Amn = Gm—1,n+1 + § Am—1,n—j Q0,5-
Jj=0

Using ag ; = 1 and summing on m and n gives the result.

3. For two-stack sortable permutations, we find, for m > 1,

m—1 1
bm,n = bm—l,n+1 + Z Z ql bm—i—l,n—j bi,j7
=0 j=0

(%

where by, , is the polynomial in ¢ that counts two-stack sortable permutations of &, » according to the statistics
inv. Again, by, = 1 and we obtain our functional equation by summing on m and n.

4. Counting sorted permutations according to their inversions is equivalent to counting canonical permutations
according to the statistic inv (see Proposition 2.6 and Lemma 2.4). Using Proposition 3.2, we find, for m > 1,

m—1n—1

m—1[ .
_ o i _ _
€mn = €m—1,n+1 + E E [ ; ]q em—i—1,n—j (€ij — €ij—1),

i=1 j=0

13



with the convention é; _; = 0. In the above equation, €, , denotes the polynomial in ¢ that counts sorted
permutations of &, , according to the statistics inv. We use €, = 1, multiply by y"z™~!/[m — 1]! and sum
on m and n to obtain the result.

5. Counting sorted and sortable permutations according to their inversions is equivalent to counting two-stack
sortable canonical permutations according to the statistic inv. Hence, we need to combine two of the properties
we have already studied. We find, for m > 1,

m—1n—1

_ = i = _ _
Cm;n = Cm—1,n+1 + E E q" Cm—ic1,n—j (Gij — Cij—1),
i=1 j=0

with the convention ¢;, _; = 0. In the above equation, &, , denotes the polynomial in ¢ that counts sorted and

sortable permutations of &,, , according to the statistics inv. We sum on m and n to obtain the result.

]

Length | Sorted Sorted and sortable || Length | Sorted Sorted and sortable

1 1 1 16 48729809104 1599816

2 1 1 17 576039659209 5212650

3 2 2 18 7213070102518 17098590

4 5 4 19 95373808983223 56473664

5 17 10 20 1327842798808220 187572584

6 68 25 21 19416307366048221 626430568

7 326 69 22 297499363267839558 2101977231

8 1780 192 23 4766432683120731044 7084963950

9 11033 562 24 79699553284422816437 23976649328

10 76028 1663 25 1388383661114307067780 81447876258

11 578290 5065 26 25156549558328842669336 277627821135

12 4803696 15592 27 473403195053530875676679 949393445553

13 43297358 48874 28 9239492647978583159102374 3256266981128

14 420639362 154651 29 186785371461376448191242175 11199653726786

15 4382320595 | 495418 30 3906561056937710831259467950 | 38620292110925

Table 1. The number of sorted (resp. sorted and sortable) permutations.

5 Solving the functional equations

The five functional equations we have obtained are of three different sorts. The simplest one is related to
one-stack sortable permutations. It is linear in A(x,y). Two others are (¢-)quadratic in the unknown series.
They are related to two-stack sortable permutations and sorted and sortable permutations respectively. The
last two equations involve a (¢-)derivative with respect to x.

Notations. Given a ring IL and n indeterminates x1, ..., z,, we denote by

e IL[zy,...,x,] the ring of polynomials in zy,...,z, with coefficients in IL,

e L[[xy,...,x,]] the ring of formal power series in z1,...,z, with coefficients in IL,
and if IL is a field, we denote by

o IL(zy,...,z,) the field of rational functions in @1, ...,, with coefficients in IL.

5.1 Linear equations and the kernel method

Proposition 5.1 (Knuth [14]) The ordinary length generating function A(x,0) for one-stack sortable permu-

tations is:
1—-+v1—-4x 1 2n
A(z,0) = = ",
(2,0) 2z T;)n—kl(n)x

Proof. We use a method, sometimes called the kernel method, that can be found in several papers, e.g.
[9, 11, 14, p.532]. Equation (2) can be rewritten as

[y(1—y) —z]A(z,y) = y — xA(z,0).

14



Let Y = (1 —/1—42)/2 =2+ O(2?). Then Y (1 —Y) = z. Substituting Y for y in the above equation shows
that A(x,0) = Y/z. Of course, we could also write an algebraic expression for A(z,y).
[

5.2 Quadratic equations and the quadratic method

The equations (3) for two-stack sortable permutations and (4) for sorted and sortable permutations can be
solved via the so-called gquadratic method, which is due to Brown [6, 12, section 2.9.1].

Proposition 5.2 The ordinary length generating function Bo(x) = B(x,0) for two-stack sortable permutations
is cubic over the field R(x):

2% Bo(7)® + 2(2 4+ 32)Bo(2)* + (1 — 14z + 32*)Bo(z) + 2> + 11z — 1 = 0.

This implies that
(3n)!
B =1+2
o@) =1+ nz;l Cn+ D)in+ 0"

n

The ordinary length generating function Cy(z) = C(x,0) for sorted and sortable permutations is algebraic of
degree 4:

23Co(x) + 22(3 + 42)Cp ()3 + 2(3 — 292 + 62%)Co(2)? + (1 — T + 2922 + 423)Co () — (1 — z)® = 0.
Proof. In Eq. (3), let us form a perfect square containing all powers of B(x,y):
(y — 1) 22y B(x,y) — 2yBo(x) + = =y’ = A(y) (13)
where A(y) is the following polynomial in y with coefficients in IR(x, By(x)):
A(y) = [1 + 2Bo(2)]*y® — [1 — 22 + 2By (z)][1 + 2Bo(2)]y® — z[22Bo(z) — = — 2]y — 2°.

Let Y = Y(z) = x + 22 + O(2®) be the (unique) power series in z such that Y = 22Y B(z,Y) — 2Y By(z) + z.
Substituting Y (z) for y in (13) shows that A has a double root at y = Y'(z). This implies that the resultant of
A and 9A /9y, seen as polynomials in y, is zero. Computing this resultant gives the cubic equation satisfied by
BO (l‘)

It is not difficult to conjecture the expression of the coefficients of By(x) from their first values. This suggests
to introduce the auxiliary series U = U(z) defined by U = 2(1+ U)3. Then we check that By(z) =1+ U — U?
(both series satisfy the same equation). We complete the proof by applying the Lagrange inversion formula.

We apply the same method to Eq. (4). We find:

22y(y — 1)C(a,y) + wy(1 - y)Co(a) +x(y — 1) +y]” = Ay)
with
A = 2%y*Cy(2)? — 20Co(x)[1 — x + 2Co(x)]y>
+[(1 = 2)? +22(1 — 22)Co(x) + 22 Co(2)?] + 22[xCo(x) — z — 1]y + 2.
Again, A has a double root at y = Y (z) where Y = Y(z) is the formal power series in z defined by ¥V =
2¢Y (1-Y)C(z,Y)+2Y (Y —1)Co(z) + (1 —Y). Computing the resultant of A and dA/dy gives the algebraic
equation satisfied by Cp(x).
|

Remarks
1. The first part of the above proposition was already proved in [10, 13, 23].

2. Let ¢, denote the coefficient of 2™ in Cy(x). The numbers ¢, have large prime factors (see Table 1). We can

prove they are not hypergeometric as follows: we first construct the linear recurrence with polynomial coefficients
they satisfy (using, for instance, the MAPLE package GFUN [18]) and then look for all hypergeometric solutions
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of this recurrence (using the algorithm HYPER [15]). We find that there is no such solution: the sequence (¢, )y,
is not hypergeometric.
This does not rule out the existence of an expression of the form

Cn:ZFn,k
k

where F,, ;, would be (doubly) hypergeometric. Such an expression could, for example, derive from an appli-
cation of the Lagrange inversion formula. By manipulationg the equation that defines Cy(x), we found that

Q(z, Co()) = Q(x, V(z)) where
(1 —4z)V(2)* + 2V (2)?> =2V (x) + 2> = 0.

This equation is quadratic in  and hence, not suitable for a direct application of the Lagrange inversion formula
(which requires linear equations in x). We can actually prove that we cannot write Cp(z) as a rational function
of z and U, where U would be related to x via an algebraic equation P(x,U) = 0 of degree one in x. Hence the
Lagrange inversion formula (in its simplest form) cannot be applied to obtain an expression of Cy(x).

3. So far, we have found no g-analog of the quadratic method that would enable us to solve Egs. (7) and (8).

5.3 Differential equations

We finally come to the functional-differential equation that defines the generating function for sorted permu-
tations (6). It is very similar to the equation obtained for general permutations (5). The case of general
permutations turns out to be extremely simple, as D(z,y) = 1/(1 —z —y). The case of sorted permutations is
(and will remain) much more intriguing. However, we shall obtain a characterization of the series E(x,0) that
does not involve the series E(x,y).

Notations. Let f(x,y) be a formal power series in  with rational coefficients in y. We denote by f’ the
derivative 0f/0x. We denote by Lf the formal Laplace transform of f with respect to z:

Fle) = Y an) 57 = LiGry) = Y anly) 2"

n>0 . n>0

The Laplace transform has the following integral representation:

1 o0
Litww) =+ [ e fuy)du
T Jo
Observe that
Lf(z,y) = f(0,y) + 2L(f')(x,y). (14)
Proposition 5.3 Let
xm+1
E@) =2 emo Gy,

where e, o is the number of sorted permutations of length m. Note that £(x) = foz E(u,0)du.
Let f(z,y) be the following power series in x, with polynomial coefficients in y:

fx,y) =expl(y — 1)E(x)] .

Then the Laplace transform of f satisfies:

Lf <%y) —1-y. (15)

Equivalently,
o0
| et ey (- D@ du=y.
0
This equation is equivalent to a recurrence relation defining the sequence (€m,0)m, and hence, characterizes
completely the series £(x).
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Proof. This proposition is a special case of a more general approach that also allows us to derive the simple
expression D(z,y) =1/(1 —z —y) from Eq. (5).
Equations (5) and (6) have the following form:

OF F(xvy) —F(l‘,O)

o (&Y =c@) 1 +yF(z,y)] , ; (16)

where ¢(y) = 1 for general permutations and ¢(y) = 1 — y for sorted permutations. Eq. (16), together with the
initial condition F(0,y) = 1/(1 —y), defines F(z,y) as a formal power series in « with rational coefficients in y.
More precisely, F(x,y) admits an expansion of the following form:

P, "
P = ¥ e

n>0

where P,(y) € R[y]. We observe that Eq. (16) is a Riccati equation in F(z,y). We linearize it by introducing
the series

G(e.9) = exp |~ [ Fluia). (7)
so that F = —G'/[c(y)G]. We find
GO =1, 60,9 =2, (19)

and
y G" + c(y)(yF(z,0) — 1) G' — c(y)*F(x,0) G = 0.

This equation can be rewritten as
[WG" = c(y)G'] + c(y) F(2,0) [yG' - c(y)G] =0,

which, using (18), gives

with

f(z,y) =exp {—C(y) /Oz F(u,O)du} .

Taking the Laplace transform in (19) gives, thanks to (14):

=~ 2L o) = et) = % L(o.y). (20)

The definition (17) of G implies that it admits an expansion of the form

n

G(z,y) :Z Qnly) -

_ n !
nzo(l y)" n!

where Q,,(y) € R]y]. Hence we can set x = y/c(y) in (20) (this should remind the reader of the kernel method
used in Section 5.1). We obtain
Y
(L y)=1-y. 21
f (C(y) y) y (21)

Let us now apply this result to Eqgs. (5) and (6).

e General permutations. When ¢(y) = 1, the series F(x,y) is the exponential generating function D(z,y)
for general permutations. The series f(z,y) = exp [— foz D(u,O)du] only depends on z, and we shall denote
it f(xz). Eq. (21) gives Lf(z) = 1 — 2. Hence f(x) = 1 — 2z, and D(z,0) = 1/(1 — z). This is exactly
(fortunately!) the exponential generating function for general permutations. Then, we integrate (19) and find
G(z,y) = (1 —x —y)/(1 —y), and finally,

D(r.y) = T = > (Lt h 2,

1—2— n! m!
y m,n>0
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Hence, our — admittedly complicated — method is at least able to recover the expected result: the number of
permutations o of length m + n such that z(¢) > n is (m + n)!/nl.

e Sorted permutations. The success of our method on a problem we knew how to solve encourages
us to apply the same method to the more tricky equation (6). When c(y) = 1 — y, the series F(z,y) is the
exponential generating function E(x,y) for sorted permutations. With the notations of Proposition 5.3, we have
f(z,y) =exp[(y — 1)E(x)]. Equation (21) gives (15).

To complete the proof of this proposition, we have to show that the functional equation we obtained com-
pletely characterizes £(x). Let us write e; o = e; for short. We have:

flx,y) =exp[(y — 1)& ]—Hexp[ Gi-1 ’],

i>1
This gives
o . € 1\"i
i) = % o=l - p=e T (%) (22)
71,72,73,...20 HT i1 I

Let us observe that the identity (15) can be rewritten as

1
Lf( 1+ >:1+x'

Thus, let us replace y by /(1 + ) in (22) and expand the series we obtain. Taking the coefficient of z™ gives,

for n > 1:
M n— A+ 0N -1 ei_1\"i
Z( 1)Z(>\)+\>\| ||| 7|‘i! < |€(|)\) —(1) ) II ( 1! ) 1

i>1

where the sum is over all nonempty partitions A of weight at most n, ¢(\) denotes the number of parts of A,
and r; is the number of parts equal to ¢. This equation defines e,,_1 in terms of eg, e1,...,en_2, and hence the
series £(z) is completely characterized by the functional equation we obtained.

[

Final comments. Obviously, we have not completely solved the equations of Section 4. Two main questions
arise:

e Eq. (6) defines a series E(x,y). Proposition 5.3 gives a characterization of E(x,0) that does not involve
E(x,y), but is of a very unusual form. Is there a more standard equation defining E(z,0)? for instance,
an algebraic differential equation?

e Egs. (7) and (8) cry for a g-analog of the quadratic method. Do B(z,0) and C(z,0) satisfy a g-algebraic
equation, i.e., a polynomial equation P(z,q, F(z), F(zq),...,F(zq*)) = 0?
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discussions about the possible singularity structure of the series E(x,0), as well as Bruno Gauthier for his
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