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Let p be an odd prime number. We shall consider how to solve the
congruence x2 ≡ a (mod p) whenever a is a quadratic residue of p.

As almost all congruences in this note will be modulo p, we shall drop
the notation “(mod p)”, just writing the congruence sign ≡ when congruences
modulo p are considered.

The easy case is where p ≡ 3 (mod 4). Then m = 1
2
(p − 1) is an odd

number. If a is a quadratic residue modulo p, then am ≡ 1 by Euler’s
criterion. Thus, as m + 1 is even,

a ≡ am+1 = (a(m+1)/2)2

and it follows that the solution of x2 ≡ a is x ≡ ±a(m+1)/2 = ±a(p+1)/4.
As an example, let p = 1999 and a = 2. Then using MAPLE we get the

solution ±b where b ≡ 2(p+1)/4 = 2500 ≡ 562. We check that 5622 ≡ 2.
The hard case is where p ≡ 1 (mod 4). In this case write p = 2sm

where m is odd. Then s ≥ 2. If a is a quadratic residue modulo p then
1 ≡ a(p−1)/2 = a2s−1m = (am)2s−1

. If we define

u0 ≡ am and v0 ≡ a(m+1)/2

then
v2

0 ≡ am+1 ≡ au0.

If we are incredibly lucky, then u0 will be congruent to 1 modulo p and then
the solution of x2 ≡ a will be x ≡ ±v0. But we won’t always be lucky. Note
however, that (u0)

2s−1 ≡ 1 and so the order of u0 modulo p is a factor of 2s−1

and so is a power of 2.
In general, when u0 6≡ 1, we shall construct sequences u0, u1, u2, . . . and

v0, v1, v2, . . . with the property that

v2
k ≡ auk
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and that the order of uk modulo p is a power of 2, 2rk say, with r0 > r1 >
r2 > · · ·. If we can do this, we win, since eventually we get to a k with
rk = 0. This means that the order of uk modulo p is 20 = 1, which means
that 1 ≡ u1

k = uk so that v2
k ≡ a. The solution to x2 ≡ a is thus x ≡ ±vk.

To construct these sequences we need some more information. Let b be a
quadratic nonresidue modulo p and let c ≡ bm. Then

c2s−1 ≡ b2s−1m = b(p−1)/2 ≡ −1

by Euler’s criterion.
Now suppose we have some uk and vk with v2

k ≡ auk and also uk having
order 2rk modulo p with 0 < rk ≤ s− 1. This means that

u2rk

k ≡ 1 but u2rk−1

k 6≡ 1.

As u2rk

k = (u2rk−1

k )2 we conclude that

u2rk−1

k ≡ −1.

Thus
1 ≡ u2rk−1

k c2s−1

= (ukc
2s−rk )2rk−1

.

Let us define

uk+1 ≡ ukc
2s−rk and vk+1 ≡ vkc

2s−rk−1

(this makes sense as s− rk − 1 ≥ 0). Then

v2
k+1 ≡ v2

kc
2s−rk ≡ aukc

2s−rk ≡ auk+1

and also u2rk−1

k+1 ≡ 1. This means that the order of uk+1 modulo p is a factor
of 2rk−1. This order is thus 2rk+1 where rk+1 ≤ rk − 1 < rk. This completes
the algorithm.

One stumbling block on this algorithm is that we need a quadratic non-
residue b of p. There is no deterministic algorithm that is proved to produce
such a quadratic nonresidue in a short time. However one can easily find
quadratic nonresidues randomly. For p ≡ 1 (mod 4) if we choose uniformly
at random an integer b with 2 ≤ b ≤ 1

2
(p − 1) then it is a quadratic non-

residue with probability > 1
2
. The expected number of random picks to

obtain a quadratic nonresidue is thus < 2.
Let us see this algorithm in action on a fairly complex example. Let

p = 769. Then p − 1 = 768 = 28 × 3, so s = 8 and m = 3. The first
natural number which is a quadratic nonresidue of 769 is 7, so take b = 7
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and so c = 73 = 343. It is convenient to calculate c2j
for 0 ≤ j ≤ s− 1. We

get c2 ≡ 3432 ≡ 761, c4 ≡ 7612 ≡ 64, c8 ≡ 642 ≡ 251, c16 ≡ 2512 ≡ 712,
c32 ≡ 7122 ≡ 173, c64 ≡ 1732 ≡ 707 and c128 ≡ 7072 ≡ 768 ≡ −1 as
demanded by the theory.

Let us solve x2 ≡ 6. We compute

u0 = am = 63 = 216 and v0 = a(m+1)/2 = 36.

Next, u2
0 = 2162 ≡ 516, u4

0 = 5162 ≡ 182, u8
0 = 1822 ≡ 57, u16

0 = 572 ≡ 173,
u32

0 = 1732 ≡ 707 and u64
0 = 7072 ≡ 768 ≡ −1. Then

1 ≡ u64
0 c128 = (u0c

2)64

so take

u1 ≡ u0c
2 ≡ 216× 761 ≡ 579 and v1 ≡ v0c = 36× 343 ≡ 44.

Next, u2
1 ≡ 5792 ≡ 726, u4

1 ≡ 7262 ≡ 311, u8
1 ≡ 3112 ≡ 596, u16

1 ≡ 5962 ≡
707, u32

1 ≡ 7072 ≡ −1. Then

1 ≡ u32
1 c128 = (u1c

4)32

so take

u2 ≡ u1c
4 ≡ 579× 64 ≡ 144 and v2 ≡ v1c

2 ≡ 44× 761 ≡ 417.

Next, u2
2 ≡ 1442 ≡ 742, u4

2 ≡ 7422 ≡ 729, u8
2 ≡ 7292 ≡ 62, u16

2 ≡ 622 ≡
768 ≡ −1. Then

1 ≡ u16
2 c128 = (u1c

8)32

so take

u3 ≡ u2c
8 ≡ 144× 251 ≡ 1 and v3 ≡ v1c

4 ≡ 417× 64 ≡ 542.

As u3 ≡ 1 we conclude that the solution of x2 ≡ 6 is x ≡ ±v3 ≡ ±542 ≡
∓227. Indeed we check that 2272 ≡ 6.
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