Square roots modulo a prime

Robin Chapman

16 December 2003

Let p be an odd prime number. We shall consider how to solve the congruence $x^{2} \equiv a(\bmod p)$ whenever a is a quadratic residue of p.

As almost all congruences in this note will be modulo p, we shall drop the notation " $(\bmod p)$ ", just writing the congruence $\operatorname{sign} \equiv$ when congruences modulo p are considered.

The easy case is where $p \equiv 3(\bmod 4)$. Then $m=\frac{1}{2}(p-1)$ is an odd number. If a is a quadratic residue modulo p, then $a^{m} \equiv 1$ by Euler's criterion. Thus, as $m+1$ is even,

$$
a \equiv a^{m+1}=\left(a^{(m+1) / 2}\right)^{2}
$$

and it follows that the solution of $x^{2} \equiv a$ is $x \equiv \pm a^{(m+1) / 2}= \pm a^{(p+1) / 4}$.
As an example, let $p=1999$ and $a=2$. Then using MAPLE we get the solution $\pm b$ where $b \equiv 2^{(p+1) / 4}=2^{500} \equiv 562$. We check that $562^{2} \equiv 2$.

The hard case is where $p \equiv 1(\bmod 4)$. In this case write $p=2^{s} m$ where m is odd. Then $s \geq 2$. If a is a quadratic residue modulo p then $1 \equiv a^{(p-1) / 2}=a^{2^{s-1} m}=\left(a^{m}\right)^{2^{s-1}}$. If we define

$$
u_{0} \equiv a^{m} \quad \text { and } \quad v_{0} \equiv a^{(m+1) / 2}
$$

then

$$
v_{0}^{2} \equiv a^{m+1} \equiv a u_{0} .
$$

If we are incredibly lucky, then u_{0} will be congruent to 1 modulo p and then the solution of $x^{2} \equiv a$ will be $x \equiv \pm v_{0}$. But we won't always be lucky. Note however, that $\left(u_{0}\right)^{2^{s-1}} \equiv 1$ and so the order of u_{0} modulo p is a factor of 2^{s-1} and so is a power of 2 .

In general, when $u_{0} \not \equiv 1$, we shall construct sequences $u_{0}, u_{1}, u_{2}, \ldots$ and $v_{0}, v_{1}, v_{2}, \ldots$ with the property that

$$
v_{k}^{2} \equiv a u_{k}
$$

and that the order of u_{k} modulo p is a power of $2,2^{r_{k}}$ say, with $r_{0}>r_{1}>$ $r_{2}>\cdots$. If we can do this, we win, since eventually we get to a k with $r_{k}=0$. This means that the order of u_{k} modulo p is $2^{0}=1$, which means that $1 \equiv u_{k}^{1}=u_{k}$ so that $v_{k}^{2} \equiv a$. The solution to $x^{2} \equiv a$ is thus $x \equiv \pm v_{k}$.

To construct these sequences we need some more information. Let b be a quadratic nonresidue modulo p and let $c \equiv b^{m}$. Then

$$
c^{2^{s-1}} \equiv b^{2^{s-1} m}=b^{(p-1) / 2} \equiv-1
$$

by Euler's criterion.
Now suppose we have some u_{k} and v_{k} with $v_{k}^{2} \equiv a u_{k}$ and also u_{k} having order $2^{r_{k}}$ modulo p with $0<r_{k} \leq s-1$. This means that

$$
u_{k}^{2^{r_{k}}} \equiv 1 \quad \text { but } \quad u_{k}^{2^{r_{k}-1}} \not \equiv 1 .
$$

As $u_{k}^{2^{r_{k}}}=\left(u_{k}^{2_{k}^{r_{k}-1}}\right)^{2}$ we conclude that

$$
u_{k}^{2^{r_{k}-1}} \equiv-1 .
$$

Thus

$$
1 \equiv u_{k}^{2_{k} k^{-1}} c^{2^{s-1}}=\left(u_{k} c^{c^{s-r_{k}}}\right)^{2^{r_{k}-1}}
$$

Let us define

$$
u_{k+1} \equiv u_{k} c^{2^{s-r_{k}}} \quad \text { and } \quad v_{k+1} \equiv v_{k} c^{2^{s-r_{k}-1}}
$$

(this makes sense as $s-r_{k}-1 \geq 0$). Then

$$
v_{k+1}^{2} \equiv v_{k}^{2} c^{c^{s-r_{k}}} \equiv a u_{k} c^{c^{s-r_{k}}} \equiv a u_{k+1}
$$

and also $u_{k+1}^{2_{k} r_{k}} \equiv 1$. This means that the order of u_{k+1} modulo p is a factor of $2^{r_{k}-1}$. This order is thus $2^{r_{k+1}}$ where $r_{k+1} \leq r_{k}-1<r_{k}$. This completes the algorithm.

One stumbling block on this algorithm is that we need a quadratic nonresidue b of p. There is no deterministic algorithm that is proved to produce such a quadratic nonresidue in a short time. However one can easily find quadratic nonresidues randomly. For $p \equiv 1(\bmod 4)$ if we choose uniformly at random an integer b with $2 \leq b \leq \frac{1}{2}(p-1)$ then it is a quadratic nonresidue with probability $>\frac{1}{2}$. The expected number of random picks to obtain a quadratic nonresidue is thus <2.

Let us see this algorithm in action on a fairly complex example. Let $p=769$. Then $p-1=768=2^{8} \times 3$, so $s=8$ and $m=3$. The first natural number which is a quadratic nonresidue of 769 is 7 , so take $b=7$
and so $c=7^{3}=343$. It is convenient to calculate $c^{2^{j}}$ for $0 \leq j \leq s-1$. We get $c^{2} \equiv 343^{2} \equiv 761, c^{4} \equiv 761^{2} \equiv 64, c^{8} \equiv 64^{2} \equiv 251, c^{16} \equiv 251^{2} \equiv 712$, $c^{32} \equiv 712^{2} \equiv 173, c^{64} \equiv 173^{2} \equiv 707$ and $c^{128} \equiv 707^{2} \equiv 768 \equiv-1$ as demanded by the theory.

Let us solve $x^{2} \equiv 6$. We compute

$$
u_{0}=a^{m}=6^{3}=216 \quad \text { and } \quad v_{0}=a^{(m+1) / 2}=36 .
$$

Next, $u_{0}^{2}=216^{2} \equiv 516, u_{0}^{4}=516^{2} \equiv 182, u_{0}^{8}=182^{2} \equiv 57, u_{0}^{16}=57^{2} \equiv 173$, $u_{0}^{32}=173^{2} \equiv 707$ and $u_{0}^{64}=707^{2} \equiv 768 \equiv-1$. Then

$$
1 \equiv u_{0}^{64} c^{128}=\left(u_{0} c^{2}\right)^{64}
$$

so take

$$
u_{1} \equiv u_{0} c^{2} \equiv 216 \times 761 \equiv 579 \quad \text { and } \quad v_{1} \equiv v_{0} c=36 \times 343 \equiv 44
$$

Next, $u_{1}^{2} \equiv 579^{2} \equiv 726, u_{1}^{4} \equiv 726^{2} \equiv 311, u_{1}^{8} \equiv 311^{2} \equiv 596, u_{1}^{16} \equiv 596^{2} \equiv$ $707, u_{1}^{32} \equiv 707^{2} \equiv-1$. Then

$$
1 \equiv u_{1}^{32} c^{128}=\left(u_{1} c^{4}\right)^{32}
$$

so take

$$
u_{2} \equiv u_{1} c^{4} \equiv 579 \times 64 \equiv 144 \quad \text { and } \quad v_{2} \equiv v_{1} c^{2} \equiv 44 \times 761 \equiv 417
$$

Next, $u_{2}^{2} \equiv 144^{2} \equiv 742, u_{2}^{4} \equiv 742^{2} \equiv 729, u_{2}^{8} \equiv 729^{2} \equiv 62, u_{2}^{16} \equiv 62^{2} \equiv$ $768 \equiv-1$. Then

$$
1 \equiv u_{2}^{16} c^{128}=\left(u_{1} c^{8}\right)^{32}
$$

so take

$$
u_{3} \equiv u_{2} c^{8} \equiv 144 \times 251 \equiv 1 \quad \text { and } \quad v_{3} \equiv v_{1} c^{4} \equiv 417 \times 64 \equiv 542
$$

As $u_{3} \equiv 1$ we conclude that the solution of $x^{2} \equiv 6$ is $x \equiv \pm v_{3} \equiv \pm 542 \equiv$ ∓ 227. Indeed we check that $227^{2} \equiv 6$.

