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Abstract

In this paper, we examine partition 7 classified according to the number r(7) of odd
parts in 7 and s(7) the number of odd parts in 7, the conjugate of w. The generating
function for such partitions is obtained when the parts of m are all £ N. From this
a variety of corollaries follow including a Ramanujan type congruence for Stanley’s
partition function t(n).

1 Introduction

Let m denote a partition of some integer and 7’ its conjugate. For definition of these concepts
see[l; Ch.1]. Let O(m) denote the number of odd parts of w. For example if 7is 6 + 5+ 4 +
2+ 2+ 1. Then the Ferrers graph if 7 is
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Reading columns we see that 7’ is 6 + 54+ 3 +3 + 2+ 1. Hence O(n) and O(n’) = 4.
Richard Stanley [4], [5], has shown that if ¢(n) denotes the number of partitions 7 of n
for which O(7) = O(7’)( mod 4), then
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tn) = 5 (vto) + ) ), (1)
where p(n) is the total number of partitions of n [1; p.1], and
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t(n) is Stanley’s partition function referred to in the title of this paper.

Stanley’s result for #(n) is related nicely to a general study of sign-balanced, labeled
possets [5]. In this paper, we shall restrict our attention to Sy(n,r,s), the number of
partition 7w of n where each part of 7 is £ N, O(w) =r, O(n’) = s. In Section 2, we shall

prove our main result:
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.From Theorem 1 follows an immediate lovely corollary:

Corollary 1.1.
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JFrom Corollary 1.1, we shall see in Section 3, that
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Corollary 1.2.
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Corollary 1.3.
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where

Q(q) = (¢:0)00 = T2, (1 = ¢).

We conclude with some open questions.
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2 The Main Theorem

We begin with some preliminaries about partitions and their conjugates. For a given partition
7 with parts each < N, we denote by f;(7) the number of appearances of i as a part of 7.

The parts of 7’ in non-increasing order are thus

PINICNDDYICND SYAC NI SFC)! (2.1)

Note that some of the entries in this sequence may well be zero; the non-zero entries make up
the parts of 7’. However in light of the fact that 0 is even, we see that O(n’) is the number

of odd entries in the sequence (2.1) while

O(m) = fi(m) + fas(m) + fo(m) + . ... (2.2)
We now define
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Lemma 2.1. 0¢(q,2z,y) =1, and for N = 1
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Proof. We shall in the following be dealing with partitions whose parts are all < some given
N. We let 7 be that partition made up of the parts of 7 that are < N. In light of (2.1) we
see that if V is a part of 7 an even number of times, then O(7') = O(7') and if N appears
an odd number of times in 7 then O(7') = N — O(w) (because the removal of fy(7) from

each sum in (2.1) reverses parity).



Initially we note that the only partition with at most zero parts is the empty partition

of 0; hence o¢(q, z,y) = 1.
Next for N > 1
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which is equivalent to (2.4). Finally

g2 i) LA (Tr)+f3(7f)+~~+fzzv+1(ﬂ)yo(ﬂ/)

oan+1(q, 2, Y) _ Z
4. 44 202 g4
(C] ;4 )N(’Z q-4q >N+1 m,partsS2N+1
_ Z g2 FiE+CNED fan 1 (m) L fr(m) 4ot fan 1 (1) O(F)

m,partsS2N+1
fg]\url (7r)even

+ Z qZ ifi(F)+CN+1) fan 41 () L f1(m)+o 4 fan 1 (M) +fan41(7)

m,partsS2N+1

fg]\url(ﬂ')odd
y2N+17(9(7’r’)
1 oan (¢, 2,Y)
(1 22 4N+2) (q4;q4)N(z2q2;q4)N
NPT oan(g, 2, )

(1= 2N (¢ ) (2 )y



which is equivalent to (2.5) with N replaced by N + 1. O

Proof. Proof of Theorem 1.

We let Ton(q, 2,y) denote the numerator on the right-hand side of (1.3) and Ton41(q, 2, y)
denote the numerator on the right-hand side of (1.4). If we can show that 7x(q, z,y) satis-
fies (2.4) and (2.5), then notify immediately that 79(g, z,y) = 1, we will have proved that
on(q,z,y) = 7n(q, z,y) for each N = 0 (by mathematical induction) and will then prove

Theorem 1 once we recall (2.3). First
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Proof. Proof of Corollary 1.1.
¢From Theorem 1 (either (1.3) or (1.4) with j — N — j)
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which is Corollary 1.1.
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Corollary 1.2. Identity (1.1) is valid.

Proof. We note that O(r) = O(n’) mod 2 because each is clearly congruent mod 2 to the

number being partitioned. Hence
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and comparing coefficients of ¢" in the extremes of this identity we deduce (1.1).

3 Further Properties of t(n)

Corollary 1.3. t(5n +4) = 0 (mod 5).

Proof. Ramanujan proved [3; p.287, Th. 359] that

p(dn+4) =0 (mod 5).

So it follows from (1.1) that to prove 5[t(5n + 4) we need only prove that 5|f(5n + 4).

By (1.2)

(2.7)
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(by [1; p.21, eq.(2.2.10)])

Now the only time an exponent of ¢ in the numerator is congruent to 4 mod 5 is when
n =4 (mod 5) and j = 2 (mod 5). But then (25 +1) = 0 (mod 5). Le. the coefficient of

5m+4

q in the numerator must be divisible by 5. Given that the denominator is a function

of ¢°, it cannot possibly affect the residue class of any term when it is divided into the

numerator. So

f(bn+4) =0 (mod 5).

Therefore

t(bn+4) =0 (mod 5).
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Proof. By (2.7)
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where the last line follows from several applications of the two identities

and

Corollary 1.4 allows us to multisect the generality function for ¢(n) modulo 4.

Corollary 1.5
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Proof. We begin with Gauss’s special case of the Jacobi Triple Product Identity [1; p.23,
eq.(2.2.13)]

o0 2. 2 2\2
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Therefore by Corollary 1.4, we see that

n=—oo
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Now 2n? —n =n (mod 4). So to obtain (3.4)-(3.7) we multisect the right-hand series in
(3.10) by setting n =4m+j (0 = j < 3), so
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One then obtains four identities arising from the four residue classes mod 4. We carry

out the full calculations in the case j = 0:
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a result equivalent to (3.4) once ¢ is replaced by ¢'/*. The remaining results are proved

similarly. O

4 Conclusion

As is obvious, Theorem 1 is easily proved once it is stated, but the sums appearing in (1.3)
and (1.4) seem to arise from nowhere.

I note that by considering the cases N = 1,2,3,4, I discovered empirically that

Z Son(n, T, 8)q"2"y* (4.1)
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One can then pass to (1.3) and (1.4) by means of a 3¢, transformation [3; p.242,
eq.(I11.13)], and the proof of Theorem 1 is easiest using (1.3) and (1.4).

There are many mysteries surrounding many of the identities in this paper.
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Problem 1. Is there a partition statistic that will divide the partitions enumerated by
t(5n + 4) into five equinumerous classes? Dyson’s rank (largest part - number of parts)
provides such a division at least for n =0 and 1 (cf. [1; p.175]).

Problem 2. Identity (1.7) cries out for combinatorial proof.
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