Proposed Problem: Large Values of Tan n

David P. Bellamy,

University of Delaware
Newark, DE 19716-2553
Jeffrey C. Lagarias
AT\&T Labs - Research
Florham Park, NJ 07932-0971
Felix Lazebnik
University of Delaware
Newark, DE 19716-0001

1. Proposed Problem

(a). Show that there are infinitely many positive integers n such that

$$
\begin{equation*}
|\tan n|>n . \tag{1}
\end{equation*}
$$

(b). Show that there are infinitely many positive integers n such that

$$
\begin{equation*}
\tan n>\frac{1}{4} n . \tag{2}
\end{equation*}
$$

2. Solution

The proofs require showing that there are integers n sufficiently close to $(2 k+1) \frac{\pi}{2}$ for some integer k. We use the following Diophantine approximation lemmas.
(a). Lemma 1. Every irrational real θ has infinitely many Diophantine approximations $q \equiv 1(\bmod 2)$ with

$$
\begin{equation*}
\left|\theta-\frac{p}{q}\right|<\frac{1}{2 q^{2}} . \tag{3}
\end{equation*}
$$

(b). Lemma 2. Every irrational real θ has infinitely many (one-sided) Diophantine approximations $q \equiv 1(\bmod 2)$ with

$$
\begin{equation*}
\frac{2}{q^{2}}>\theta-\frac{p}{q}>0 . \tag{4}
\end{equation*}
$$

Lemma 1 is sharp in the sense that the constant 2 cannot be improved. Similarly Lemma 2 is sharp in that the constant 2 cannot be improved.
Solution. If $n=(2 k+1) \frac{\pi}{2}+y$, where k is an integer and y is small, say $|y|<\frac{1}{4}$, then

$$
\begin{align*}
\tan n & =\cot y \\
& =\frac{1+\frac{y^{2}}{2!}+O\left(y^{4}\right)}{y-\frac{y^{3}}{3!}+O\left(y^{5}\right)} \\
& =\frac{1}{y}+y+O\left(y^{3}\right) . \tag{5}
\end{align*}
$$

Suppose now that

$$
\begin{equation*}
|y|=\left|n-(2 k+1) \frac{\pi}{2}\right|<\frac{1}{\alpha(2 k+1)} \tag{6}
\end{equation*}
$$

for some constant α, then (5) gives

$$
\begin{aligned}
|\tan n| & >\alpha(2 k+1)-O(1) \\
& >\frac{2 \alpha}{\pi} n-O(1) .
\end{aligned}
$$

To get infinitely many approximations n of the desired quality, we need infinitely many solutions to (6) for fixed α such that:
case (a). $\alpha>\frac{\pi}{2} \cong 1.571$.
case (b). $\alpha>\frac{\pi}{8} \cong .393$, and n satisfies the one-sided approximation condition

$$
\begin{equation*}
-\frac{1}{\alpha(2 k+1)}<n-(2 k+1) \frac{\pi}{2}<0 . \tag{7}
\end{equation*}
$$

The inequalities (6) and (7) can be rewritten as Diophantine approximations to the irrational $\theta=\frac{\pi}{2}$, namely

$$
\begin{equation*}
\left|\frac{\pi}{2}-\frac{n}{2 k+1}\right|<\frac{1}{\alpha(2 k+1)^{2}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\alpha(2 k+1)^{2}}>\frac{\pi}{2}-\frac{n}{2 k+1}>0 . \tag{9}
\end{equation*}
$$

These two cases (a) and (b) are thus covered by Lemmas 1 and 2 , respectively.
Proof of Lemma 1. One out of every two convergents $\frac{p_{n}}{q_{n}}$ of the continued fraction expansion of $\theta=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ satisfies

$$
\begin{equation*}
\left|\theta-\frac{p_{n}}{q_{n}}\right|<\frac{1}{2 q_{n}^{2}} . \tag{10}
\end{equation*}
$$

(See Hardy and Wright, The Theory of Numbers, Theorem 183.) At least one of every two consecutive convergents has an odd denominator, since

$$
\operatorname{det}\left|\begin{array}{cc}
p_{n} & p_{n+1} \tag{11}\\
q_{n} & q_{n+1}
\end{array}\right|=-1
$$

If infinitely many consecutive pairs $\left(q_{n}, q_{n+1}\right)$ are both odd, then one of each pair satisfies (10), so we are done.

The remaining case is where there are finitely many such pairs. In this case the q_{n} 's alternate odd, even, odd, even, . . from some point on. Suppose for convenience that the $q_{2 n}$ are all odd, the $q_{2 n+1}$ are all even, from some point on. Then

$$
q_{2 n+1}=a_{2 n+1} q_{2 n}+q_{2 n-1}
$$

whence $a_{2 n+1} \equiv 0(\bmod 2)$. Thus $a_{2 n+1} \geq 2$ and $q_{2 n+1} \geq 2 q_{2 n}$. Now [Hardy and Wright, Theorem 164] gives

$$
\left|\theta-\frac{p_{2 n}}{q_{2 n}}\right| \leq \frac{1}{q_{2 n} q_{2 n+1}},
$$

and

$$
\left|\theta \frac{p_{2 n}}{q_{2 n}}\right| \leq \frac{1}{q_{2 n}\left(2 q_{2 n}\right)} \leq \frac{1}{2 q_{2 n}^{2}}
$$

as required. A similar argument works if all $q_{2 n+1}$ are even and all $q_{2 n+2}$ odd, from some point on.
Proof of Lemma 2. The continued fraction convergents satisfy

$$
\begin{equation*}
\frac{p_{2 n}}{q_{2 n}}>\theta>\frac{p_{2 n+1}}{q_{2 n+1}}, \tag{12}
\end{equation*}
$$

so if infinitely many $q_{2 n+1}$ are odd, we are done.
Now suppose all $q_{2 n+1}$ are even from some point on, in which case all $q_{2 n}$ are odd from that point on, using (11). As in Lemma 1, we have $a_{2 n+1} \equiv 0(\bmod 2)$ from that point on. Now set

$$
\begin{aligned}
Q & :=q_{2 n+1}-q_{2 n} \\
P & :=p_{2 n+1}-p_{2 n}
\end{aligned}
$$

Certainly Q is odd, and (12) gives

$$
\begin{equation*}
\frac{P}{Q}=\frac{p_{2 n+1}-p_{2 n}}{q_{2 n+1}-q_{2 n}}<\frac{p_{2 n+1}}{q_{2 n+1}}<\theta . \tag{13}
\end{equation*}
$$

Next, we have

$$
\begin{align*}
|Q \theta-P| & =\left|\left(q_{2 n+1} \theta-p_{2 n+1}\right)-\left(q_{2 n} \theta-p_{2 n}\right)\right| \\
& \leq\left|q_{2 n+1} \theta-p_{2 n+1}\right|+\left|q_{2 n} \theta-p_{2 n}\right| \\
& \leq \frac{1}{q_{2 n+2}}+\frac{1}{q_{2 n+1}} \\
& \leq \frac{2}{q_{2 n+1}-q_{2 n}}=\frac{2}{Q} . \tag{14}
\end{align*}
$$

Now (13) and (14) give

$$
\frac{2}{Q^{2}}>\theta-\frac{P}{Q}>0
$$

as required.

Remarks.

(1). Extremal θ for Lemma 1 include $\theta=\left[a_{0}, a_{1}, \ldots\right]$ with all $a_{2 n+1}=2$ and $a_{2 n} \rightarrow \infty$ as $n \rightarrow \infty$.
(2). Extremal θ for Lemma 2 include $\theta=\left[a_{0}, a_{1}, \ldots\right]$ with all $a_{2 n}=1$, with $a_{2 n+1} \equiv 0(\bmod 2)$ and $a_{2 n+1} \rightarrow \infty$ as $n \rightarrow \infty$. [It requires a proof to show that $Q=q_{2 n+1}-q_{2 n}$ are the "best" odd denominator one-sided approximations.]
(3). Presumably for each $\alpha>0$ there exist infinitely many positive n such that

$$
\tan n>\alpha n .
$$

This would be true if $\frac{\pi}{2}$ were a "random" real number.
email: 05789@brahms.udel.edu jcl@research.att.com
fellaz@math.udel.edu

