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Abstract 

The densest known packing of 15 congruent circles on a sphere occurs in two equally 
dense varieties.  Previously, this was the only known example of a ‘best’  packing of n 
circles on a sphere with multiplicity greater than one.  We present three new examples:  
n=62, 76 and 117.  We discuss these and related examples as manifestations of symmetry 
breaking involving structures we call “ rotational toggle hexagons” .  Additionally, we 
present exact data for n=15, and observe that both the hexagonal packing of the plane 
and the icosahedral packing of 12 circles on a sphere arise as limiting cases from toggle 
hexagons. 

 
 

1 Introduction 

The problem of packing n congruent non-overlapping circles on a unit sphere is equivalent 
to maximizing the minimum distance between any pair of n points on the sphere (Tammes, 
1930 [15]; Fejes Tóth, 1964 [4]).  Rigorously proved unique solutions are known only for 
n ≤ 14 and n=24.1  For other values of n various trial-and-error numerical methods have 
been used to determine dense packings, of which the best known at any epoch are 
automatically conjectured to be optimal.  Large tables of such results, together with many 
references to earlier work, have been published, most recently by Clare & Kepert 1991 [2] 
and Kottwitz 1991 [6].  The largest table (extending to n=130), created by N. J. A. Sloane, 
with the collaboration of R. H. Hardin, W. D. Smith and others (1994) and updated as 
needed, has not been published but is available electronically [5]. 
 

By far most of the “best”  packings found previously are unique in the sense fully 
explained below  (Section 3).  The only exceptional instance is that of n=15, in which 
                                                           
1 For n=13 and n=14 see Seng-Hwang Lee [7] 
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there are two distinct packings having circles of exactly equal size (Kottwitz, [6]).  Below 
we shall present three new instances of multiplicity two (for n=62, 76 and 117) 
discovered during recent intensive searches.  Furthermore every one of these four 
instances will be shown to result from a type of symmetry breaking based on a 
characteristic common feature that we call a “ rotational hexagonal toggle” , or briefly, a 
“ toggle” .  Such features have previously been reported by Leech & Tarnai 1988 [9] in 
packings of 22 circles that are slightly inferior to the best known.  In addition, we shall 
discuss two already known “best”  packings (for n=41 and 54) in which toggles lead to 
symmetry breaking without increasing multiplicity.  Finally we shall speculate about a 
slightly different type of toggle that is conceivable but not yet observed in a packing. 
 
It is often convenient to consider the nearer pole of each congruent circle to be a member 
of a vertex set having a convex hull that is a polyhedron inscribed in the sphere.  The 
length of the circle diameters is equal to the length of the shortest edges of the convex 
hull, and the number N of contacts between circles is equal to the number of shortest 
edges. 
 

2 Method 

The method used in our recent intensive searches is an elaboration of the repulsion-
energy method described previously (Kottwitz, [6]).  It should be noted that, while the 
application of the method to the packing problem was first suggested by Leech in 1957 
[8], the basic idea of this least p-th technique goes back to Pólya (1913) [11].  It is an 
important algorithm in approximation theory (Rice [12]; Cheney, [1]). 
 

The improvements in the power of our searches are consequences of increases in 
computer speed, mathematical software capability, and understanding of the problem.  
There are three chief changes in the previous method (Kottwitz [6]).  First, the number of 
random starts at a moderate value of the exponent p has been increased from 50 to 105, 
and only a few (3 to 10) of the best first stage results are kept for subsequent escalation  
of the exponent.  The second change is based on the empirical observation that, as the 
exponent p increases, the local minima increase in number and occur in closely related 
clusters.  Thus, instead of having a single escalation phase during  which an approximate 
solution is carried straight through from the smallest to the largest exponent p, we have a 
set of shorter phases.  At the beginning of each escalation phase only the best few earlier 
results are kept, and each result is several times subjected to a small random perturbation 
inversely proportional to p. 
 

The third improvement involves the refinement procedure in which approximate 
solutions corresponding to p values of 106 or higher, are adjusted to “exact”  solutions, 
corresponding to the limit p → ∞ .  We continue to employ the remarkable empirical fact 
that (for n > 5) each candidate convex hull has been found to have a sufficiently large 
number of equal shortest edges to provide enough (2 2n − ) independent equations to 
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determine a unique rigid substructure.  This fact is related to Danzer’s “almost 
conjecture”  [3], which has been discussed at length by Tarnai & Gáspár 1983 [16].  The 
ordinary refinement procedure has been supplemented by a superrefinement that produces 
as many as 80 significant figures through the use of the variable precision feature of the 
Maple computer algebra system.  When two distinct packings have shortest edges that are 
equal to such extreme precision, we tentatively conclude that the equality is exact.   Since 
such an equality of irrational numbers is not likely to be an accident but rather the 
expression of some sort of invariance, we then seek an explanation involving symmetry 
in some way.  Experience so far shows that the explanation is in fact based on symmetry 
breaking. 
 

3 Multiplicity 

As mentioned in the introduction, the vast majority of “best”  packings are unique, i.e. of 
multiplicity one.  In this we are following a convention in much of mathematics and 
physics when considering structures in isolation.  The difference between right-handed 
and left-handed versions of a chiral structure is ignored, because it is considered to be 
essentially trivial. 
 

In order to efficiently recognize possible instances of multiplicity  greater than one, the 
searching process maintains a special list of the top candidate packings.  The data for 
each structure include, in addition to the essential shortest edge length, high-precision 
values of two invariant quantities A and B that have been empirically found to be 
characteristic of a particular rigid framework (Kottwitz [6]).  A is the average of all 
distances between vertices of the rigid framework, while B is the average of the 
reciprocals of those same distances.  The values of A and B are independent of the 
handedness, if any, of the structure.  Thus the first indication of an instance of 
multiplicity greater than one is an output table having two or more top lines with almost 
equal shortest edge lengths but differing values of A and B.  The question of exactness of 
the equality is then resolved practically by the superrefinement procedure.   
 

4 Truly Exact Solutions 

One interesting feature of the polyhedra (see section 1) associated with solutions of 
Tammes’  problem is that they can be positioned so the Cartesian coordinates of their 
vertices are algebraic numbers.  This is because the equality of the squared shortest edges 
determines a system of polynomial equations over the integers, and the vertex coordinates 
are an isolated solution of this system.  In this section we focus on the algebraic number, 
u, which is the inner product of unit vectors determined by the endpoints of any shortest 
edge.  Thus i j i j i ju x x y y z z= + +  where ( , , )i i ix y z  and ( , , )j j jx y z  are the endpoints of a 

shortest edge.  u is also the cosine of the minimal separation angle, i.e. the central angle 
subtending a shortest edge.  Since the diameter, D, of each of the congruent circles equals 
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the length of the shortest edges, u is also the cosine of the central angle which subtends 
the diameter of each circle.  The quantities u and D are related by the equation 

2 2 2D u= −  so the minimal polynomial of D normally has twice the degree of the 
minimal polynomial for u.  Partly for this reason we seek the minimal polynomial for u 
rather than for D.  In addition u is scale-independent whereas D depends on the arbitrary 
choice of sphere radius equal to one. 
 

Conceivably, the equations that determine the vertices could be inconsistent.  We have, 
after all, only an approximate solution given by the numerical coordinates output by our 
search algorithm.  Our belief that the alleged circle packing truly exists is bolstered when 
we observe, as we do, quadratic convergence of our super refinement algorithm, 
essentially an arbitrary precision implementation of the Newton-Raphson method using 
Maple.  But ultimate confirmation comes from an algebraic solution as provided by a 
Gröbner basis culminating in a univariate polynomial for u.  This provides, in essence, a 
description of all coordinates of the polynomial in terms of u.  We were able to find such 
Gröbner bases using Maple V release 4 in many of the simpler cases.2  The Gröbner bases 
are too complicated to present here, but we provide in Table 1 all minimal polynomials 
for u that we have been able to compute, together with the associated numeric values of u 
accurate to 20 significant figures.  These minimal polynomials are for u when 18n ≤  and 
when 20,24,27,30,32,38,48,50,52,120n = .  Additional comments follow the table. 

Table 1 

n u (20 digit accuracy) minimal polynomial for u 
2 –1.0000000000000000000 1u +  
3 –.50000000000000000000 2 1u +  
4 –.33333333333333333333 3 1u +  
5  .00000000000000000000 u 
6  .00000000000000000000 u 
7  .21013831273060308487 3 23 9 3 1u u u− − +  
8  .26120387496374144251 27 2 1u u+ −  
9  .33333333333333333333 3 1u −  
10  .40439432521625075685 3 27 4 2 1u u u− − +  
11  .44721359549995793928 25 1u −  
12  .44721359549995793928 25 1u −  
13  .54263648682963846368 8 7 6 5 4 3 224 12 8 38 24 12 8 1u u u u u u u u− − + + + − − +  
14  .56395030036050516749 4 3 24 2 3 1u u u− + −  
15  .59260590292507377810 13 6 2 3 15 4 3 2u u u u u− + + − −  
16  .61229461648269661601 6 5 4 3 223 6 5 4 3 2 1u u u u u u+ + + − − −  
17  .62809441507002164643 10 9 8 7 6 5 4

3 2
4 92 24 128 58 78 35
32 4 6 1
u u u u u u u

u u u
− + + − − +

+ − − −
 

18  .64869583222311652908 11 10 9 8 7 6 5

4 3 2
216 108 118 209 100 160 40
46 20 12 2 1

u u u u u u u
u u u u

+ + + − − +
+ − − + +

 

                                                           
2 Unfortunately later releases of Maple contain new Gröbner routines which are ineffective for these 
problems. 
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20  .67647713812965145207 3 221 9 5 1u u u− − +  
24  .72307846833350853703 3 27 3 1u u u+ − −  
27  .75838921077657748391 24 23 22 21 20 19

18 17 16 15 14

13 12 11 10

9 8 7 6 5

4 3 2

16 128 536 2088 4977 12258

20672 36126 51043 73408 104128

137928 175090 181700 155936

92916 32222 6608 16568 8192

1843 490 128 2 1

u u u u u u

u u u u u

u u u u

u u u u u

u u u u

− + − + −
+ − + − +
− + − +
− + + − +

− − + + −

 

30  .78155187509498732710 29 28 27

26 25 24

23 22 21

20 19 18

17

21508124014 32054106929 17306462662

25038151480 45587477052 38755887413

43255133604 45501640088 10460524458

17929512405 4828786226 5447284224

4496890016 42351615

u u u

u u u

u u u

u u u

u

+ −

− + +
− − +
+ − −
+ + 16 15

14 13 12

11 10 9 8

7 6 5 4 3

2

45 436447576

1539874224 487336414 100621747

97938998 20609352 665516 320703

272188 6712 34298 7289 386

368 56 3

u u

u u u

u u u u

u u u u u

u u

−
− − +

+ + + +
+ − − − +
+ + +

 

32  .79361661487126244036 22 21 20 19 18

17 16 15 14

13 12 11 10

9 8 7 6

5 4 3

6561 4374 94041 1289844 3605067

4301046 6019389 238896 10407366

7894164 7975830 7790088 3481466

3831332 843658 1303376 311819

148290 39667 3660 118

u u u u u

u u u u

u u u u

u u u u

u u u

− − + +
− + + −
+ + − −
+ + − −

+ + − − 25 18 9u u+ +

 

38  .82658325942170668123 14 12 10 8 6

4 2

363 7685 34299 77139 68985

31833 6561 729

u u u u u

u u

+ + − +
− + −

 

48  .85929229507565992163 5 4 3 234 15 12 14 6 1u u u u u+ − − − −  
50  .86817320912689745167 12 11 10 9 8 7

6 5 4 3 2

386 1679 6433 743 2287 19290

8490 19170 5580 6885 1755

2997 567

u u u u u u

u u u u u

u

+ + − − −
+ + − − −
+ −

 

52  .87296670878017463991 16 15 14 13

12 11 10 9

8 7 6 5 4

3 2

448001 1243448 2260200 2517944

1365340 424904 1782664 1847944

864186 12568 192280 95976 19676

936 248 24 1

u u u u

u u u u

u u u u u

u u u

+ + +
+ − − −
− − + + +

+ − − +

 

120  .94366230733258023900 10 9 8 7 6 5

4 3 2

1364 1230 709 1468 688 136

286 108 4 6 1

u u u u u u

u u u u

+ − − − +
+ + + − −

 

 
For each positive integer 14n ≤  and for 24,n =  table 1 gives the minimal polynomial 
associated with the proven optimal packing of n equal circles on a sphere, or in an 
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alternate parlance, the minimal polynomials associated with the proven optimal spherical 
codes of size n.  For the other values of n, the minimal polynomial is for the conjecturally 
optimal spherical code of size n.  For the smallest values of n, and for the classical cases 

4n =  (regular tetrahedron), 6n =  (regular octahedron), and 12n =  (regular icosahedron) 
it must be considered that these polynomials are well known.  However, the only one of 
these polynomials we have actually seen in print is for 8n =  (square antiprism), and we 
find this polynomial explicitly in Schütte and van der Waerden [14].  In the same paper 
they not only prove the optimality for the point arrangements with 5,6,7,8,n =  or 9 
points, but also provide sufficient information to easily compute the minimal polynomial 
for u for these values of n and for 10n = and 24.  For example, they state that the 
radius, ρ , of the smallest sphere on which 10 points must have pairwise linear separation 
of at least one unit satisfies the polynomial equation 
 

6 4 216 44 34 7 0ρ ρ ρ− + − = . 

We easily find that 2 1/(2 2 )uρ = −  and, after substituting this into the above polynomial 
and simplifying, the left side becomes a rational function with numerator 

3 27 4 2 1u u u− − + , our minimal polynomial for 10n = . 
 
The polynomials in Table 1 of degree 11 or less were found using Gröbner basis methods 
or resultants in Maple V release 4.  The polynomials of degree 12 or more were found 
using the well known LLL algorithm [10] with superrefined inputs with accuracy from 
one hundred to several hundred digits.  The resulting polynomials were ‘verified’  by 
computing twice as many digits for u from the polynomial system, using our super 
refinement (Newton-Raphson) method, and verifying that when these values are 
substituted into the alleged minimal polynomials the errors are reduced correspondingly. 
 

The minimal polynomial of u factors over ( 2)Q  for 8,16n = ;  the minimal polynomial 

for u factors over ( 3)Q  for 38n = ; the minimal polynomial for u factors over ( 5)Q  
for 11,12,120n = ; the minimal polynomial for u factors over Q extended by the ninth 
roots of unity when 7n = .  Schütte and van der Waerden [14] give the exact value 
 

cos80

1 cos80
u =

−

�

�

 

 
when 7,n =  and this is easily verified by substituting into 3 23 9 3 1u u u− − + , the minimal 
polynomial when 7n = .  Perhaps the easiest way to describe u when 7n = is to let τ  be 
the root of 3 3τ τ3 − +1  whose approximate value is .394931τ ≈ .  Then the circle 
diameter squared is 2 4D τ=  and 1 2u τ= − ≈ .210138 . 
 
The remainder of this section is devoted to providing exact coordinates for the 
polyhedron associated with the packing of 15 equal circles on a unit sphere.  This is the 
least complicated instance of multiplicity greater than one and the only one for which we 
have been able to present exact coordinates, or even compute a minimal polynomial. 
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Both of the equally optimal polyhedra for 15n =  have a top consisting of an equilateral 
triangle from which three equilateral triangular flaps hang down, and a similar bottom 
although now the flaps point upwards.  This accounts for 12 of the 18 vertices shown in 
Figure 1, where the top and bottom are transparent and each has 3 more triangles 
attached, ending in the top and bottom pairs P, Q and I, J and A, B.  Note that the bottom 
is rotated a bit with respect to the top.  This accounts for 18 vertices in all. 
 
 

I

A

P

J

B

Q

V2

V3

V1

V23

V31

V12 W31

W23

W12

W1

W2 W3

 

 

Figure 1 

The reason there are 18 points instead of 15 is that we hope to lengthen all edges a bit and 
rotate the top with respect to the bottom a little to make P coincide with Q and I coincide 
with J and A coincide with B on the equator, thereby reducing the total number of vertices 
by 3.  Unfortunately, however, this causes the points 12V  and 12W  to be too close to each 

other (closer than the length of the triangle edges), and similarly for the pairs 23V , 31W  

and 31V , 23W , and hence this cannot possibly be an optimal arrangement.  The solution is 

to leave the  pairs P, Q and I, J and A, B as 6 separate points, but eventually throw away 
one point from each pair.  This will again reduce the total number of points  from 18 to 
15.  First we use up one of the two degrees of freedom by rotating the top with respect to 
the bottom until 12W  is equidistant from P and 12V .  By the dihedral symmetry of the 18 

points, this causes 31W  to be equidistant from I and 23V , and 23W  to be equidistant from A 

and 31V , and the same for 12V  to J and 12W , 23V  to B and 31W , and 31V  to Q and 23W .  

These edges are all equal in length but may be shorter or longer than the triangle edges.  
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We use up the other degree of freedom by adjusting the triangle edges until all of these 
edges are equal, which also makes their common length a maximum. 

 

Now, concerning the proximate point pairs, ( , )P Q , ( , )I J , ( , )A B , the first of each pair 
lies above the equator and the second below.  If we remove one point from each pair (and 
the incident edges) what remains is still a rigid structure but now with only 15 points.  
There are two possibilities:  either the removed points all lie on one side of  the equator, 
or two are on one side and one on the other.  In the first case the dihedral symmetry is 
broken and reduced to a threefold rotational symmetry.  In the second case the dihedral 
symmetry is broken completely and the resulting object has no symmetry.  These two 
structures are the two putatively optimal arrangements for 15 points on a sphere, and 
clearly they have identical shortest edges. 

 

Figures 2a and 2b show planar maps of these two structures.  These were obtained by 
projecting the structures onto an equatorially tangent cylinder and unrolling it.  The left 
and right sides should be identified in each figure.  All solid lines represent shortest 
edges, 30 for each structure.  The dashed lines and the small empty circles they connect 
represent the removed edges and points.  

 

  

V2V1 V3

V12 V31V31 V23

IP A

W31W12 W23W23

W1W2 W3

V3

W3

BJQ

 

 

Figure 2a   

 15n =  threefold rotational symmetry 
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Figure 2b 

  15n =  no symmetry 

 
Note the rotationally symmetric hexagons with two alternative locations for points within.  
The presence of such hexagons is a repeating theme which will recur in all of the point 
arrangements discussed in subsequent sections. 
 
Now we give exact coordinates for the 18 points described in the two arrangements for 

15n = .  To take advantage of the threefold symmetry axis in the configuration of 18 
points we position the centers of the top and bottom triangles on the line x y z= = , and 
place  the sphere center at the origin.  The coordinates then take the form: 
 
 1 2 3, ,V V V : ( ,  ,  )a b c , ( ,  ,  )c a b , ( ,  ,  )b c a  

 12 23 31, ,V V V : ( ,  ,  )d e f , ( ,  ,  )f d e , ( ,  ,  )e f d  

 , ,P I A : ( ,  ,  )r s t , ( ,  ,  )t r s , ( ,  ,  )s t r  
  , ,Q J B :         ( , , )t s r− − − , ( , , )r t s− − − , ( , , )s r t− − −  

 12 23 31, ,W W W : ( , , )f e d− − − ,   ( , , )e d f− − − , ( , , )d f e− − −  

 1 2 3, ,W W W : ( , , )c b a− − − , ( , , )b a c− − − , ( , , )a c b− − −   

 
All quantities will be expressed in terms of the numbers a, b, c and u which must satisfy  
the constraints 2 2 2 1a b c+ + =  and ac ba cb u+ + = .  The first equation indicates that 1V  

is a unit vector, and the second indicates that the cosine of the minimal separation angle, 
e.g. the inner product of 1V  and 2V , equals the number u.  The numeric values of a, b, c, 

and u will be determined later.  Details of the computations are omitted but may be 
checked, most easily with the aid of a computer algebra system.  For d, e, and f we obtain 
 

(2 2 ) (2 2 ) ( 2 2 )
, ,

1 1 1

a b c u b a b c u c a b c u a
d e f

u u u

− + − + − − − + + −= = =
+ + +

, 

 
and for r, s, t we obtain 

2

2

(6 2 3 ) 2( )

( 1)

a c b u a b c u b
r

u

− + + − − −=
+

 



 10 

 
2

2

(6 2 3 ) 2( )

( 1)

b a c u b c a u c
s

u

− + + − − −=
+

 

 
2

2

(6 2 3 ) 2( )

( 1)

c b a u c a b u a
t

u

− + + − − −=
+

. 

 
With these values all 18 vectors will be unit vectors, and all inner products between unit 
vectors pointing to endpoints of triangle edges in Figure 2a (or Figure 2b) will be equal to 
u.  This is true irrespective of the numeric values of a, b, c and u, providing only that the 
constraint equations are true and 1u ≠ − . 
 
To determine the values of a, b, c, and u which give the optimal structures for 15n = , we 
must symbolically solve a system of four simultaneous quadratic equations consisting of 
the two inner product equations 12 12W P V P u= =� �  (representative of  non-triangle edges) 

together with the constraint equations (see the discussion immediately following Figure 
1).  The results can be verified using Gröbner basis or other elimination methods in most 
computer algebra systems.  We find that u satisfies the univariate polynomial equation 
(its minimal polynomial) 
 

5 4 3 213 6 2 3 1 0u u u u u− + + − − = , 
 

and has the approximate numeric value .592605902925073778u = .  From this we find b 
using the equation 
 

2 2 4 4 3 2 2 2 2 29(4 1)(3 1) 2 (62 155 37 51 15) (4 1)(5 1) 0,u u u b u u u u u b u u u u− − + + − − + + + − − − =
 
which is a quadratic equation in 2b .  Its roots are approximately 1 .1714903098093749756,b =  

2 .814007151904509920b =  and their negatives.  The equation 

 
2 2 2 3 2 2

2 2 2

(27 18 29 3 18 11 )

(3 1)(9 3 5 )

b b u b u u b u u
c

u b u b u u

+ + + − −=
+ + − +

 

 
gives 1 .4117319140228847856c = , 2 .5737655476910001097c = , and the negatives of 

these using the four possible substitutions of b.   Finally, substituting 1b b=  and 1c c=  or 

2b b=  and 2c c=  into the equation  

u bc
a

b c

−=
+

 

we get two solutions 1 .895023968738567582a =  and 2 .090473492975317313a =  for a.  

Although it appears that we have four solutions, u as obtained above, together with one of 

1 1 1( , , )a b c , 2 2 2( , , )a b c , 1 1 1( , , )a b c− − −  or 1 1 1( , , )a b c− − − , in fact these all give the same 

arrangement of 18 points on a sphere up to orthogonal matrices.  Specifically, passing 
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from 1 1 1( , , )a b c  to 2 2 2( , , )a b c  simply rotates the structure by 180�  about the line 

x y z= = .  In fact, one can show that the matrix equation 
 

1 2

1 2

1 2

1 2 2
1

2 1 2
3

2 2 1

a a

b b

c c

−� �� � � �
� �� � � �− =� �� � � �
� �� � � �−� �� � � �

 

 
is exact.  Also, the structures associated with 1 1 1( , , )a b c and 1 1 1( , , )a b c− − −  are identical 

except they are of opposite chirality.  The same is true for 2 2 2( , , )a b c  and 1 1 1( , , )a b c− − − . 

 
So there is really just one structure.  A couple more facts about it:  if β  is the angle of 
rotation between the top and bottom triangles as measured by the angle between the 
vectors 3 1W W−  and 2 1V V−  then 

1
2

1 3
cos 0.1400052

1 3

u

u
β −= ≈

+
, 

so β ≈ 98.0481� .  We might be more likely to consider the offset angle between the top 

and bottom triangles as 120 21.95185β− ≈� � .  The angle between the proximate points, 
that is, between P and Q or between I and J or between A and B is approximately 
12.34265� .   
 
This arrangement of 18 points is not a good one because of the pairs ( , )P Q , ( , )I J , and 
( , )A B  of close-together points.  But, by removing one point from each pair, which can be 
done in two geometrically different ways, we obtain the two equally optimal but 
geometrically different arrangements of 15 points on a sphere.  This, however, comes at 
the cost of breaking the symmetry of the original structure. 
 
 

5 Symmetry Breaking 

An informal definition might read as follows:  symmetry breaking occurs if and only if a 
symmetrical antecedent structure is followed, logically or temporally, by a less 
symmetrical consequent structure.  A large general class of examples is that in which a 
governing equation or system of equations has a solution less symmetrical than the 
equation(s) (Sattinger 1980 [13]).  For these the symmetry breaking is said to be 
spontaneous.  Another large class is that of phase transitions, in which a mathematical or 
material system experiences an abrupt reduction of symmetry when a parameter crosses a 
critical value.  For these the symmetry breaking is said to be induced.  In most cases the 
symmetry group of the consequent structure is a subgroup of the antecedent group.  
Perhaps this technical condition ought to be added to the definition.3  A frequent 
accompaniment of symmetry breaking is an increase in the number of consequent 
                                                           
3 A systematic scholarly account of symmetry breaking and its multitude of manifestations in the arts and 
sciences is long overdue. 
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structures.  Thus in many nonlinear systems a single stable solution branches into two or 
more stable solutions at a bifurcation (Sattinger [13]). 
 

In the context of dense packings of congruent circles on a sphere we find that symmetry 
breaking is manifested in the existence of structures that are very nearly symmetrical.  
Such structures have much replication of distances between vertices.  Thus a table of the 
frequency of intervertex distance values is a very reliable tool for recognizing symmetry 
breaking in a single structure.  An additional clue pointing toward symmetry breaking is a 
small excess in the number of shortest edges above the minimum value of 2 2n − . 
 

6 Symmetry Breaking With Multiplicity One 

In order to introduce symmetrical hexagonal toggles in the simplest possible contexts, we 
first describe two structures in which symmetry breaking occurs but fails to produce 
multiple packings. 
 

The first is the ‘best’  packing for n=41, an old structure in which symmetry breaking was 
noticed, but the toggle feature was not (Kottwitz [6]).  The structure as a whole has no 
symmetry; however, a subset of 40 vertices constitutes a rigid substructure with a twofold 
axis of rotation (point group C2 in Schoenflies notation).  Thus C2 is the antecedent 
symmetry group in this instance.  The odd 41st vertex lies very close to the rotation axis.  
The structure can be oriented to make this axis vertical with the odd vertex close to the 
north pole.  An orthographic projection of the congruent circles in that neighborhood is 
shown in Figure 3. 

1A
2

4 6

3

57

1B

 

Figure 3 

Schematic diagram of toggle for n=41. 
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Note the distortion due to flattening; on the spherical surface all of the circles are 
congruent and all segments represent equal arcs of great circles.  The odd circle, centered 
at vertex 1A about 1.05° from the north pole, is surrounded by a ring of six tangent circles 
in a distorted hexagonal pattern.  The odd circle is locked into position by its contacts 
with circles 2, 3 and 4.  Since the ring consists of three symmetrically arranged pairs of 
circles, it possesses twofold rotational symmetry around the north pole.  This symmetry 
and the finite offset of vertex 1A from the north pole guarantees that there is an 
alternative site for a vertex at 1B.  It is not an additional site, since the circles at 1A and 
1B would overlap.  A circle (shown by a dotted line) at 1B would be locked by contacts 
with circles 2, 3 and 5.  Now let us imagine that we have begun construction of the 
complete packing by placing 40 of the circles in all of the twofold symmetrical positions 
(not shown).  Then for the final  placement we must choose between 1A and 1B, thus 
breaking the symmetry.  At first sight, it might seem that we can create two distinct 
structures.  However, we soon realize that we would only have two representations of the 
same structure, rotated 180° with respect to each other.  Thus we have symmetry breaking 
but no increase in multiplicity. 
 

It must be emphasized that the two alternative vertex sites are well defined points.  Thus 
any motion between them would have the nature of a snap action.  It is this resemblance 
to a toggle switch that has led us to dub the seven-circle structure in Figure 3 a “ rotational 
hexagonal toggle”  or “ toggle”  for short. 
 
The second instance of symmetry breaking with multiplicity one occurs for n=54, again 
an old structure in which symmetry breaking was noticed, but the toggle features were not 
(Kottwitz [6]).  The whole structure has no symmetry; but a subset of 52 vertices 
constitutes a rigid substructure having a fourfold rotation-reflection axis (antecedent 
group S4).  When the structure is oriented to have its symmetry axis vertical, there is a 
toggle at the north pole and an identical one at the south pole.  In accordance with S4 
symmetry the two toggles are shifted 90� with respect to each other.  The situation is 
shown schematically in Figure 4, where only the two pairs of potential sites (A & B; I & 
J) for toggling vertices are shown. Placed at alternating corners of a long upright 
parallelepiped with a square cross section they directly indicate the symmetry of the 
omitted subset of 52 vertices. Since each of these pairs is very close (0.04°) to the north 
or south pole, only one member of each can be occupied by a vertex.  There are four 
possible combinations of these vertices:  AI, BJ, AJ and BI.  It is easy to see that AI and 
BJ give rotated versions of precisely the same structure, as do AJ and BI.  To get the 
relationship between AI and AJ, we apply the basic symmetry operation (generator) of the 
group S4, which is a rotation of 90° around the vertical z-axis followed by a reflection in 
the horizontal x, y-plane, to the combination AI.  The result is AJ.  This shows that AI and 
AJ are merely rotated mirror images of each other; the same is true for BI and BJ.  
According to the convention adopted in Section 3, right-handed and left-handed versions 
of a structure are equivalent  for purposes of counting multiplicity.  Thus, although there 
is symmetry breaking from the fourfold antecedent group S4 to the trivial group C1, the 
multiplicity is only one. 
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Figure 4 

Schematic diagram of the two pairs of toggle sites for n=54. 

 

7 Symmetry Breaking With Multiplicity Two 

The first instance of symmetry breaking with multiplicity two occurs for n=15, an old pair 
in which the toggle features were not previously noticed (Kottwitz [6]).  One of the 
structures has a threefold rotation axis (group C3), and the other has no symmetry.  A 
subset of 12 of the vertices constitutes a rigid substructure having a vertical threefold 
rotation axis and three horizontal twofold rotation axes (antecedent group D3 of order 6).  
Each of the three odd vertices lies inside a rotational hexagonal toggle centered at a 
horizontal axis.  The situation is shown schematically in Figure 5, where only the three 
pairs of potential toggle sites (A & B; I & J; P & Q) are placed along the edges of a 
circular band representing an equatorial zone of the sphere.  They embody the sixfold 
symmetry of the omitted subset of 12 vertices.  Again only one of each pair of sites may 
be occupied by a vertex.   With two choices at each toggle, there are a total of 23=8 
combinations.  However two of these, AIP and BJQ, in which all three odd vertices are on 
the same side of the equator, are rotationally equivalent  So are the other six 
combinations, in which there is one vertex on one side of the equator and two on the 
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other.  Thus there are only two distinct structures, the first of which has threefold 
rotational symmetry, while the second has no symmetry. 

 

A

B

I

J

P

Q

N

S  

Figure 5 

Schematic diagram of the three pairs of toggle sites for n=15 and n=117. 

The second instance of multiplicity two occurs for n=62.  One of these structures was 
discovered previously (Sloane & Hardin [5]), while the other is new.  Each of these 
distinct structures has a single twofold rotation axis (group C2).  A subset of 60 of the 
vertices constitutes a rigid substructure having three orthogonal twofold axes (antecedent 
group D2 of order four).  Each of the two odd vertices lies inside a rotational toggle 
centered at  opposite ends of one of the horizontal axes.  The situation is shown 
schematically in Figure 6, in which only the two pairs of potential toggle sites (A & B; I & 
J) are placed at alternate corners of a long thin rectangular parallelepiped.  They directly 
indicate the symmetry of the omitted subset of 60 vertices.  Since each of these pairs is 
very close (about 0.9° to the rotation axis (x-axis), only one member of each can be 
occupied by an odd vertex.  There are 22=4 possible combinations:  AI, BJ, AJ and BI.  AI 
and BJ give the same structure, and AJ and BI give another one.  Thus there are only two 
distinct structures, each having twofold rotational symmetry (C2). 
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Figure 6 

Schematic diagram of the two pairs of toggle sites for n=62 and n=76. 

The third instance of multiplicity two occurs for n=76.  Again one of these structures was 
found previously (Sloane and Hardin, [5]), and the other is new.  There is a great 
resemblance between this pair of structures and the pair for n=62 discussed above.  The 
schematic diagram in Figure 6 is still applicable.  The major difference is that these 
structures have 74 vertices in the omitted subset having unbroken antecedent D2 
symmetry, including two located on the y-axis.  This accounts for the fact that this 
number (74) is not a multiple of 4.  Again there are two distinct structures, each having 
twofold rotational symmetry (C2). 
 

The fourth instance of multiplicity two occurs for n=117.  One of these structures was 
found previously (Sloane & Hardin [5]), and the other is new.  This pair bears a great 
resemblance to the pair for n=15.  The diagram in Figure 5 is applicable.  Thus there are 
two distinct structures, one having threefold rotational symmetry (C3) and the other 
having no symmetry. 
 

8 Summary of Results 

A summary of the symmetry-related properties of the packings that exhibit symmetry 
breaking is given in Table 1.  For each value of n the following items are listed: the 
Schoenflies symbol G of the point group; an indication E (Yes/No) whether or not the 
structure is chiral; the order O of the point group; the number T of toggle features; the 
multiplicity M; a list of si(mi) for the number si of subsets containing mi equivalent 
vertices; the Schoenflies symbol GA of the antecedent point group; the order OA of the 
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antecedent point group; and a literature reference.  Several of these items, as well as most 
of those in the following Table 2, have been described in detail previously (Kottwitz, [6]). 

Table 1 

 15A C3 Y 3 3 2 5(3) D3 6 Schütte & van der Waerden (1951), [12]

 15B C1 Y 1 3 2 15(1) D3 6 Kottwitz (1991), [6]

 41 C1 Y 1 1 1 41(1) C2 2 Kottwitz (1991), [6]

 54 C1 Y 1 2 1 54(1) S4 4 Kottwitz (1991), [6]

 62A C2 Y 2 2 2 31(2) D2 4 Hardin, Sloane & Smith (1994), [5]

 62B C2 Y 2 2 2 62(1) D2 4 Present work (found in 1994)

 76A C2 Y 2 2 2 37(2),2(1) D2 4 Hardin, Sloane & Smith (1994), [5]

 76B C2 Y 2 2 2 38(2) D2 4 Present work (found in 1994)

117A C3 Y 3 3 2 39(3) D3 6 Present work (found in 1994)

117B C1 Y 1 3 2 117(1) D3 6 Hardin, Sloane & Smith (1994), [5]

n G E O T M si(mi) GA OA Reference

 

A summary of the metric properties of these packings is given in Table 2.  The following 
items are listed there: the linear diameter D of the congruent circles; the number N of 
shortest edges (circle contacts); the average distance A between vertices of the rigid 
framework; the average B of the reciprocal of the distance between vertices of the rigid 
framework; the angular diameter d in degrees of the congruent circles; the packing 
density F; the number R of vertices free to rattle; the number H of holes (which contain 
rattlers); and the central angle t in degrees between the toggle positions. 

Table 2 

 15A 0.90265618822997  30 1.412540888198 0.769991232589 53.657850129933 0.807314364191 0 0 12.342651435515

 15B 0.90265618822997  30 1.412675682176 0.769957408268 53.657850129933 0.807314364191 0 0 12.342651435515

 41  0.56349562016289  81 1.363408493292 0.849150683902 32.729094415061 0.830485858088 0 0  2.109406749588

 54  0.49597518817382 106 1.356382579540 0.866351797858 28.716920529594 0.843393383937 0 0  0.086763877870

 62A 0.46152605437000 124 1.353475945172 0.874443591227 26.683996996404 0.836690554611 0 0  1.714721258402

 62B 0.46152605437000 124 1.353475918465 0.874443597904 26.683996996404 0.836690554611 0 0  1.714721258402

 76A 0.41801164317790 150 1.350104107031 0.885249889189 24.128194441650 0.839252939607 2 2  1.039201778830

 76B 0.41801164317790 150 1.350104096591 0.885249891799 24.128194441650 0.839252939607 2 2  1.039201778830

117A 0.33803314892755 225 1.344344359790 0.906792209051 19.461291100101 0.841627279398 6 3  0.064529442388

117B 0.33803314892755 225 1.344344359764 0.906792209073 19.461291100101 0.841627279398 6 3  0.064529442388

n D N A B d o F R H t o

 

Detailed numerical results for each packing are available electronically.4  The items 
tabulated include coordinates for each vertex. 
 

                                                           
4 The Internet address is http://jbuddenh.home.texas.net/pack/sphere/mult/ 
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9 Discussion 

The single feature common to all of the observed instances of symmetry breaking is the 
rotational hexagonal toggle sketched in Figure 3.  Each of these toggles is centered at a 
twofold rotation axis of a substructure that contains a great majority of the vertices.  The 
presence of a vertex at one of the toggle sites destroys the antecedent rotational symmetry 
operation, thus reducing the symmetry of the complete structure. 
 

If only one toggle feature is present, as for n=41, symmetry breaking occurs, but 
multiplicity is not increased.  If there are two toggles, the situation is more complicated; 
for n=54 multiplicity is not increased, but for both n=62 and n=76 the multiplicity is two.  
Finally for both n=15 and n=117, where the number of toggles is three, the multiplicity is 
two. 
 

The toggles represented schematically by Figure 3 differ in size and shape.  In fact these 
toggles have two degrees of freedom.  A natural pair of descriptive parameters would be 
the angular diameter d of the congruent circles and the arc length between the alternative 
vertex sites 1A and 1B. 
 

 

10 Hypothetical Structures With Symmetry Breaking 

In addition to those already observed it is easy to imagine other types of structures having 
symmetry breaking and multiplicity greater than one.  The simplest would have an 
antecedent point group C2  (a single twofold axis) and a toggle centered at each pole.  The 
consequent structures would have multiplicity two and no symmetry. 
 
A more general class of structures might have an antecedent point group Dj , where j > 3.  

This has a j-fold vertical axis and j twofold horizontal axes.  There would be a toggle 
centered at one pole of each horizontal axis.  For example, for j = 4, there would be 24 
=16 possible combinations of toggle settings eventually resulting in a multiplicity of four.  
In fact, a packing in this class was described a decade ago, but since it was found to be 
suboptimal and unstable, it was mentioned only in passing (Leech & Tarnai [9]). 
 
A different class of structures could result from a hypothetical variety of toggle feature, 
which is shown schematically in Figure 7.  The only difference between Figures 3 and 7 
is the positioning of vertices 4 and 6.  In Figure 7 the hexagonal ring has reflectional 
rather than rotational symmetry.  Thus we designate the entire hypothetical feature as a 
"reflectional hexagonal toggle".  Such a feature would naturally be centered at a point on 
a reflection plane.  If two or more such features were located at the same reflection plane, 
then alternative combinations of vertex sites like 1A and 1B would result in symmetry 
breaking and increased multiplicity. 
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Figure 7 

Schematic diagram of a hypothetical reflectional hexagonal toggle. 

The ultimate variety of hexagonal toggle comes into existence when, for a given circle 
size, the separation between vertex sites 1A and 1B reaches its maximum value.  Then the 
diagrams in Figures 3 and 7 coalesce into one, and the hexagonal ring has both rotational 
and reflectional symmetry.  Since such a hypersymmetric toggle has only one degree of 
freedom, it must be a highly improbable instrument for symmetry breaking in very dense 
packings.  Nevertheless, it may be of some interest, since its two limiting cases do in fact 
occur in two of the most interesting and symmetric densest packings.  As the diameter of 
circles in the hypersymmetric hexagonal toggle decreases to zero, the separation between 
the vertex sites 1A and 1B decreases to zero. As long as 1A and 1B are distinct, there is a 
legitimate toggle.  At the limit, where 1A and 1B coincide, the toggle feature vanishes, 
and we are left with only one inner circle in contact with the six congruent circles that 
form a regular hexagonal ring.  This limit corresponds to the hexagonal packing of circles 
on a plane, known to be the densest possible.  At the other extreme, as the separation 
between 1A and 1B increases to d, the overlap between the inner circles decreases toward 
zero.  As long as the area of overlap is nonzero, there is a legitimate toggle.  At the limit, 
where the separation is d, the overlap and the toggle feature vanish simultaneously.  Then 
there is space for an additional inner circle in the packing.  Each inner circle is in contact 
with five congruent circles that form a regular pentagonal ring.  This limit corresponds to 
the regular icosahedral packing of 12 congruent circles on a sphere, known to be a very 
dense packing.  Thus we conclude by noting that the hypothetical hypersymmetric toggle 
is in some sense a connecting link between the two most remarkable packings known. 
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