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Abstract

In 1994, S. K. Stein and S. Szab6 posed a problem concerning simple
three-dimensional shapes, known as semicrosses, or tripods. By defini-
tion, a tripod is formed by a corner and the three adjacent edges of an
integer cube. How densely can one fill the space with non-overlapping
tripods of a given size? In particular, is it possible to fill a constant
fraction of the space as the tripod size tends to infinity? In this pa-
per, we settle the second question in the negative: the fraction of the
space that can be filled with tripods of a growing size must be infinitely
small.

1 Introduction

In [11, 10], S. K. Stein and S. Szabé posed a problem concerning simple
three-dimensional polyominoes, called “semicrosses” in [11], and “tripods”
in [10].

A tripod of size n is formed by a corner and the three adjacent edges
of an integer n x n X n cube (see Figure 1). How densely can one fill the
space with non-overlapping tripods of size n? In particular, is it possible to
keep a constant fraction of the space filled as n — oo? Despite their simple
formulation, these two questions appear to be yet unsolved.

In this paper, we settle the second question in the negative: the density
of tripod packing has to approach zero as tripod size tends to infinity. It is
easy to prove (see [11]) that this result implies similar results in dimensions
higher than three.

Instead of dealing with the problem of packing tripods in space directly,
we address an equivalent problem, also introduced in [11, 10]. In this alter-
native setting, tripods of size n are to be packed without overlap, so that
their corner cubes coincide with one of the unit cells of an n x n x n cube.
We may also assume that all tripods have the same orientation. If we denote
by f(n) the maximum number of non-overlapping tripods in such a pack-
ing, then the maximum fraction of space that can be filled with arbitrary



Figure 1: A tripod of size n = 4

non-overlapping tripods is proportional to f(n)/n? (see [11] for a proof).
The only known values of function f are f(1) up to f(5): 1, 2, 5, 8, 11. Tt
is easy to see that for all n, n < f(n) < n?. Stein and Szabé’s questions
are concerned with the upper bound of this inequality. They can now be
restated as follows: what is the asymptotic behaviour of f(n)/n? as n — 0o0?
In particular, is f(n) = o(n?), or is f(n) bounded away from 07

In this paper we show that, in fact, f(n) = o(n?), so the fraction of the
space that can be filled with tripods of a growing size is infinitely small.
Our proof methods are taken from the domain of extremal graph theory.
Our main tools are two powerful, widely applicable graph-theoretic results:
Szemerédi’s Regularity Lemma, and the Blow-up Lemma.

2 Preliminaries

Throughout this paper we use the standard language of graph theory, slightly
adapted for our convenience. A graph G is defined by its set of nodes V(G),
and its set of edges E(G). All considered graphs are simple and undirected.
The size of a graph G is the number of its nodes |V(G)|; the edge count
is the number of its edges |E(G)|. A graph H is a subgraph of G, denoted
HCQG, it V(H) CV(G), E(H) C E(G). Subgraph H C G is a spanning
subgraph of G, denoted H C G, iff V(H) = V(G).

A complete graph on r nodes is denoted K,. The term k-partite graph
is synonymous with “k-coloured”. We write bipartite for “2-partite”, and
tripartite for “3-partite”. Complete bipartite and tripartite graphs are de-
noted K,s and K4, where r, s, t are sizes of the colour classes. Graph
Ky = K (short for K ;) is a single edge; we call its complement K, (an
empty graph on two nodes) a nonedge. Graph K3 = Kjq; is called a tri-
angle; graph Kj9; is called a diamond (see Figure 2). We call a k-partite
graph equi-k-partite, if all its colour classes are of equal size.



Figure 2: The diamond graph Kjo;

The density of a graph is the ratio of its edge count to the edge count of
a complete graph of the same size: if G C K,,, then

dens(6) = [B(G)/|B()] =BG (3 ).
The bipartite density of a bipartite graph G C K, is
denss (G) = |E(G)|/|E(Kun)| = |B(G)|/(mn).
Similarly, the tripartite density of a tripartite graph G C Ky, is
dens3 (G) = |E(G)|/|E(Kmnp)| = |[E(G)|/(mn +np + pm).

Let H be an arbitrary graph. Graph G is called H -covered, if every edge
of G belongs to a subgraph isomorphic to H. Graph G is called H -free, if G
does not contain any subgraph isomorphic to H. In particular, we will be
interested in triangle-covered diamond-free graphs.

Let us now establish an upper bound on the density of an equitripartite
diamond-free graph.

Lemma 1. The tripartite density of an equitripartite diamond-free graph G
is at most 3/4.

Proof. Denote |V (G)| = 3n. By Dirac’s generalisation of Turdn’s theorem
(see e.g. [7, p. 300]), we have |E(G)| < (3n)?/4. Since |E(Kny)| = 3n?, the
theorem follows trivially. |

The upper bound of 3/4 given by Lemma 1 is not the best possible.
However, that bound will be sufficient to obtain the results of this paper.
In fact, any constant upper bound strictly less than 1 would be enough.

3 The Regularity Lemma and the Blow-up Lemma

In most definitions and theorem statements below, we follow [9, 8, 3].
For a graph G, and node sets X, Y C V(G), X NY = (), we denote by
G(X,Y) C G the bipartite subgraph obtained by removing from G all nodes



except those in X UY, and all edges adjacent to removed nodes. Let F' be
a bipartite graph with colour classes A, B. Given some € > 0, graph F is
called e-regular, if for any X C A of size |X| > € |A], and any Y C B of
size |Y| > € |B|, we have

|densg (F'(X,Y)) — denso(F)| <e.

Let G denote an arbitrary graph. We say that G admits an e-partitioning
of order m, if V(G) can be partitioned into m disjoint subsets of equal size,
called supernodes, such that for all pairs of supernodes A, B, the bipartite
subgraph G(A, B) is e-regular. The e-regular subgraphs G(A, B) will be
called superpairs.

For different choices of supernodes A, B, the density of the superpair
G(A, B) may differ. We will distinguish between superpairs of “low” and
“high” density, determined by a carefully chosen threshold. For a fixed d,
0 <d <1, we call a superpair G(A, B) a superedge, if densy(G(A, B)) > d,
and a super-nonedge, if densy(G(A, B)) < d. Now, given a graph G, and
its e-partitioning of order m, we can build a high-level representation of
G by a graph of size m, which we will call ¢ d-map of G. The d-map M
contains a node for every supernode of G. Two nodes of M are connected
by an edge, if and only if the corresponding supernodes of G are connected
by a superedge. Thus, edges and nonedges in M represent, respectively,
superedges and super-nonedges of G. For a node pair (edge or nonedge)
e in G, we denote by u(e) the corresponding pair in the d-map M. We
call p: E(G) — E(M) the mapping function. The union of all superedges
p~H(E(M)) C E(GQ) will be called the superedge subgraph of G. Similarly,
the union of all super-nonedges in G will be called the super-nonedge sub-
graph of G.

We rely on the following fact, which is a restricted version of the Blow-up
Lemma (see [8]).

Theorem 1 (Blow-up Lemma). Let d > € > 0. Let G be a graph with
an e-partitioning, and let M be its d-map. Let H be a subgraph of M with
mazimum degree A > 0. Ife < (d—€)>/(2+A), then G contains a subgraph
isomorphic to H.

Proof. See [8]. |

Since we are interested in diamond-free graphs, we take H to be a dia-
mond. We simplify the condition on d and €, and apply the Blow-up Lemma
in the following form: if e < (d—¢)3/5, and G is diamond-free, then its d-map
M is also diamond-free.

Our main tool is Szemerédi’s Regularity Lemma. Informally, it states
that any graph can be transformed into a graph with an e-partitioning by
removing a small number of nodes and edges. Its precise statement, slightly
adapted from [9], is as follows.



Figure 3: An axial collision

Theorem 2 (Regularity Lemma). Let G be an arbitrary graph. For every
e > 0 there is an m = m(e) such that for some Gy C G with |E(G)\E(Gy)| <
e |V(G)|?, graph Gy admits an e-partitioning of order at most m.

Proof. See e.g. [9, 3]. [ |

The given form of the Regularity Lemma is slightly weaker than the
standard one. In particular, we allow to remove a “small” number of nodes
and edges from the graph G, whereas the standard version only allows to
remove a “small” number of nodes (with adjacent edges), and then a “small”
number of superpairs. In our context, the difference between two versions
is insignificant.

Note that if |E(G)| = o(]V(G)|?), the statement of the Regularity Lemma
becomes trivial. In other words, the Regularity Lemma is only useful for
dense graphs.

4 Packing tripods

Consider a packing of tripods of size n in an n X n X n cube, of the type
described in the Introduction (no overlaps, similar orientation, corner cubes
coinciding with n x n x n cube cells). A tripod in such a packing is uniquely
defined by the coordinates of its corner cube (7,7, k), 0 < i,5,k < n. More-
over, if two of the three coordinates (7,7j,k) are fixed, then the packing
may contain at most one tripod with such coordinates — otherwise, the
two tripods with an equal pair of coordinates would form an azial collision,
depicted in Figure 3.

We represent a tripod packing by an equitripartite triangle-covered graph
G C Kpnn as follows. Three color classes U = {u;}, V = {v;}, W = {wy},
0 < 14,7,k < n, correspond to the three dimensions of the cube. A tripod
(¢,7,k) is represented by a triangle {(u;,v;), (vj, wg), (wg,u;)}. To prevent
axial collisions, triangles representing different tripods must be edge-disjoint.
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Figure 4: A simple collision

Hence, if m is the number of tripods in the packing, then the representing
graph G contains 3m edges.

We now prove that the graph G is diamond-free. In general, G might
contain a triangle with three edges coming from three different tripods;
such a triangle would give rise to three diamonds. To prove that such a
situation is impossible, we must consider, apart from axial collisions, also
simple collisions, depicted in Figure 4.

Lemma 2. A tripod packing graph is diamond-free.

Proof. It is sufficient to show that the tripod packing graph does not contain
any triangles apart from those representing tripods. Suppose the contrary:
there is a triangle {(u;,v;), (vj, wk), (W, u;)}, which does not represent any
tripod. Then its three edges must come from triangles representing three
different tripods; denote these tripods (4,4, k'), (4,5, k), (7,4, k), where i #
i',j# 7', k # K. Consider the differences i — 4, j' — j, k' — k, all of which
are non-zero. At least two of these three differences must have the same
sign; without loss of generality assume that 7' — 4, 5/ — j are of the same
sign. Thus, we have either i’ <1, 7' < j, or i’ > i, 7/ > j. In both cases, the
tripods (4,5, k), (7,4, k) collide. Hence, our assumption must be false, and
the triangle {(u;,v;), (v, wy), (wg,u;)} not representing any tripod cannot
exist. Therefore, no triangles in G can share an edge — in other words, G
is diamond-free. |

Thus, tripod packing graphs are equitripartite, triangle-covered and diamond-
free. Note that these graph properties are invariant under any permutation
of graph nodes within colour classes, whereas the property of a tripod pack-
ing being overlap-free is not invariant under permutation of indices within
each dimension. Hence, the converse of Lemma 2 does not hold. However,
even the loose characterisation of tripod packing graphs by Lemma 2 is
sufficient to obtain our results.

The following theorem is a special case of an observation attributed to
Szemerédi by Erdés (see [5], [2, p. 48]). Since Szemerédi’s proof is apparently



unpublished, we give an independent proof of our special case.

Theorem 3. Consider an equitripartite, triangle-covered, diamond-free graph
of size n. The maximum density of such a graph tends to 0 as n — oo.

Proof. Suppose the contrary: for some constant d > 0, and for an arbitrarily
large n (i.e. for some n > ng for any ng), there is a tripartite, triangle-
covered, diamond-free graph G of size n, such that dens3(G) > d > 0. The
main idea of the proof is to apply the Regularity Lemma and the Blow-up
Lemma to the graph G. This will allow us to “distil” from G a new graph,
also triangle-covered and diamond-free, with tripartite density higher than
dens3(G) by a constant factor A\. Repeating this process, we can raise the
density to A\?d, A\3d, etc., until the density becomes higher than 1, which is
an obvious contradiction.

Let us now fill in the details of the “distilling” process. We start with
a constant v, 0 < v < 1; its precise numerical value will be determined
later. Select a constant € > 0, such that e < (yd — €)3/5, as required by the
Blow-up Lemma. By the Regularity Lemma, graph G admits an e-regular
partitioning, the order of which is constant and independent of the size of
G. Denote by M the yd-map of this partitioning, and let u : G — M be the
mapping function.

Consider the superedge subgraph u~'(E(M)). Let Go C p~Y(E(M)) C
G be a spanning subgraph of G, consisting of all triangles completely con-
tained in p~'(M); in other words, each triangle in G » is completely con-
tained in some supertriangle of G. We claim that G contains a significant
fraction of all triangles (and, hence, of all edges) in G. Indeed, the bipartite
density of a super-nonedge is by definition at most yd, hence the super-
nonedge subgraph has at most 3vd-n? edges. Every triangle not completely
contained in x~'(E(M)) must have at least one edge in the super-nonedge
subgraph; since triangles in G are edge-disjoint, the total number of such
triangles cannot exceed 3vd - n?. By initial assumption, the total number of
triangles in G is at least d-n?, therefore the number of triangles in G'A must
be at least (1 —3v)d-n?. By selecting a sufficiently small , we can make the
number of triangles in G a arbitrarily close to d - n?. For the rest the proof,
let us fix the constant v within the range 0 < v < 1/12, e.g. v = 1/24. As
a corresponding € we can take e.g. € = (yd/2)%/5 = d3/(5 - 48%).

It only remains to observe that, since graph G is diamond-free, its ~yd-
map M is diamond-free by the Blow-up Lemma. By Lemma 1, dens(M) <
3/4. This means that among all superpairs of G, the fraction of superedges
is at most 3/4. All edges of G o are contained in superedges of G, therefore
the average density of a superedge in G is at least 4/3 - dens(Gp). In
particular, there must be some superpair in G with at least such density.
Since G A consists of edge-disjoint supertriangles, this superpair is contained



in a unique supertriple F' C G 5, with

denss(F') > 4/3 - dens3(Ga) > 4/3- (1 —3y)d =
4/3-(1—3-1/24)d = 7/6 - d.

In our previous notation, we have A = 7/6 > 1.

We define the supertriple F' to be our new “distilled” equitripartite
triangle-covered diamond-free graph. Graph size has only been reduced
by a constant factor, equal to the size of the e-partitioning. By taking the
original graph G large enough, the “distilled” graph F' can be made arbi-
trarily large. Its density denss(F) > Ad = 7/6 - d > d. By repeating the
whole process, we can increase the graph density to (7/6)?-d, (7/6)3-d, ...,
and eventually to values higher than 1, which contradicts the definition of
density (in fact, values higher than 3/4 will already contradict Lemma 1).
Hence, the initial assumption of existence of arbitrarily large equitripartite
triangle-covered diamond-free graphs with constant positive density must
be false. Negating this assumption, we obtain our theorem. |

The solution of Stein and Szabd’s problem is now an easy corollary of
Lemma 2 and Theorem 3.

Corollary 1. Consider a tripod packing of size n. The mazimum density
of such a packing tends to 0 as n — oo.

5 Conclusion

We have proved that the density of a tripod packing must be infinitely
small as its size tends to infinity. Since the Regularity Lemma only works
for dense graphs, the question of determining the precise asymptotic growth
of a maximum tripod packing size remains open.

Nevertheless, we can obtain an upper bound on this growth. Let d be the
maximum density of tripod packing of size n. In our proof of Theorem 3, it
is established that the maximum density of tripod packing of size m(d>/(5 -
483))-n is at most 6/7-d, where m(-) is the function defined by the Regularity
Lemma. In [1, 4] it is shown that for tripartite graphs, m(t) < 4", These
two bounds together yield a desired upper bound on d as a function of
n, which turns out to be a rather slow-growing function. By applying the
“descending” technique from [11], we can also obtain an upper bound on the
size of a maximal r-pod, which can tile (without any gaps) an r-dimensional
space. The resulting bound is a fast-growing function of r. In [11] it is
conjectured that this bound can be reduced to r — 2 for any r > 4. The
conjecture remains open.
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