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dominating singularity t � r of d�t�� By a well�known result �see Bender ���� Theorem ��� it
follows that

dn�k � pk�r��t
n�d�t��

Since we already know the asymptotic value of �tn�d�t�� we only have to compute pk�r� for
every k � N� This is not di�cult and we can �nd a closed form for pk�r�	

Lemma ��� The closed form for the value of pk�t� computed at t � r is�

pk�r� � A�k � ��s�k �Bs�k � Cs�k� �

where s has the same value as before� s� � ��� � �sr���r� � ������������ and A�B�C are
the three constants

A �
� � �sr�

� � �sr�
� �����
������ B �

sr��� � �sr��

� � �sr� � �s�r�
� ����

������

C �
s�r�

� � �sr� � �s�r�
� ������������

Proof� From the last step in the derivation of dm�t� in Lemma 
���s proof� we have	

pk�t� � pk���t�� tpk���t�� t�qk���t� � pk���t�� tpk���t�� t�pk���t��

we therefore obtain the recurrence	

pk�r� � pk���r� � rpk���r�� r�pk���r��

whose initial conditions are p��r� � �� p��r� � � and p��r� � ��r� If we write the recurrence
for k � � and examine the generating function Gfpk�r�g � P �t�� we have	

pk���r� � pk���r�� rpk���r�� r�pk�r��

P �t�� � � t� ��� r�t�

t�
�

P �t�� �� t

t�
� r

P �t�� �

t
� r�P �t��

P �t� �
�

� � t� rt� � r�t�
�

The denominator�s roots can be easily found	 they are t� � t� � s and t� � �����sr���r� �
s�� A partial fraction expansion now gives us	

P �t� �
A

�� � t�s��
�

B

� � t�s
�

C

� � t�s�
�

and we can immediately derive the closed form from it�

Thanks to all the previous results� we can conclude with the asymptotic formula for the
generic element dn�k� i�e�� the number of lattice paths arriving at the point �n� n� k� 	

Theorem ��� The asymptotic value of dn�k � �tn�dk�t� is�

dn�k � ��A�k � �� �B�s�k � Cs�k� �dn � Ak

�n
p
�n

�

sk��rn
�

Proof� The proof is immediate from the two lemmas above and from the previously�
mentioned theorem by Bender� It is not di�cult �but very laborious� to �nd out that
this formula is a true approximation when k � o�

p
n��

��



and� therefore� we have the following asymptotic approximation	

dn �
�
a�

�
���

n

�
� a�

�
���

n

�
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�
���

n

���
��

r

�n
�

The main term of this expression can now be found by applying the well�known asymptotic
formula for

�
���
n

�
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Let us now go on to dn�k � �tn�dk�t�� where dk�t� is given by the recurrence in the formulas
used in Example 
��� The initial conditions are d��t� � d�t� and d��t� � td��t��d��t� �
d��t��t�� � d�t�� �� by the formula de�ning d��t�� Therefore	

d��t� � t�d�t�� � td��t�h�t� � t�d�t�� � d�t�� � � d�t����

This expression can be simpli�ed by using the initial relation in the form of t�d�t�� �
�� td�t�� d�t���	

d��t� � �� � t�d�t�� ��

The quantity d�t��� has disappeared here� and we can prove the following result	

Lemma ��� For every value m � N� we have�

dm�t� � pm�t�d�t�� qm�t��

where pm�t� and qm�t� are polynomials� such that qm�t� � pm���t�� p��t� � �� q��t� � ��

Proof� The three functions d��t�� d��t� and d��t� correspond to the theorem�s initial cases
and they allow us to proceed by mathematical induction�

dm�t� � dm���t���� d�t���� � t�dm���t�d�t� �

� �pm���t�d�t�� qm���t����� d�t���� � t�d�t��pm���t�d�t�� qm���t�� �

� pm���t�d�t�� pm���t�� qm���t� � qm���t�d�t�
�� � t�pm���t�d�t�

� � t�d�t�qm���t� �

� pm���t�d�t�� pm���t�� qm���t� � qm���t�d�t�
�� � pm���t��

�tpm���t�d�t�� pm���t�d�t�
�� � t�qm���t�d�t� �

� �pm���t��tpm���t��t�qm���t��d�t��pm���t��qm���t��pm���t���qm���t��pm���t��d�t����
By the induction hypothesis� qm���t� � pm���t� and� therefore� d�t��� disappears� We also
obtain	

qm�t� � pm���t� � qm���t�� pm���t� � pm���t�

which proves the �nal relation�

It is obvious that the polynomials qm�t� are simple corrections which reduce the initial part
of the generating functions dm�t� to �� As a result� the asymptotic value of dn�k � �tn�dk�t�
only depends on the product pk�t�d�t� and the polynomial pk�t� is de�nitely analytic at the

�




The formulas found in the previous section can be analyzed further to obtain some more
precise information on the number of paths generated by this simple scheme� Let us begin
by dn � �tn�d�t�� the number of paths arriving at the point �n� n� on the main diagonal� If
we set y � y�t� � td�t�� the formula for d�t� can be written as	

y

t
� � �

y�

t
� y� or y � t

� � y�

�� y
�

Since y��� � �� we can apply the Lagrange inversion formula and obtain an explicit expression
for dn � �tn���y�t� 	
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From the former formula� we can derive the asymptotic expression for dn by using the method
of implicit functions �see Markushevitch ���� as described in Sprugnoli and Verri ����� How�
ever� we obtain the same expression by using the following version of the same method�
This� in turn� can be directly applied to some other cases of lattice path enumeration� Let
F�t� d� � �� d� td�� t�d� be the functional equation de�ning d � d�t�� the dominating sin�
gularities of d�t� �i�e�� the singularities having the smallest modulus� are among the solutions
of the following system	 �F�t� d� � � � d� td� � t�d� � �

F �

d�t� d� � �� � �td� �t�d� � �
�

It is quite simple to obtain the solution �r� s� we are interested in	
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Since F ��

dd�r� s� �� �� the function d � d�t� can be developed around its dominating singularity	

d�t� � s� a�

�
� � t

r

����
� a�

�
�� t

r

�
� a�

�
�� t

r

����
� � � �

We can now determine the values of a�� a�� a�� � � � by feeding this expression into the functional
equation F�t� d� � � and by equating the coe�cients to �� This gives us a series of linear
equations which can be solved in the variables a�� a�� a�� � � �� By using Maple� we obtain	
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show� This is particularly true for an R scheme and its RH associated scheme� By Theorem
���� we now have Dk � Dk��S�E� for a Riordan scheme� and� according to the preceding
remarks� Hk � Hk��S�E�� For k � �� the latter relation reduces to H� � S�E�� and we there�
fore have Dk � Dk��H�� The generating function is equivalent to Dk�t� � Dk���t�tH��t��
which can be iterated to giveDk�t� � D��t��tH��t��k� If we setD��t� � d�t� andH��t� � h�t��
we immediately obtain the result desired�

This theorem provides us with a simple way for dealing with Riordan schemes	 we only
need to compute d�t� � D��t� with the original scheme R � �RA� R	� and then compute
h�t� � H��t� by the associated scheme RH � �RA� �� in order to describe the whole ar�
ray fdn�kgn�k�N� In current literature� any array characterized by two formal power series
�d�t�� h�t�� such that the generating function for column k is given by ����� is called a Rior�
dan array �see ������ Many path properties in a Raney�Riordan scheme can be studied by
means of Riordan array theory� and the reader is referred to ��� for further information on
the subject�

There is another way of computing the function h�t� without having to deal with the
associated scheme explicitly	

Lemma ��� Let R � �RA� R	� be a Riordan scheme and let RH � �RA� �� be its associated
scheme� then we have�

H� � S�E��

Proof� By applying Theorem ��� to the associated scheme RH � we obtain	

H� � H�S�E� j H�S�G� j H�S�G� j � � � �

Since H� � f�g� Sj � � �j � � the lemma follows�

When S� only contains a �nite number of step templates� S��t� is a polynomial and we
have h�t� � S��t�E��t�� When the scheme has unprivileged access to the main diagonal� then
h�t� � S��t�d�t� and� in particular� if S� only contains the step template ��� �� black�� then
h�t� � d�t�� A Riordan array having d�t� � h�t� is said to be a renewal array and its elements
are computed by the following simpli�ed formula	

dn�k � �tn�d�t��th�t��k � �tn�k�d�t�k���

� The analysis of a simple case

We conclude by giving a closer look at a particular example� that is the scheme R �
f��� �� black�� ��� �� black�� ��� �� black�g having unprivileged access to the main diagonal�
This case can also be studied by Gessel�s method ���� The same functional relation for D�

can be easily found for the paths that go back to the main diagonal� As far as the other
kinds of paths are concerned� our approach obtains recurrence relations which may be bet�
ter suited for asymptotic analysis� On the other hand� some explicit bivariate generating
functions can also be derived�
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and this equation can be easily solved as follows	

D�t� w� �
d�t��� � tw � twd�t��

� � twd�t�� t�wd�t�� � t�w�d�t�
�

We conclude this section with some considerations on a particular class of schemes in our
model� These schemes have been widely treated in current literature �see Raney ����� They
only contain the steps in Sj having j 	 �� and we assume that always have at least one step
in S�� We call them Raney or Riordan schemes and they are characterized by two generating
functions �d�t�� h�t��� as we are now going to see�

Let us begin with the following de�nition	 given a lattice path scheme R � �RA� R	��
R�s associated scheme is RH � �R	� ��� which has the same set RA of steps arriving at a
point not belonging to the main diagonal and an empty set of templates for the steps that
reach the main diagonal� By convention� the set of paths reaching the diagonal x � y � k
for the associated scheme are denoted by Hk� instead of Dk� Since RH does not contain any
template for the steps that touch the main diagonal� no RH �path touches the main diagonal
other than at its starting point �x�� y�� � ��� ��� Otherwise� the RH �paths coincide with the
R�paths and� as a result� the RH �paths are called the R�paths avoiding the main diagonal�
Set H� is only made up of the empty path and so we are interested in the Hk�s for k � ��
There is an important relationship between Hk and Dk� given by the following	

Theorem ��� Given a lattice path problem R � �RA� R	� and its associated scheme RH �
�RA� ��� then for every k � � we have�

Dk � D�Hk�

Proof� Let us consider an R�path ending at a point �xF � yF � on the diagonal x� y � k �� �
and let �xP � yP � be the last point which the path touches the main diagonal at� The path is
divided into two parts	

i� the path from the origin to �xP � yP � 	 it can be �xP � yP � � ��� ��� but� at any rate� it is
a path in D��

ii� the path from �xP � yP � to �xF � yF � 	 it is empty if �xP � yP � � �xF � yF � or� by de�nition�
it avoids the main diagonal� at any rate� it is a path in Hk�

Since this decomposition is unique� the theorem follows from it�

As far as Raney�Riordan schemes are concerned� we prove the following	

Theorem ��� Let R � �RA� R	� be a Riordan scheme and let RH � �RA� �� be its associated
scheme� If d�t� is the generating function of R�s main diagonal and h�t� is the generating
function of the diagonal x� y � � in RH � then the generating function dk�t� of the diagonal
x� y � k is�

dk�t� � d�t��th�t��k� �����

Proof� It is worth noting that� in general� ifR and R� are two schemes havingRA � R�

A� then
E� � E�

� because they do not depend on R	 and R�

	� as the results in the previous section

��



Our grammar is now complete and can be simpli�ed by standard methods� The �nal set
of productions is	

Dk 		� Dk��aE� j Dk��cE� j Dk��cE�bE�

D� 		� D�aE� j D�cE�bE�

D� 		� � j aE�bD� j cE�bE�bD�

E� 		� � j aE�bE� j cE�bE�bE��

We apply Sch�utzenberger�s method to obtain the recurrence relations from the grammar�
This method consists in a homomorphism � from the grammar to the formal power series�
algebra� de�ned in the following way	 �rst the symbols 		� and j are transformed into � and
�� then

��A� � A�t�

for every non�terminal A character�

����� ��� 	�� � t�

if ��� ��� 	� is a terminal character� and ���� � �� We obtain the following set of functional
relations	

Dk�t� � tE��t�Dk���t� � t�E��t�
�Dk���t� � t�E��t�Dk���t�

D��t� � tE��t�D��t� � t�E��t�
�D��t�

D��t� � � � tE��t�D��t� � t�E��t�
�D��t�

E��t� � � � tE��t�
� � t�E��t�

��

Finally� we obtain E� � D�� and� consequently� E��t� � D��t�� The �nal solution is therefore	

Dk�t� � tD��t�Dk���t� � t�D��t�
�Dk���t� � t�D��t�Dk���t�

D��t� � � � tD��t�
� � t�D��t�

�

D��t� � tD��t�
� � t�D��t�

��

In Section 
� we make a detailed description of this recurrence and report the actual
values of the dn�k elements in the resulting lower triangular array fdn�kgn�k�N� by counting
the number of lattice paths from the origin to the point �n� n � k��

We wish to point out that the bivariate generating function D�t� w� for the complete set
of underdiagonal R�paths can be easily obtained from the previous recurrence relation� The
function D�t� w� depends on D��t�� which we denote by d�t� for the simplicity�s sake� It
is worth noting that d�t� can be found explicitly by solving the third�degree equation that
de�nes it� The reader can use either Maple or Mathematica to solve the problem� By shifting
the recurrence relation� we have	

Dk���t� � td�t�Dk���t� � t�d�t��Dk���t� � t�d�t�Dk�t��

since this recurrence holds for every k � N� we can go on to the generating function D�t� w� 	

D�t� w�� d�t��D��t�w

w�
� �td�t� � t�d�t���

D�t� w�� d�t�

w
� t�d�t�D�t� w�

��



a context�free language and� according to a well�known result �
� �� ���� the corresponding
generating function is algebraic �see also Gessel �����

Let us now illustrate the algorithm with a simple but non�trivial example	 RA � f��� ��
black�� ��� �� black�� ��� �� black�g and R	 � f��� �� black�g� i�e�� a scheme not having privi�
leged access to the main diagonal� From now on� we ignore the latter property in order to
describe the various steps of the generating algorithm more clearly�

�� We begin by determining the sets Sj and S	j and we have	

S� � f��� �� black�g � fag S�� � S	
��f��� �� black�g � fbg

S� � f��� �� black�g � fcg�
we denote the three steps by a� b� c to simplify our notations�

�� We now determine the productions for Dk and D� by using Lemma ��� and Theorem
���� In our example� we have	

D� 		� � j aG	
� j cG	

�

Dk 		� Dk��aE� j Dk��cE� j Dk��cG��

This shows that the recurrence relation has order � and we need to determine the
expressions for E�� G�� G

	
� � G

	
� �as previously observed� in the present case G� � G	

� �
G� � G	

� and E� � D� but we ignore these identities for clarity�s sake��

�� We determine the productions for E� by Lemma ���	

E� � � j aG� j cG��

this means that we also have to determine G���


� We determine the productions for Gs and G	
s �s as required�� in our example we have

s � �� � and we �nd	
G� � E�� G	

� � D��

G� � E�bG�� G	
� � E�bG

	
� �

G� � E�bG�� G	
� � E�bG

	
� �

�� We go on to determine the productions for Es� Gs� G
	
s recursively according to what

is generated in the previous step� Since s is limited by the maximal di�erence j� � ��j
in R�s steps� this process eventually ends� In our example� this step is not required�

�� At this point� the grammar is complete except for the initial conditions regarding Dk�s
recurrence� Since we need as many initial conditions as the order r of the recurrence�
and we already know D�� we should set k to the values from � to r � �� However
D�� � � � �Dr�� can be found by specializing Dk� this is done by setting Dj � �� �j 
 ��
In our example� r � � and we immediately �nd	

D� 		� D�aE� j D�cG��

Since we use the productions for Dk� no new non�terminal symbol is generated�

�



Analogously� the set D� of the R�paths that start from the origin and end on the main
diagonal 	without ever going above it
 is�

D� 		� � j S�D� j S�G	
� j S�G	

� j � � �

Lemma ��� Given a scheme R � �RA� R	�� the set Ek of the R�paths that start from a point
�x�� y�� not belonging to the main diagonal� arrive at the point �xF � yF � having xF � yF �
x� � y� � k and never go above the diagonal x� y � x� � y�� is�

Ek 		� Ek��S�E�

����� Ek��S�E�

Ek��S�G�

�������
Ek��S�E�

Ek��S�G�

Ek��S�G�

������� � � �

Theorem ��	 Given a scheme R � �RA� R	�� the set Dk of the R�paths that start from the
origin �x�� y�� � ��� ��� arrive at the point �xF � yF �� and always stay on� or below� the main
diagonal� is�

Dk 		� Dk��S�E�

����� Dk��S�E�

Dk��S�G�

�������
Dk��S�E�

Dk��S�G�

Dk��S�G�

������� � � �

Although the de�nition of Ek is similar to Dk�s their use is quite di�erent because only
Ek is needed to obtain E�� E�� � � � � Er� As in the previous model� the Gs�s and G	

s �s can be
eliminated and what remains is the �recurrence for Dk� which is de�ned in terms of Dk� �s
with k� 
 k and the initial conditions D��D�� � � � �Dr� E�� E�� � � � � Er� In the next section� we
go on to treat generating functions� actual recurrence relations and initial conditions�

� Generating functions and algorithms

The theorems and lemmas illustrated in the previous section can now be used to generate
the grammar which recursively de�nes the set of paths for a given model R � �RA� R	��
This scheme includes also paths not having privileged access to the main diagonal and so
we only study it from now on� The grammar�s terminal symbols are R�s steps and the
symbols Dk and Sj�Ds� Es� Gs� G

	
s �where s 	 maxfj� � ��j in R�s stepsg� are its non�

terminal symbols� The symbols Dk and Ds� Es are the grammar�s most important terms
and their de�nition allows us to determine the recurrence relations for the paths generated
by R� By Sch�utzenberger�s methodology� we are able to translate the grammar into a set of
recursive functional expressions which we derive generating functions Dk�t�� k � N from�
Since for every k the set of steps involved in Dk�s de�nition is �nite� every Dk is actually

�




 Ek is the set of R�paths that start from a point �x�� y�� not belonging to the main
diagonal� arrive at a point �xF � yF � having �xF � yF � � �x� � y�� � k� and never go
above the diagonal x� y � x� � y��


 Gs�s � �� is the set of R�paths that start from a point �x�� y�� having x�� y� � k � �
�i�e�� a point that does not belong to the main diagonal�� arrive at the point �xF � yF �
having xF � yF � k � s � �� and never go above the diagonal x� y � xF � yF � These
paths climb s units towards the main diagonal without ever going �too high �


 G	
s �s � �� is the set of R�paths that start from a point �x�� y�� having x�� y� � s and

arrive at a point �xF � yF � belonging to the main diagonal� without ever going above
that diagonal�

The following results are stated without proof but the reasoning based on the �rst and
last passage decompositions is analogous to the one previously discussed�

Lemma ��� Given the scheme R � �RA� R	�� the set Gs of the R�paths that start from a
point �x�� y�� not belonging to the main diagonal� arrive at the point �xF � yF � having xF�yF �
x��y��s �� � and never go above the diagonal x�y � xF �yF � is� G� � E�� and for s � ��

Gs 		� E�S��Gs��

����� E�S��Gs��

E�S��Gs��

�������
E�S��Gs��

E�S��Gs��

E�S��Gs��

������� � � �

For paths arriving on the main diagonal we should also consider the following sets of steps	

S	j � f��� ��� 	� � R	 j � � �� � jg�
For j � �� we should have S	j � � and when the scheme has unprivileged access to the main
diagonal� S	j � Sj��j 	 ��

Lemma ��
 Given the scheme R � �RA� R	�� the set G	
s of the R�paths that start from a

point �x�� y�� having x� � y� � s and arrive at a point �xF � yF � on the main diagonal� is�
G	
� � D� and for s � � 	

G	
s 		� E�S

	
��G

	
s��

����� E�S��G
	
s��

E�S
	
��G

	
s��

�������
E�S��G

	
s��

E�S��G
	
s��

E�S
	
��G

	
s��

������� � � �

Lemma ��� Given the scheme R � �RA� R	�� the set E� of the R�paths that start from a
point �x�� y�� not belonging to the main diagonal� arrive at the point �xF � yF � on the diagonal
xF � yF � x� � y� and never go above this diagonal� is�

E� 		� � j S�E� j S�G� j S�G� j � � �

�



Theorem ��� Given a scheme R� the set Dk of the R�paths that start from the origin
�x�� y�� � ��� ��� arrive at the point �xF � yF �� with xF � yF and always remain on� or below�
the main diagonal� is�

Dk 		� Dk��S�D�

����� Dk��S�D�

Dk��S�G�

�������
Dk��S�D�

Dk��S�G�

Dk��S�G�

������� � � �

Proof� We now use the �last passage decomposition method� Let �xP � yP � be the last
point at which a path in Dk goes on or below the diagonal x�y � xF �yF that starts above
it� If the step arriving at �xP � yP � has template ��� ��� 	� we have � � �� � j � � and the
whole path can be divided into the following three parts	

i� the path from �x�� y�� to �xP � �� yP � ���� since the latter point is above the diagonal
x� y � xF � yF � the path is in Dk�i� where	

k � i � xP � � � �yP � ��� � �x� � y�� � �xP � yP �� �x� � y��� j�

ii� the step with template ��� ��� 	� � Sj�

iii� the path from �xP � yP � to �xF � yF �� since �xP � yP � is on� or below� the diagonal �x �
y� � �xF � yF � and the path never goes above this diagonal� it belongs to Gs� where
s � �xP � yP � � �xF � yF �� The decomposition Dk�iSjGs is obviously unique and we
should obtain	

k � k � i� j � s or j � i� s�

Since the values of j are given by the templates in R� this relation determines the
possible values of i and s�

Theorems ��� and ��� de�ne Dk and D� in terms of the Gs�s� The latter can be eliminated
by Lemma ��� and we therefore obtain a �recurrence relation for Dk which depends on
some �initial conditions D��D�� � � � �Dr� The expressions for D��D�� � � � �Dr are obtained
from Dk by setting Dp � � for p 
 �� In the next section� we show how these relations can
be translated into actual recurrence relations for generating functions�

When we examine a scheme R having privileged access to the main diagonal� we have to
consider how a path behaves when it touches the diagonal� because it is not like the other
points in Z�� The sets Dk and Gs become more specialized and should be supported by some
auxiliary sets� which we call Ek and G	

s � These sets coincide with the previous one when R
does not have privileged access to the main diagonal	


 Dk is the set of R�paths that start from the origin �x�� y�� � ��� �� and arrive at a
point �xF � yF � having xF � yF � k� More in general� by translation� Dk also denotes
the set of R�paths starting from �x�� y�� on the main diagonal and having the same
characteristics as the previous ones�

�



Gs 		� D�S��Gs��

����� D�S��Gs��

D�S��Gs��

�������
D�S��Gs��

D�S��Gs��

D�S��Gs��

������� � � �
	This notation only groups some de�nitions vertically to emphasize their similarity and it is
equivalent to the left�to�right BNF notation
�

Proof� We immediately deduce G� � D� from the de�nitions� For s � �� we use the
so�called ��rst passage decomposition 	 given an R�path in Gs� let us take the �rst point
�xP � yP � such that xP � yP 
 x� � y�� i�e�� the �rst point at which the path goes above the
starting point diagonal x� y � x� � y� � k� The step arriving at �xP � yP � should therefore
belong to some S�j�j � ��� Let its template be ��� ��� 	�� the whole path can be divided into
three parts� in one and only one way	

i� the path from �x�� y�� to �xP � �� yP � ���� because� by de�nition� �xP � yP � is the �rst
point above the diagonal x�y � x��y� � k� This path therefore belongs to Di� where	

i � xP � � � �yP � ���� �x� � y�� � �xP � yP �� �x� � y��� j�

ii� the step having template ��� ��� 	� � S�j �

iii� the path from �xP � yP � to �xF � yF �� by de�nition� this path climbs �xP �yP ���xF �yF �
units towards the main diagonal without ever going above the diagonal x�y � xF�yF �
Therefore� this is a path in Gs� � with s� 
 s�

Since all the possible values for j are given by the templates in RA� this relation uniquely
determines the corresponding values for k and s��

We are now able to give a grammar for D�� and this is our �rst important result	

Theorem ��� Given the scheme R� the set D� � D of the R�paths that start at the origin
and end on the main diagonal� without ever going above this diagonal� is�

D� 		� � j S�D� j S�G� j S�G� j � � �

Proof� The empty path has �xF � yF � � �x�� y�� � ��� �� and obviously satis�es the theorem�s
condition� If the path is not empty� then it should begin with some step having template
��� ��� 	� � Sj �j � ��� This step goes j units away from the diagonal�s starting point� and�
therefore� it should be followed by a path which recuperates these j units without ever going
above the diagonal�s starting point� this path belongs to Gj by de�nition�

After determining the starting relation for D�� we go on to �nd an expression for Dk

�k � ��	

�
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Figure �	 Two schemes illustrating privileged access to the main diagonal�

to obtain some recurrence relations for generating functions that count the number of paths
and therefore solve our lattice path problem�

Formally� if R � �RA� R	� is a lattice path scheme� we consider the following sets of step
templates	

Sj � f��� ��� 	� � RA j � � �� � jg�
For simplicity�s sake� we start out with the schemes not having privileged access to the

main diagonal and prove our results for them� We then state analogous results for our more
general model� Let us examine the following sets of R�paths	


 Dk is the set of R�paths that start from the origin �x�� y�� � ��� �� and arrive at a
point �xF � yF � having xF � yF � k �i�e�� �xF � yF � belongs to the diagonal x � y � k��
In particular� D� � D denotes the set of R�paths that reach the main diagonal� More
in general� by translation� Dk also denotes the set of R�paths that start from �x�� y���
that does not necessarily belong to the main diagonal� arrive at a point �xF � yF � having
xF � yF � x� � y� and never go above the diagonal x� y � x� � y��


 Gs�s � �� is the set of R�paths that start from a point �x�� y�� having x�� y� � k � ��
arrive at the point �xF � yF � having xF � yF � k � s � � and never go above the
diagonal x � y � xF � yF � In other words� these R�paths climb s units towards the
main diagonal without ever going �too high �

It is worth noting that the index k in Dk is only used to relate Dk recursively to some
other sets Dk� with k� 	 k� The index s in Gs takes on the values �� �� � � � � !s� where !s is the
maximumvalue of ���� for the steps inR� We now want to �nd an unambiguous context�free
grammar de�ning Dk and the Gs�s� We also need the initial values D��D�� � � � �Dr	 D� has
a speci�c de�nition� whilst the other sets are obtained by specializing Dk and their number
r depends on the order of the recurrence de�ning Dk� actually r is the maximum value of
� � �� for the steps in R	�

Lemma ��� Given the scheme R� the set Gs of the R�paths that start from a point �x�� y���
arrive at the point �xF � yF � having xF � yF � x� � y� � s and never go above the diagonal
x� y � xF � yF � is� G� � D� and for s � ��






When the set of colours consists in only one element� a path can be described more simply
by giving the ordered �n� ��tuple of points �O�P�� P�� � � � � Pn� the path goes through�

Dyck paths constitute a very simple example	 their scheme is RC � f��� �� black�� ��� ��
black�g� In Figure ��a�� we illustrate some of these paths� The numbers are usually arranged
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Figure �	 Representations for Dyck paths�

in a lower triangular array� as shown in Figure ��b�� The number of paths arriving at the
point �n� n � k� is denoted by dn�k� which therefore also represents the number contained
in the array at row n and column k� The array shown in Figure ��b� is called the Catalan
triangle� The Pascal triangle corresponds to the scheme RP � f��� �� black�� ��� �� black�g
and the Motzkin triangle to RM � f��� �� black�� ��� �� black����� �� black�g�

We wish to point out that if ��x� y�� �x��� y����� 	� is a step ending on the main diagonal�
i�e�� x� � � y � ��� then the step template ��� ��� 	� should have � 	 ��� Therefore� if "�R�
is R�s set of step templates ending on the main diagonal� "�R� is usually di�erent from R�
We can generalize our model by de�ning two sets of step templates	 RA is used for steps not
ending on the main diagonal� while R	 is used for steps which end on the main diagonal� If
"�RA� � R	� we have our original model� if "�RA� �� R	� we have some new schemes	 a
scheme R � �RA� R	�� for which "�RA� �� R	� is said to have privileged access to the main
diagonal�

Some example are in order at this point� Let us take the arti�cial scheme RA �
f��� �� black�� ��� �� black�g and R	 � f��� �� black�� ��� �� black�g� This is a modi�ed Dyck
scheme in which the main diagonal attracts particles on the diagonal x � y � � �see Fig�
ure ��a��� A more interesting example is RA � f��� �� black�� ��� �� black�� ��� �� black�g and
R	 � f��� �� black�� ��� �� black�� ��� �� red�g� This corresponds to the triangle of trinomial
coe�cients �see Figure ��b��� Lastly� if R � �RA� R	� is any scheme in the generalized
model� its related scheme RH � �RA� �� having privileged access to the main diagonal �be�
cause it rejects all the paths except the empty one� is of theoretical interest �see Section ���
the RH �paths are the R�paths avoiding the main diagonal�

We are now going to use the ��rst and last passage decompositions method �see Feller
���� p���� in order to translate a scheme into an unambiguous context�free grammar in which
step templates become terminal symbols� The non�terminal symbols are indicated by the
names of some path sets� �de�ned further on�� Sch�utzenberger�s methodology is then used

�



i�e�� having special steps ending on the main diagonal	 lattice paths have often be used as a
model for describing the behaviour of a particle walk� in that case� privileged access to the
main diagonal corresponds to the fact that the diagonal attracts or rejects the particle� Some
meaningful examples of this kind of paths are given in Section �� We informally describe our
main results �see Theorems ��� and ���� in the following way	 a pair �RA� R	� of �nite sets
of steps describes a path problem� i�e�� the class of underdiagonal lattice paths composed of
steps in RA�R	� and precisely	 i� RA is used for steps not ending on the main diagonal� and
ii� R	 is only used for steps which do end on the main diagonal� Let dn�k be the number of
paths ending at the point �n� n�k� �i�e�� ending on the diagonal x�y � k� and let Dk�t� be
the corresponding generating function

P
�

n�� dn�kt
n� in particular� let D��t� be the generating

function for the paths ending on the main diagonal� It follows that� Dk�t� satis�es a linear
recurrence relation	

Dk�t� � ��Dk���t��Dk���t�� � � � �Dk�s�t��

whose initial conditions are D��t��D��t�� � � � �Ds���t�� where s only depends on the maximal
di�erence j� � ��j for steps in RA �R	�

As far as paths without privileged access to the main diagonal are concerned� we �nd some
of Gessel�s results again here and extend them to a more general case� For example� from
the context�free formulation of path problems� we can immediately infer that the Dk�t��s
�in particular� D��t��� are algebraic functions� In addition� our approach can be used for
deriving some information about the dn�k�s �k � ��� which are the number of paths not
returning to the main diagonal� This is a rather complex problem and is not often treated�
especially when shallow steps are involved �see Section 
 for an example of it��

Our paper is organized in the following way	 Section � contains the de�nitions� methodol�
ogy and proofs of our main results� In Section �� we use the theorems proved in the previous
section to introduce an algorithm which starts with the de�nition of a given lattice path
problem and automatically generates the recurrences for the generating functions that solve
the problem� Finally� in Section 
� we develop an example to show the di�culties involved
in dealing with shallow steps�

� De�nitions and main results

A step template is a triple ��� ��� 	� where �� �� � N and 	 belongs to a �maybe in�nite� set
of colours� A coloured ��� ��� 	��step is a triple ��x� y�� �x � �� y � ���� 	�� where �x� y� and
�x� �� y� ��� are two points in Z

�� A path scheme R is a �nite set of step templates and an
R�path is a �nite sequence �s�� s�� � � � � sn� of coloured steps such that	

a� s� � ���� ��� ��� ���� 	� with ��� ��� 	� � R�

b� �i � �� �� � � � � n� if si � ��xi� yi�� �xi � �� yi � ���� 	� then xi � yi� xi � � � yi � �� and
��� ��� 	� � R�

c� �i � �� �� � � � � n� �� if si � ��xi� yi�� �xi � �� yi � ���� 	� and si�� � ��xi��� yi���� �xi�� �

�� yi�� � �
�

�� 	� then xi � � � xi�� and yi � �� � yi���

The number n is the R�path�s length� Colours are very useful for representing paths and
j equal steps with di�erent colours are algebraically equivalent to a step having weight j�

�



Underdiagonal lattice paths with unrestricted steps

Donatella Merlini� D� G� Rogers�� Renzo Sprugnoli� M� Cecilia Verri
Dipartimento di Sistemi e Informatica�

via Lombroso ����� Firenze� Italy

Abstract

We use some combinatorial methods to study underdiagonal paths �on the Z� lat�
tice� made up of unrestricted steps� i�e�� ordered pairs of non�negative integers� We
introduce an algorithm which automatically produces some counting generating func�
tions for a large class of these paths� We also give an example of how we use these
functions to obtain some speci�c information on the number dn�k of paths from the
origin to a generic point �n� n� k��

Keywords� underdiagonal lattice paths� paths with unrestricted steps� context�free grammars�

generating functions� Sch�utzenberger methodology�

� Introduction

In his interesting paper ���� Gessel gives an algebraic method he calls �factorization of for�
mal Laurent series to �nd the generating functions for underdiagonal lattice paths with
unrestricted steps �functions f� and f� in his notation� by means of the bivariate generat�
ing function of all lattice Z��s paths� By unrestricted steps we mean ordered pairs ��� ��� of
non�negative integers� and a path is a �nite sequence of steps starting at the origin� an under�
diagonal path only contains points �x� y� such that x � y� Even though literature on lattice
paths is extensive� most of it only deals with the steps belonging to some restricted classes�
For example� many studies have been made on Dyck paths� but they are only made up of two
steps ��� �� and ��� ��� More in general� researchers seem to prefer treating problems related
to �steep steps � i�e�� steps ��� ��� for which �� �� 	 �� rather than those related to �shallow
steps� i�e� steps ��� ��� for which � � �� � �� In addition to Gessel�s lattice path method�
Goldman �
� and Goldman and Sundquist�s ��� propose one using a more combinatorial ap�
proach� while Labelle�s method ��� regards problems involving some kind of restricted steps�
The latter�s approach consists in starting out with an unambiguous de�nition of lattice paths
by means of a context�free grammar and in then applying Sch�utzenberger�s methodology ����
to derive the recurrence relations and generating functions desired�

In the present paper� we apply this method to both underdiagonal paths with unrestricted
steps �see Gessel ���� and underdiagonal paths having privileged access to the main diagonal
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