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ABSTRACT

Genetic Algorithms are heuristic search schemes based on
a model of Darwinian evolution. Although not
guaranteed to find the optimal solution, genetic algorithms
have been shown to be effective at finding near optimal
and, in some cases, optimal solutions to combinatorially
explosive problems.

Finding a maximal length snake, a list of vertices satisfy-
ing specific constraints, in an n -dimensional hypercube,
the "box", is the type of problem that suffers from (seri-
ous) combinatorial explosion. That is, as n increases, the
size of the solution space that must be searched increases
very rapidly. As a consequence, the maximum lengths of
snakes have previously only been determined for n ≤ 6.

Since their identification in the late 1950’s, snakes (also
known as Snake-In-The-Box codes) have received a
significant amount of research attention. Snake-In-The-
Box codes have a variety of applications in areas such as
error-detection in analog-to-digital conversion, electronic
combination locking schemes, and disjunctive normal
form simplification. Given a certain dimension for a
hypercube, the longer the snake or list of codewords, the
more useful it is in the application.

In this paper, we discuss experiments conducted to find
snakes in hypercubes of dimension 7 and 8. To date, we
have broken the previous world record for the lower
bound in dimension 7 and in dimension 8 using our
Genetic Algorithm approach.

INTRODUCTION

Genetic algorithms are heuristic search methods
based on the notion of the survival of the fittest. They
have been applied to a wide variety of problems, for
example: Multiple Fault Diagnosis (MFD) [Davi91,
Mill93, Pott90a, Pott90b, Pott92a]; Set Covering (SC) and
Traveling Salesman Problems (TSP) [Liep90]; communi-
cation network configuration [Pott92b]; and control of
natural gas pipelines and game playing [Gold89].

Genetic algorithms are a type of stochastic search
method, and are applied to NP-Hard problems in many
areas ranging from scheduling optimization to designing
optimal configurations and layouts. Developed by John
Holland in 1975 [Holl75], they are modeled from and
mimic the theory of natural evolution.

In genetic algorithms, a population is simply a col-
lection of "chromosomes" representing possible solutions
to the specific problem at hand. These chromosomes are
altered or modified using the genetic operators in order to
create a new generation. This evolutionary process is
repeated a predetermined number of times or until no
improvement in the solution to the problem is found.

Encoding Schemes

Originally, the chromosomes (or individuals) in the
population were represented as strings of binary digits.
Later, other types of representations were experimented
with and found to be, depending on the problem to be
solved, more convenient. However, bit string representa-
tions are still the most commonly used encoding tech-
niques and have been used in many real-world applica-
tions of genetic algorithms. Such representations have
several advantages: they are simple to create and manipu-
late, many types of information can be easily encoded,
and the genetic operators are easy to apply [Davi91].
Other types of encodings include real number representa-
tions (e.g., applied to parametric design of aircraft
[Davi91], and network design [Pott92b]), and ordered list
representations (e.g., applied to scheduling optimization
[Davi91], traveling salesman problems, and our own
hypercube path finding research).

Evaluation

The evaluation of a chromosome is done to test its
"fitness" as a solution, and is achieved, typically, by mak-
ing use of a mathematical formula known as an objective
function (non-mathematical approaches have also been
used). The objective function plays the role of the



environment in natural evolution by rating individuals in
terms of their fitness. Choosing and formulating an
appropriate objective function is crucial to the efficient
solution of any given genetic algorithm problem. In our
case, searching for long paths, a fitness based on the
length of the path found so far is a very good function.

Genetic Operators

Genetic operators are used to alter the composition
of chromosomes. The fundamental genetic operators,
mate selection, crossover and mutation, are used to create
children (or individuals in the next generation) that differ
from their parents (or individuals in the previous genera-
tion). Additional advanced genetic operators have been
inspired by knowledge derived from the field of genetics
(e.g., inversion dominance, diploidy, and abeyance)
[Gold89].

Using the mate selection operator, individual chro-
mosomes are selected according to their fitness which is
evaluated using the objective function. This means that a
chromosome with a higher fitness value will have a higher
probability of contributing one or more offspring to the
next generation. There are many ways this operator can
be implemented. A basic method calls for using a
weighted roulette wheel with slots sized according to
fitness [Gold89]. Essentially, the probability of an indivi-
dual being selected is proportional to the individual’s
fitness. Individuals thus selected are further operated on
by the other genetic operators: crossover and mutation.

The purpose of the crossover operator is to produce
new chromosomes that are distinctly different from their
parents, yet retain some of their parents characteristics.
There are two basic crossover techniques, called one-
point crossover and two-point crossover. In one-point
crossover, two parent chromosomes are interchanged at a
randomly selected point thus creating two children. In
two-point crossover, two crossover points are selected
instead of just one crossover point. The part of the chro-
mosome string between these two points is then swapped
to generate two children. Empirical studies have shown
that two-point crossover usually provides better randomi-
zation than one-point crossover. Other crossover tech-
niques such as uniform crossover are considered when-
ever it is found that both one-point and two-point cross-
over techniques are not combining useful characteristics
of chromosomes from the parents. In uniform crossover,
for each bit position within the new child chromosome, it
is decided randomly which parent the child will inherit
the bit from. As discussed in [Davi91], it has been found
that uniform crossover is inferior to two-point crossover
in certain instances. For other representation schemes,
specialized crossover techniques have been introduced.
Several examples include order crossover, edge recombi-
nation, and partially matched crossover [Davi91,

Gold89].

Some of the individuals in the new generation pro-
duced by mate selection and crossover are mutated using
the mutation operator. The most common form of muta-
tion is to take a bit from a chromosome and alter (i.e.,
flip) it with some predetermined probability. As mutation
rates are very small in natural evolution, the probability
with which the mutation operator is applied is set to a
very low value and is generally experimented with before
this value is fixed.

SNAKES AND COILS

An n-coil in Qn , the n -dimensional unit cube, is a
simple cycle C in Qn such that C has no chords in Qn .
That is, every edge of Qn which joins two nodes of C is
in fact an edge of C . The nodes of Qn are the 2n n -tuples
of binary digits, and two nodes are joined by an edge of
Qn if they differ in exactly one coordinate. An n-snake is
a simple (open) path S in Qn which has no chords in Qn .
In other words, an n -snake is a path in Qn having adja-
cencies only between nodes which are consecutive in the
path. In this paper, we refer (following [Hara88]) to an
n -coil and n -snake as simply a coil and snake, respec-
tively. Figure 1 shows an example of Q 3. The binary
labels for Q 3 presented in a Gray code ordering are:

000 001 010 011 100 101 110 111

Using the binary labels, adjacent nodes differ by only 1
bit. For example, 010 is adjacent to 000, 011, and
110. A Gray code is a Hamiltonian path or cycle in the
hypercube. For dimension n ≥ 3, every Gray code con-
tains at least one chord. In the Gray code above, for
instance, 000 and 100 are adjacent in Q 3 but not in the
path, so this edge is a chord. Figure 1 also shows a max-
imum length coil in Q 3 containing 6 edges connecting
nodes:

000 001 011 111 110 100 000

Figure 2 shows a maximum length coil in Q 4 which con-
tains 8 edges. The length of a coil or a snake is always
the number of edges.

Hypercubes have long been studied for their
relevance to coding theory [Kaut58], and more recently
due to the advent of parallel computing systems with
hypercube communication topologies; see [Hara88] for a
survey of known results on hypercubes. Coils (or closed
snakes) in hypercubes have received the most attention in
the literature [Abbo88, Hara88]. Whether open or closed,
snakes in Qn have various applications, such as error-
detection in analog-to-digital conversion [Klee70]. In this
case, the longer the snake, the more accurate the conver-



Figure 1.

Figure 2.

sion will be. Additionally, snakes are related to algo-
rithms used for disjunctive normal form simplification
and for electronic combination locking schemes; again,
the longer the snake, the more useful it is in the applica-
tion [Klee70]. Finally, the length of the longest snakes
corresponds to the worst-case number of iterations in
local-search algorithms [Tove81]. Consequently, great
interest has developed in determining the maximum
length of open snakes, sn , and coils (closed snakes), cn ,

among all snakes in Qn ; see for example [Kaut58,
Davi65, Sing66, Danz67, Klee67, Doug69, Adel73,
Deim85, Abbo88, Wojc89, Abbo91a, Snev93]. However,
finding long snakes is such a difficult problem that the
maximum lengths of snakes were previously known only
for dimensions up to 6, as shown in Table 1.
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n sn cn� �������������������������
1 1 2
2 2 4
3 4 6
4 7 8
5 13 14
6 26 26� �������������������������
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Table 1: Maximum Lengths of Snakes and Coils

Above dimension 6, only upper and lower bounds
have been reported in the literature. Table 2 shows
several lower bounds for coils obtained by Abbott and
Katchalski [Abbo91b], and Even [Even63]. Clearly,
cn − 2 ≤ sn , since one can always form an open snake by
deleting a node from a coil. The lower bounds for sn in
Table 2 for n = 7, 9, 10, and 11 follow from this. Three
examples showing 88 ≤ s 8 are given in [Abbo91b].

� ���������������������������������������������������
n l.b. for sn l.b. for cn� ���������������������������������������������������
7 46 48
8 88 88
9 168 170

10 322 324
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Table 2: Several Known Lower Bounds

A number of authors have derived upper bounds for
cn . The most recently reported are in [Snev93].

GA EXPERIMENT SETUP

Our genetic algorithm (GA) experiments take two
different tacks based on the representation of a snake. In
one, we simply use the hypercube coordinates (node
numbers in decimal that correspond to the binary encod-
ing) as the representation of individuals in the population.
For example, from Figure 2 the node sequence of the coil
is:

0 1 3 7 15 14 12 8

We set the length of an individual to a constant (e.g., to
60 for Q 7) and then create the initial population at ran-



dom. The first node is randomly chosen from among all
nodes. Subsequent nodes in the individual are selected at
random from the appropriate nodes in the adjacency table
(in Q 7 for example, we have a table with 128 entries
representing each node and the corresponding 7 nodes
adjacent to them). This insures that individuals in the ini-
tial population are valid paths. The fitness of each indivi-
dual is based on the cube of the length of the longest sub-
snake in each.

Our other representation approach is based on the
transition sequence [Klee67, Adel73] of a path. The tran-
sition sequence is related to the single bit position that
changes from one node to the next adjacent node. For
example, the transition value from node 3 (0000011) to
node 7 (0000111) is 3, and the transition value from node
6 (0000110) to node 14 (0001110) is 4. The transition
sequence for the coil in Figure 2 is:

1 2 3 4 1 2 3 4

Again, each individual in the initial population is created
at random and is insured to be a valid path. Insuring valid
paths is much easier with this approach since the need for
the adjacency table (or an adjacency calculation) is elim-
inated. Also, the fitness is the cube of the longest sub-
snake in the sequence.

When using integer sequences that are order-based
for individuals in the genetic algorithm, standard bit string
genetic operators typically are inappropriate. Searching
for snakes or traveling salesman routes demand that the
operators that impact the order of the sequence maintain
valid ordering. We use the enhanced edge recombination
operator [Star91] with our node sequence representation
because it focuses on maintaining node adjacency, an
important feature for evolving long snakes. In addition,
we use two variations of the evolutionary strategy.
Namely, with the node sequence approach we use the
standard mate selection and mating scheme where an
entire next generation is created. We use the "one-at-a-
time" replacement scheme used in GENITOR [Star91] for
the transition sequence approach. In the one-at-a-time
scheme, a new generation contains the same individuals
as the previous generation except for the replacement of
the worst (least fit) individual with the offspring of one
mating pair of individuals selected in the usual fashion.

As for the specific GA parameter settings for the
node sequence approach, we used a variety of population
sizes ranging from 10,000 to 25,000, and a variety of
crossover probabilities ranging from 0.6 to 0.95 with the
enhanced edge recombination crossover scheme. We
used a seeding scheme whereby we seeded the initial
population of a trial with the best set of results from pre-
vious trials, although no fitness scaling was used. A trial
ran for a specified number of generations and was then

stopped. The limit here was in the neighborhood of
50,000 generations.

For the transition sequence approach, we used the
same ranges for population size and crossover probabili-
ties (i.e., 10,000 to 25,000, and 0.6 to 0.95). Mutation
probabilities ranged from 0.01 to 0.04. We used a two-
point crossover scheme with this approach. Again, seed-
ing was used as with the node sequence approach. A trial
was terminated whenever the population showed signs of
convergence as indicated by no improvement in the best
individual over several generations.

RESULTS

We use the Genetic Algorithm to search for long
snakes (both open and closed) in Q 7 and Q 8 (we plan to
continue our investigation in Q 9 and Q 10 soon). Our
heuristic approach is aimed at increasing basic knowledge
of hypercubes by finding instances of open and closed
snakes which exceed the current theoretical lower
bounds. In addition, we hope to discover new lower
bounds for s 9 and s 10, and new lower bounds for c 9 and
c 10.

The best reported bounds known for c 7 are
48 ≤ c 7 ≤ 60, as reported in [Deim85]†. This implies that
s 7 ≥ 46. The genetic algorithm was able to find an open
snake of length 50 (see Figure 3). The companion
exhaustive (enumerative) approach found all snakes in
Q 7, the longest of which were of length 50. This esta-
blished that s 7 = 50, and, in addition, established that
either c 7 = 48 or c 7 = 50 [Koch94]. The GA was able to
find a snake of this length using much less runtime than
the enumerative algorithm. This is quite encouraging; the
heuristic was able to find the optimal solution to a very
hard problem; and was able to find it relatively quickly.
This indicates that the genetic algorithm would be suit-
able for finding long snakes in higher dimensional hyper-
cubes.

40 41 43 47 63 62 60 124 125 121 123
122 106 98 99 103 119 118 86 94 95 79
75 73 72 88 80 81 85 69 68 100 36 37
53 49 51 50 18 26 27 25 29 13 12 14 6
7 3 1 0

Figure 3. Snake of Length 50 in Q 7 Found by GA

� ���������������������������

† Although Solov’jeva’s results [Solo87] for n ≥ 7
are asymptotically better than Deimer’s, Deimer’s
result for n = 7 is better.



32 0 8 24 28 30 31 23 21 53 49 57 41
45 13 77 93 89 81 65 97 101 103 119
115 123 107 75 11 3 35 163 179 147 211
195 199 197 213 245 241 249 233 201 137
153 157 189 191 255 223 222 220 216 208
192 224 228 230 246 242 250 234 202 138
130 134 150 148 180 176 184 168 172 174
46 38 54 50 18 82 66 70 68 84 116 112
120 104 108

Figure 4. Snake of Length 89 in Q 8 found by GA.

Applying the genetic algorithm in Q 8, we found an
open snake that has length 89, implying that s 8 ≥ 89 (see
Figure 4). This improves on the current world record of
88 held by Abbott and Katchalski [Abbo91b]. Their
search for long snakes is based on the construction of
snakes and coils using information about the symmetry of
the hypercube and known long snakes and coils from
smaller dimensional hypercubes. This is in sharp contrast
to our "blind" heuristic search technique.

Abbott and Katchalski also report the existence of a
coil of length 88 in Q 8. In addition, they report on the
existence of several long open snakes in Q 8 including one
of length 86, two of length 87, and three having length 88.
(Note, in their paper they count the nodes in an open
snake rather than the edges as is generally done. For coils
both counts yield identical results.)

Using the genetic algorithm, the Q 7 result and our
new Q 8 result have come from an evaluation of fewer
than two million paths (a very, very small fraction of the
combined total search space), showing the strength and
robustness of the genetic algorithm search when dealing
with extremely difficult problems such as snake hunting.
Exact computer evaluation of cn or sn for any n ≥ 8 is,
we feel, infeasible at this time, but the known lower
bounds should be amenable to improvement by our
heuristic approach. All we need are particular examples
of long snakes, and for this the genetic algorithm
approach can be very effective.

CONCLUSIONS

We are currently investigating improvements to our
transition sequence based representation version because
we feel that it will eventually lead to record setting results
in dimension 9 and 10. Due to its simplicity, we expect to
be able to improve the performance of the GA by intro-
ducing an additional GA operator such as Engineered
Conditioning (EC ) [Pott92a]. This results in what is
known as a hybrid genetic algorithm because of the addi-
tion of the EC local improvement operator. We have
achieved extensive improvements using EC when applied
in the area of multiple fault diagnosis. In addition, we are

investigating the use of other heuristic search schemes to
find snakes and coils.

Our work on finding snakes in hypercubes was ini-
tially motivated by our analysis of various local improve-
ment operators (e.g., EC , E 2C , H k C* ) discussed in
[Mill93], and applied to multiple fault diagnosis. Our
current results for snakes give the worst-case number of
iterations for H 1C* which iteratively moves to the best
immediate neighbor. H 2C* works in a similar fashion
except that the neighborhood includes immediate neigh-
bors as well as those two steps away (at a Hamming dis-
tance ≤ 2). We are modifying our hunt for these types of
snakes, that is, those corresponding to H k C for k = 2, 3,
4.
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