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Abstract. We show that the method developed by Ramanujan to prove 5|p(5n+ 4)
and 7|p(7n+ 5) may, in fact, be extended to a wide variety of q-series and products
including some with free parameters.

1. Introduction.

Ramanujan [11] is the discoverer of the surprising fact that the partition function,

p(n), satisfies numerous congruences. Among the infinite family of such congru-

ences, the two simplest examples are

(1.1) p(5n+ 4) ≡ 0 (mod 5)

and

(1.2) p(7n+ 5) ≡ 0 (mod 7).

Ramanujan used an ingenious and elementary argument to prove these congru-

ences which relied on Jacobi’s famous formula [10; last eqn. p.5]:

(1.3) (q; q)3
∞ =

∞∏
n=1

(1− qn)3 =
∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2,

where

(1.4) (A)N = (A; q)N =
N−1∏
j=0

(1−Aqj).
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A rather more general result of this nature was proved in [3; p. 27, Th. 10.1] to

account for certain congruences connected with generalized Frobenius partitions.

Indeed J. M. Gandhi [7], [8], [9], J. Ewell [5], L. Winquist [12] and many others

(cf., Gupta [10; Sec. 6.3]) have proved partition function congruences based on

this idea. In all these theorems, the underlying generating functions were either

modular forms or simple linear combinations thereof.

The point of this paper is to show that Ramanujan’s original method is appli-

cable to an infinite number of congruence theorems including many non-modular

functions defined by q-series.

Our main result is:

Theorem 1. Suppose p is a prime > 3, and 0 < a < p and b are integers. Also, −a

must be a quadratic nonresidue mod p. Suppose {αn}∞n=−∞ = {αn(z1, z2, . . . , zj)}

is a doubly infinite sequence of Laurent polynomials over � with variables z1, . . . , zj

independent of q. Then there is an integer c such that the coefficient of zm1
1 zm2

2 · · · zmj

j

qpN in

(1.5)
qc

∞∑
n=−∞

αnq
a(n2)+bn

(q; q)p−3
∞

is divisible by p. For each integer m, we shall denote by m the multiplicative inverse

of m mod p. The integer c = cp(a, b) may be chosen as the least nonnegative integer

congruent to 8̄(a(2bā− 1)2 + 1) mod p.

In Section 2, we shall prove this result. In Section 3, we examine the implications

of Theorem 1 for a variety of modular forms. In Section 4, we collect a number of

congruences for the coefficients in several q-series.

2. The Proof of Theorem 1.

With the various hypotheses of the theorem, we note that
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(2.1)
qc

∞∑
n=−∞

αnq
a(n2)+bn

(q; q)p−3
∞

=
qc

∞∑
n=−∞

∞∑
j=0

(−1)j(2j + 1)αnqa(
n
2)+bn+j(j+1)/2

(q; q)p∞

≡
qc

∞∑
n=−∞

∞∑
j=0

(−1)j(2j + 1)αnqa(
n
2)+bn+j(j+1)/2

(qp; qp)∞
(mod p).

We see that in this last expression the denominator is a function of qp. Let

us now examine the exponent of q in the numerator; for ease of computation we

multiply by 8:

(2.2) 8
(
c+ a

(
n

2

)
+ bn+ j(j + 1)/2

)
= 8c+ a(4n2 − 4n) + 8bn+ 4j2 + 4j

≡ a(2n+ 2bā− 1)2 + (2j + 1)2 (mod p)

Now we observe (by the definition of c) that if j ≡ (p−1)/2 mod p (i.e. (2j+1) ≡

0 (mod p)), then the last expression above is congruent to 0 mod p precisely when

n ≡ (1− 2ba)2 ≡ p+ 1
2
− ba (mod p).

If j 6≡ p−1
2 (mod p), then the last expression in (2.2) can never be congruent to

zero mod p because by the conditions on a

−a(2n+ 2ba− 1)2

is either 0 or a quadratic nonresidue mod p and so cannot be congruent to a qua-

dratic residue (i.e. (2j + 1)2) mod p.

Hence the coefficients of qpN in (2.1) will all be linear combinations over p� of

various αn (which are Laurent polynomials in several variables over �). �
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3. Modular Forms.

Ramanujan, Ewell, Gandhi (and probably many others) have proved instances

of Theorem 1 (as mentioned in Section 1).

Congruence (1.1) follows from Theorem 1 with p = 5, a = 3, b = 1, c5(3, 1) = 1

and αm = (−1)m. Congruence (1.2) follows from Theorem 1 with p = 7, a = b =

1, c7(1, 1) = 2 and αm = (−1)m(2m+ 1) if m � 0, αm = 0 if m < 0.

Gandhi’s Theorem IV in [7] corresponds to αm = δm,0, while Theorem 2 in [8]

corresponds to a = b = 1 and αm = (−1)m(2m + 1) if m � 0, αm = 0 if m < 0.

Finally, Theorem 4 in [8] corresponds to a = 3, b = 1 and αm = (−1)m.

Theorem 10.1 of [3] is the case p = 5, a = 2, b = 1, c5(2, 1) = 2; in that result the

αm were assumed to be 0 if m < 0 and to be integers otherwise.

The generality of Theorem 1 allows for a variety of other modular forms. To

illustrate, we consider

∞∑
n=0

Vnq
n =

∞∑
n=0

p(n)qn

∞∑
n=0

(−1)nr2(n)qn
,

where r2(n) is the number of representations of n as a sum of two squares. We note

that
∞∑
n=0

Vnq
n =

1

(q)∞

( ∞∑
n=−∞

(−1)nqn2

)2

=
(−q)2

∞
(q)3
∞

=
(q2; q2)∞

(q)4
∞(q; q2)∞

=

∞∑
m=0

qm(m+1)/2

(q)4
∞

.

Now by Theorem 1 with p = 7, a = b = 1, c7(1, 1) = 2, αm = 1 if m ≥ 0, and 0 if

m < 0, we see that

V7m+5 ≡ 0 (mod 7).
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4. q-Series.

Of course, our point here is not to extend slightly Ramanujan’s basic idea to a

few more modular forms. Rather we hope to illustrate its applicability to q-series.

Theorem 2. For any prime p ≡ 3 (mod 4) with 4c ≡ 1 (mod p), the coefficient

of zmqpn−c in
(zq)∞
(q)p−4
∞

∞∑
n=0

qn

(q)n(zq)n

is divisible by p.

Proof. By Heine’s transformation [1; Cor. 2.3, p. 19]

∞∑
n=0

qn

(q)n(zq)n
=

1
(q)∞(zq)∞

∞∑
n=0

(−1)nqn(n+1)/2zn.

Now apply Theorem 1 with a = b = 1 and c ≡ 4 (mod p). �

Theorem 3. For any prime p ≡ 5 or 7 (mod 8) with 8c ≡ 1 (mod p), the coeffi-

cient of zmqpn−c in
1

(q)p−3
∞

∞∑
n=0

(z)n+1z
n

(−zq)n

is divisible by p.

Proof. By the Rogers-Fine identity [6; p. 15, eqn. (14.31)]

∞∑
n=0

(z)n+1z
n

(−zq)n
= 1 + 2

∑
n≥1

(−z2)nqn
2
.

Now apply Theorem 1 with a = 2, b = 1 noting that for p ≡ 5 (mod 8) 2 is a

non-quadratic residue, and for p ≡ 7 (mod 8), 2 is a quadratic residue. Also we

must have c ≡ 8 (mod p). �

Theorem 4. For any prime p ≡ 5 or 11 (mod 12), the coefficient of qpn−(p+1)/2

in
1

(q)p−4
∞

∞∑
n=0

[
2n
n

]
qn
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(where
[
A
B

]
= (q)A/((q)B(q)A−B) is the q-binomial coefficient) is divisible by p.

Proof. By Lemma 3 of [2; p. 159],

1
(q)∞

∞∑
n=0

(−1)nq3n(n+1)/2 =
∞∑
n=0

[
2n
n

]
qn.

Now apply Theorem 1 with a = b = 3 noting that for p ≡ 5 (mod 12), 3 is a

non-quadric residue and for p ≡ 11 (mod 12), 3 is a quadratic residue.

Theorem 5. For any prime p ≡ 5 or 11 (mod 12) and 6c ≡ 1 (mod p), the

coefficient of qpn−c in
1

(q)p−4
∞

∞∑
n=1

qn
2

(1− qn)
[

2n
n

]
is divisible by p.

Proof. By (5.1) of [4; p. 272]
∞∑
n=1

qn
2

(1− qn)
[

2n
n

]
=
∞∑
n=1

qn
2
(q)n−1

(qn+1)n
=

1
(q)∞

∞∑
n=−∞

(−1)n−1n qn(3n−1)/2.

Now apply Theorem 1 with a = 3, b = 1. As in Theorem 4, p must be ≡ 5 or 11

mod 12, and now 6c = 1 (mod p). �

5. Conclusion.

There are undoubtedly significant extensions of the ideas we have presented here.

We note that Winquist’s proof that

p(11n+ 6) ≡ 0 (mod 11)

does not fit into Theorem 1. However now that the application of (1.3) to Theorem

1 has been made, it should be possible to find a variety of congruences for the

coefficients of other q-series. In addition, the function given in Theorem 1 may be

multiplied by any function f1(q) ∈ �[[q]] for which

f1(q) ≡ f2(qp) (mod p).
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Finally, it may well be asked what happens when a is a quadratic residue mod

p and p ≡ 1 (mod 4) or a is a quadratic non-residue and p ≡ 3 (mod 4). It is

not difficult to show that our analysis produces indices j 6≡ (p − 1)/2 (mod p)

which make the exponent on q congruent to zero mod p irrespective of cp(a, b).

Consequently one would have to invoke special conditions on the αm to produce

coefficients that are multiples of p.
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