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Abstract

We present a numerical method, based on exact series expansions,

that distinguishes between lattice-based models both in combinatorics

and statistical mechanics that are likely to be solvable in terms of sim-

ple functions of mathematical physics, and those that possess a natural

boundary in a suitably de�ned complex plane. This latter class can-

not therefore be algebraic, nor di�erentiably �nite nor, when suitably

constrained, constructible di�erentiably algebraic. Known solutions in

this latter class are all expressed as modular functions with a particular

choice of variable or as q-generalisations of standard functions.

1 Introduction

Some of the most famous results in mathematics involve a proof of the in-

trinsic unsolvability of certain problems. Some, such as `trisecting an angle'

are of long standing, while others, such as the lack of integer solutions to

the equation xn + yn = zn for n > 2 have only quite recently been accept-

ably proved [50]. In mathematical physics and combinatorics such results

concerning the solvability or otherwise of problems are largely unknown. In

this article we take a �rst step in addressing this absence by presenting and

developing what is essentially a numerical method that provides, at worst,

strong evidence that a problem has no solution within a large class of func-

tions, including algebraic, di�erentiably �nite (D-�nite) [44, 37] and at least

a sub-class [8] of di�erentiably algebraic functions, called constructible dif-

ferentiably algebraic (CDA) functions. Since many of the special functions of

mathematical physics | in terms of which most known solutions are given

| are di�erentiably �nite, this exclusion renders the problem unsolvable

within this class. Throughout this article I will use the term D-unsolvable

to mean that the problem has no solution within the class of D-�nite func-

tions as well as the sub-class of di�erentiably algebraic functions described

above.

In fact, the exclusion is wider than this, as we show that the solutions

possess a natural boundary on the unit circle in an appropriately de�ned

complex plane. This excludes not only D-�nite functions, but a number of
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others as well | though we have no simple way to describe this excluded

class.

It may be worthwhile to recall the de�nitions of these classes of func-

tions. Let KI be a �eld with characteristic zero. A series f(z) 2 KI [[z]] is

said to be di�erentiably �nite if there exists an integer k and polynomi-

als P0(z); � � � ; Pk(z) with coeÆcients in KI such that Pk(z) is not the null

polynomial and

P0(z)f(z) + P1(z)f
0(z) + � � �+ Pk(z)f

(k)(z) = 0:

A series f(z) 2 KI [[z]] is said to be di�erentiably algebraic if there exists an

integer k and a polynomial P in k+ 2 variables with coeÆcients in KI , such

that

P (z; f(z); f 0(z); � � � ; f (k)(z)) = 0:

A series f(z) 2 KI [[z]] is said to be constructible di�erentiably algebraic if

there exists both series f1(z); f2(z); � � � ; fk(z) with f = f1; and polynomials

P1; P2; � � � ; Pk in k variables, with coeÆcients in KI , such that

f 01 = P1(f1; f2; � � � ; fk); (1)

f 02 = P2(f1; f2; � � � ; fk);

� � �

f 0k = Pk(f1; f2; � � � ; fk):

A simpler, but non-constructive de�nition is that a function is CDA if it

belongs to some �nitely generated ring which is closed under di�erentiation

[8]. Di�erentiably �nite functions in several variables are discussed in [37].

A consequence of these de�nitions is that if a series in z; f =
P

n an(x)z
n

with coeÆcients in the �eld KI = C(x) is algebraic, D-�nite or CDA; then

the poles of an(x) lying on the unit circle cannot become dense on this circle

as n increases. This is because the poles must lie in a �nite set, independent

of n; which in turn is a consequence of the recurrence relations on an(x) that

follow from the above de�nitions. We make extensive use of this observation

in the remainder of the paper.

Note that algebraic, D-�nite and CDA functions are all subsets of dif-

ferentiably algebraic functions, and of course algebraic functions are both

D-�nite and CDA; but D-�nite functions are not necessarily CDA: For ex-

ample the function (et� 1)=t is not CDA as it fails to satisfy the Eisenstein

criterion [8] though it is D-�nite. Other functions, such as 1= cos t are CDA

but not D-�nite.

The method which we shall describe and which can, in favourable cir-

cumstances, be sharpened into a formal proof, has been applied to a wide

variety of problems in both statistical mechanics and combinatorics. An

underlying requirement is that the problem admits to a combinatorial for-

mulation requiring the enumeration of graphs on a lattice. Typically, the

solution of the problem will require the calculation of the graph generat-

ing function in terms of some parameter, such as perimeter, area, number

2



of bonds or sites. A key �rst step is to anisotropise the generating func-

tion. For example, if counting graphs by the number of bonds on, say, an

underlying square lattice, one distinguishes between horizontal and vertical

bonds. In this way, one can construct a two-variable generating function,

G(x; y) =
P

m;n gm;nx
myn where gm;n denotes the number of graphs with

m horizontal and n vertical bonds. Summing over one of the variables, we

may write

G(x; y) =
X
m;n

gm;nx
myn =

X
n

Hn(x)y
n (2)

whereHn(x) is the generating function for the relevant graphs with n vertical

bonds 1. It has been observed in all the problems so far studied, that the

functions Hn are rational, with denominator zeros lying on the unit circle

in the complex x plane.

In some cases one �nds only a small �nite number (typically one or

two) of denominator zeros on the unit circle. Loosely speaking, this is the

hallmark of a solvable problem. If, as is often observed, the denominator

zeros become dense on the unit circle as n increases, so that in the limit

a natural boundary is formed, then this is the hallmark of a D-unsolvable

problem.

The signi�cance of this observation is substantial. It is observed in these

cases that, as n increases, the denominators of the rational functions Hn(x)

contain zeros given by steadily higher roots of unity. Hence the structure of

the functions Hn(x) is that of a rational function whose poles all lie on the

unit circle in the complex x-plane, such that the poles become dense on the

unit circle as n gets large. This behaviour of the functions Hn(x) implies

that G(x; y) (a) has a natural boundary (b) as a formal power series in y with

coeÆcients in the �eld KI = C(x) is neither algebraic nor D-�nite, nor CDA:

Further, provided that G(x; c) is well-de�ned for a given complex value c;

then, in the absence of miraculous cancellations, it follows that G(x; c) also

is neither D-�nite nor CDA:

It is worth mentioning that anisotropisation means exactly that | that

is to say, distinguishing between the x and y component of some parameter

for example | and not generalising the generating function from a function

of one variable to a function of two variables. For example, if discussing the

enumeration of some class of polygons by perimeter, appropriate anisotropi-

sation would be to consider the two variable generating function G(x; y);

where the variables carry the x and y perimeter. Generalising to the two

variable generating function G(x; q); where x carries the perimeter and q

the area, would be inappropriate.

Of course, we are primarily interested in the solution of the isotropic

case, when x = y; and it is clear that the anisotropic case can behave quite

di�erently from the isotropic case. This is most easily seen by construction.

1The free-energy of the zero-�eld Ising model has long been known [49] to have an

expansion in terms of graphs with all vertices of even degree and multiply occupied edges

forbidden
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Consider the function

f(x; y) = f1(x; y) + (x� y)f2(x; y); (3)

where f1(x; y) is D-�nite and f2(x; y) is not. Clearly, the function f(x; y)

is not D-�nite, while f(x; x) is D-�nite. However, in all the cases we have

studied where the solutions are known, the e�ect of anisotropisation does

not change the analytic structure of the solution. Rather, it simply moves

singularities around in the complex plane, at most causing the bifurcation of

a real singularity into a complex pair. This can readily be seen from equa-

tion (18), given below, for the magnetisation of the Ising model. Replacing

y by �x and varying � merely causes the singularities to move smoothly,

and indeed initially linearly, with � in the complex plane. Further, for un-

solved problems, numerical procedures indicate that similar behaviour pre-

vails. Nevertheless, this remains an observation, rather than an established

fact, and, strictly speaking, should be established for each new problem.

If we now ask what functions do display the type of behaviour we have

just observed - a build up of singularities on the unit circle in the com-

plex plane, then the most obvious candidates that display this behaviour

are the modular functions in terms of appropriate variables [36] and q-

generalisations of the standard functions of mathematical physics. We have

seen these in a number of solutions already, such as the hard hexagon model

[3, 36], certain interacting walk models [42] and some polygon models [5].

Explicit examples are given immediately below.

That being said, not all problems with a small number of denomina-

tor zeros have been solved, while some D-unsolvable problems have been

solved. In the former case however we believe that it is only a matter of

time before a solution is found for these problems, while in the latter case

the solutions have usually been expressed in terms of modular functions or

q-generalisations of the standard functions, which are of course not D-�nite.

As examples consider �rst the hard hexagon model [3]. Baxter's original

solution was expressed in terms of a natural, but non-physical parameter x;

with �1 < x < 1: In terms of this parameter, the following product form

was derived for the order-parameter R:

R(x) =
1Y
n=1

(1� xn)(1� x5n)

(1� x3n)2
: (4)

Subsequently Joyce [36] showed that, when expressed in terms of another

product form that de�ned the reciprocal activity z0, R(z0) satis�ed an alge-

braic equation of degree 4 in R3: Joyce's calculation proceeded by showing

that both R and z0 can be expressed in terms of hauptmoduls that are as-

sociated with certain congruence subgroups of the full modular group �:

Known modular equations were used to prove that R(z0) is an algebraic

function of z0:

An example of a di�erent 
avour is provided by the generating function

for the number of parallelogram polygons given in terms of the area (q),
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horizontal semi-perimeter (x) and vertical semi-perimeter (y), equivalent up

to a translation. It is [7]

G(x; y; q) = y
J1

J0
where (5)

J1(x; y; q) =
X
n�1

(�1)n�1xnq(
n+1
2
)

(q)n�1(yq)n
and (6)

J0(x; y; q) =
X
n�0

(�1)nxnq(
n+1

2
)

(q)n(yq)n
; (7)

where (a)n =
Qn�1
i=0 (1� aqi):

In this case, it is clear that if we look at G(x; 1; q) in the complex q-

plane with x held �xed, the solution possesses a natural boundary on the

unit circle.

We suggest that the procedure which we have just outlined is a partic-

ularly useful �rst step in the study of such problems. One anisotropises,

generates enough terms in the generating function to be able to construct

the �rst few functions Hn, then studies the denominator pattern. If it ap-

pears that the zeros are becoming dense on the unit circle, one has good

reason to suspect that the problem is D-unsolvable. If on the other hand

there are only one or two zeros, one is in an excellent position to seek the

solution in terms of the D-�nite or CDA functions of mathematical physics

| many of which are de�ned in [1]. In some cases one may be able to

prove that the observed denominator pattern persists. In that case, one has

proved the observed results.

The construction of the functions Hn deserves some explanation. At

very low order this can often be done exactly, by combinatorial arguments

based on the allowed graphs. Beyond this, our method is to generate the

coeÆcients in the expansion, assume it is rational, then by essentially con-

structing the Pad�e approximant one conjectures the solution. Typically, one

might generate 50-100 terms in the expansion and �nd a rational function

with numerator and denominator of perhaps degree 5 or 10. Thus the �rst

10 or 20 terms of the series are used to identify the rational function, the

remainder are used to con�rm it. Hence while this is not a derivation that

proves that the function is rational, the chance of it not being as conjectured

is extraordinarily small.

It should be said explicitly that this technique is computationally de-

manding. That is to say, the generation of suÆcient terms in the generating

function is usually quite diÆcult. Only with improved algorithms | most

notably the combination of the �nite lattice method [18, 21] with a transfer

matrix formulation | and computers with large physical memory that are

needed for the eÆcient implementation of such algorithms, has it been pos-

sible to obtain expansions of the required length in a reasonable time. The

technique is still far from routine, with each problem requiring a signi�cant

calculational e�ort. An extreme example is given in [16] where a computer
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with 10 Gb of physical memory, and the ability to move around 5 Tb of

data was required.

An additional, and exceptionally valuable feature of the method comes

when the numerical work, described above, is combined with certain func-

tional relations that the anisotropised generating functions must satisfy. In

the language of statistical mechanics, these key functional relations are called

inversion relations and imply a connection between the generating function

and its analytic continuation, usually involving the reciprocal of one or more

of the expansion variable(s). As we show below, the existence of these in-

version relations, coupled with any obvious symmetries (usually a symmetry

with respect to the interchange of x and y), coupled with the observed be-

haviour of the functions Hn | described above | can yield an implicit

solution to the underlying problem with no further calculation. An example

of this is the solution [2] of the zero-�eld free energy of the two-dimensional

Ising model.

In the remainder of this article, we describe the method in considerable

detail in a few cases, then go on to apply it to a range of problems in

statistical mechanics and combinatorics. We also take the �rst steps in

extending the inversion relation idea from its natural home in statistical

mechanics to the arena of combinatorics | where it sits less naturally due

to the absence of an underlying Hamiltonian, the symmetries of which give

rise to the inversion relation. It is comforting to discover that, without

exception, the long-standing unsolved problems of statistical mechanics that

we discuss are all found to be D-unsolvable.

Other important aspects of the method, such as the connection of these

ideas with concepts of integrability, and with the existence of a Yang-Baxter

equation are not explored here.

2 The Ising model free energy and magnetisation

The one-dimensional Ising model consists of a chain of N spins, each of

which may point up or down, denoted �i = �1; i = 1; � � �N: Each spin

interacts only with nearest-neighbour spins with interaction strength J and

with an external magnetic �eld, with interaction strength H: This model is

described [47] by the Hamiltonian

H = �J
X
<i;j>

�i�j �H
NX
i=1

�i (8)

where the �rst sum is over nearest-neighbour pairs. Imposing cyclic bound-

ary conditions, so that �N+1 = �1 allows us to write the �rst sum explicitly

as
PN

i=1 �i�i+1:

The partition function, in the thermodynamic limit, is de�ned by

Z(K;B) = lim
N!1

Z(N;K;B)
1

N ;
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where

Z(N;K;B) =
X

�1=�1

X
�1=�2

� � �
X

�N=�1

exp(��H)

K = �J; B = �H and � = 1=kBT; where kB is Boltzmann's constant.

This multiple sum can be expressed as an iterated matrix product [47]

and the problem then reduces to �nding the eigenvalues of a 2� 2 matrix.

The result is

Z(K;B) = exp(K) coshB +

q
exp(2K) sinh2B + exp(�2K) (9)

where the branch corresponding to the larger eigenvalue is taken. It can

readily be veri�ed that the partition function satis�es a so called inversion

relation

Z(K;B)Z(K +
i�

2
;�B) = 2i sinh(2K); (10)

which connects the partition function and its analytic continuation. An-

other, simpler, such relation [52] is Z(K;B) = �Z(K + i�;B): Two other

quantities of interest are the zero-�eld magnetisation, denoted M(K) and

usually abbreviated to magnetisation, and the zero-�eld susceptibility, usu-

ally denote �(K); also similarly abbreviated. These are de�ned by

M(K) = lim
H!0

1

�

@

@H
lnZ(H;K) (11)

�(K) = lim
H!0

1

�

@2

@H2
lnZ(H;K): (12)

In two dimensions the problem is substantially more diÆcult [47]. If

we take a lattice of M rows and N columns, then the �rst term in the

Hamiltonian now becomes a double sum

J1

M�1X
i=1

NX
j=1

�i;j�i+1;j + J2

MX
i=1

NX
j=1

�i;j�i;j+1; (13)

where cylindrical boundary conditions have been imposed, so that �i;N+1 =

�i;1; i = 1; 2; � � � ;M:

The calculation of the partition function now involves the diagonalisation

of a 2M � 2M matrix in the limit as M !1; a calculation which has only

been carried out [40], [47] in the case of zero magnetic �eld (H = 0). In the

limit of an in�nitely large lattice (limM;N !1) one �nds

logZ(K1;K2) = log 2 +
1

2�2

Z Z �

0

log f(�1; �2)d�1d�2; (14)

where K1 = �J1; K2 = �J2 and

f(�1; �2) = cosh 2K1 cosh 2K2 � sinh2K1 cos �1 � sinh2K2 cos �2:

Simpler expressions are obtainable if one calculates the internal energy

and speci�c heat, given essentially by the �rst and second temperature
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derivative of the partition function. More precisely, the internal energy

E(K) in the isotropic case is

E(K) =
@

@�
(� lnZ(K)) = �J coth 2K[1 + (2 tanh2 2K � 1)

2

�
K(k1)] (15)

where k1 = 2 sinh 2K= cosh2 2K and K(k1) is the complete elliptic integral

of the �rst kind. A more complicated expression involving complete ellip-

tic integrals of both the �rst and second kind follows for the speci�c heat,

de�ned by C(K) =
@E(K)

@T
: Both the internal energy and the speci�c heat

can be expressed as linear, homogeneous di�erential equations in the appro-

priate variables. For expansions around T = 1 the appropriate variable is

the high-temperature variable v = tanh(�J); while for expansions around

T = 0 the appropriate low-temperature variable is u = exp(�4�J): This
calculation, due to Onsager [40] is one of the most famous calculations of

20th century statistical mechanics.

It is convenient to de�ne the reduced partition function by

�(t1; t2) = Z(K1;K2)=2 coshK1 coshK2;

where t1;2 = tanhK1;2: The reduced partition function then [2] satis�es the

inversion relation

ln�(t1; t2) + ln�(1=t1;�t2) = ln(1� t22);

where again the second term in the sum is an analytic continuation of the

�rst. Writing the reduced partition function

ln�(t1; t2) =
X
m;n

am;nt
2m
1 t2n2 =

X
n

Hn(t
2
1)t

2n
2 ;

then Hn(t
2
1) is the generating function for the underlying graphs with pre-

cisely 2n vertical bonds. Baxter [2] pointed out that Onsager's solution,

(14) can be used to show that

Hn(t
2
1) = P2n�1(t

2
1)=(1 � t21)

2n�1;

where P2n�1(t
2) is a polynomial in t2 of degree 2n�1: That is, the functions

Hn are rational, with numerator and denominator of equal degree, and with

the denominator having only one pole of degree 2n � 1 in the complex t21
plane, at t21 = 1: The �rst two of these are:

H1(t) =
t

1� t
(16)

H2(t) =
t� t2=2 + t3=2

(1� t)3
: (17)

The signi�cance of this observation is that when it is coupled with the

above inversion relation and the obvious symmetry

�(t1; t2) = �(t2; t1);
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it is suÆcient to determine, order by order, the numerator polynomials Pn:

That is to say, the complete Onsager solution is implicitly determined by

these two functional equations and the simple form of the denominator (and

some analyticity assumptions [2]).

To be more precise, as the numerator is a polynomial of degree 2n � 1

there are 2n unknowns in the numerator. The symmetry relation reduces

this to n unknowns, and the inversion relation allows us to �nd the n un-

knowns.

A similar result is seen if we consider the spontaneous magnetisation of

the anisotropic square lattice Ising model. In terms of the variables x =

exp(�4J1=kBT ); y = exp(�4J2=kBT ); the magnetisation is [12]

M(x; y) = [1�
16xy

(1� x)2(1� y)2
]
1

8 : (18)

This clearly satis�es the symmetry relation M(x; y) = M(y; x); and it also

satis�es the inversion relation M(x; y) �M(x; 1=y) = 0; as can be seen by

inspection. Writing the magnetisation as

M(x; y) = 1�
X
n

Hn(y)x
n;

it is a simple calculation to show that the functionsHn are rational functions

of the form

Hn(y) =
2yPn(y)

(1� y)2n
;

for jyj < 1 where Pn(y) is a polynomial of degree 2n�2: Each such function

can be analytically continued to jyj > 1; and substitution into the inversion

relation allows one to verify that it is satis�ed, as far as one cares to push

the expansion.

The �rst few polynomials Pn(y) are

1; 2 + 3y + 2y2; 3 + 16y + 32y2 + 16y3 + 3y4; for n = 1; 2; 3:

As observed for the free energy, the symmetry relation, inversion relation and

functional form of the functions Hn are suÆcient to determine the solution.

Some other models were similarly solved by Stroganov [45].

Note that two independent features were necessary for this method of

solution. The existence of the inversion and symmetry relation is one feature,

and the particularly simple form of the functions Hn; and in particular their

denominator structure, is the other. These two examples led us to try and

generalise this approach to other solved and unsolved problems, in order to

obtain solutions, or at least additional information.

For statistical mechanical systems, the existence of an inversion relation

follows from the underlying symmetries of the Hamiltonian [45, 2, 4, 32, 39].

As a consequence, a number of unsolved problems, such as the susceptibility

of the two-dimensional Ising model, the free energy of the three-dimensional

Ising model, and various thermodynamic properties of the q-state Potts
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model [32] all possess known inversion relations. For example, for the free en-

ergy of the three-dimensional Ising model [31], if the reduced partition func-

tion is de�ned by �(t1; t2; t3) = Z(K1;K2;K3)=2 coshK1 coshK2 coshK3;

where t1;2;3 = tanhK1;2;3; the reduced partition function then satis�es the

inversion relation

ln�(t1; t2; t3) + ln�(1=t1;�t2;�t3) = ln(1� t22) + ln(1� t23):

For lattice based combinatorial structures there is in general no analogue

of a Hamiltonian, and so notions of the symmetry group of the Hamiltonian

are not relevant. There is thus no obvious route to calculate an inversion

relation. However it is possible to determine analogous functional relations

for some combinatorial problems, though to date these have largely been

derived \experimentally", as we show below.

As well as the inversion relation (and symmetry relation), the general

form of the rational functions Hn needs to be known. Unless the problem

has already been fully solved, this will not usually be a priori known. In

fact it too will be determined \experimentally" and, in favourable cases,

subsequently proved.

These observations lead to the following proposed approach to the study

of statistical mechanical systems, particularly, but not exclusively, those

for which inversion relations are known. We derive the (anisotropic) series

expansion of the quantity of interest, sum over one variable as above, and

study the analytic properties of the functions which are the coeÆcients of

the re-summed series. As mentioned above, the derivation of the series is

usually a demanding computational exercise, for which eÆcient algorithms

need to be designed. Otherwise there is simply insuÆcient data for the above

approach to be pursued. It is the development of such algorithms and the

availability of cheap, fast computing that has made this approach possible.

3 The Ising model susceptibility.

As our �rst example of this proposed approach to the study of unsolved

problems, we consider the susceptibility of the two-dimensional Ising model,

which is one of the most extensively studied [13], yet still unsolved, problems

in statistical mechanics. It was de�ned in the previous section. For the

square lattice version of this model, the relevant inversion relation [34] is

�(t1; t2) + �(1=t1;�t2) = 0; and the symmetry relation �(t1; t2) = �(t2; t1)

also holds. The anisotropic susceptibility may be written as

�(t1; t2) =
X

m;n�0

cm;nt
m
1 t

n
2 =

X
n�0

Hn(t1)t
n
2 :

This approach was �rst taken in [28], in whichH0; H1; H2; H3; and H5

were found. They are

H0(t) = (1 + t)=(1 � t);
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H1(t) = 2(1 + t)2=(1 � t)2;

H2(t) = 2(1 + 6t+ 8t2 + 6t3 + t4)=(1 � t)3(1 + t);

H3(t) = 2(1 + 8t+ 10t2 + 8t3 + t4)=(1 � t)4 and

H5(t) = 2[1; 16; 64; 144; 166; 144; 64; 16; 1]=(1 � t)6(1 + t)2:

In H5(t) we have introduced the obvious convention that [a0; a1; � � � ; an]
denotes the polynomial with those coeÆcients. The calculation of these

functions is computationally demanding, being of exponential complexity.

Over the last twenty years, Enting [21] has developed an alternative method,

known as the �nite lattice method, which while still of exponential complex-

ity, is nevertheless exponentially faster than preexisting methods based on

direct enumeration. Based on this method, we [27] have obtained the �rst

14 of these rational functions.

Even from the �ve functions H0;H1;H2;H3;H5 given above, it is clear

that the situation is not as simple as that prevailing for the partition function

or magnetisation. For the next two, we [27] �nd

H4(t) = 2[1; 15; 71; 192; 326; 388; 326; 192; 71; 15; 1]

=(1� t3)(1 � t)4(1 + t)3;

H6(t) = 2[1; 28; 220; 1149; 4081; 10788; 22083; 36283; 48543; 53446; 48543;

36283; 22083; 10788; 4081; 1149; 220; 28; 1]=(1 � t3)3(1� t)4(1 + t)5:

For all n � 14 (including the others not shown), the numerator polyno-

mial is found to be symmetric, unimodal and with positive coeÆcients. The

denominator polynomial has zeros lying on the unit circle, at t = 1 for all

n; at t = �1 for n = 2 and n � 4; and we observe that for n = 4 and n � 6

there are zeros at t3 = 1 and for n = 12 and n � 14 there are zeros

at t5 = 1: The numerator and denominator are of equal degree, notably

1; 2; 4; 4; 10; 8; 18; 20; 26; 28; 34; 36; 48; 44; 62 � � � for n = 0; 1; 2; � � � ; 14 respec-

tively.

The degree of the polynomials is increasing so rapidly that even if we

could predict the denominator for all n; the constraints imposed by the

inversion relation and the symmetry relation are insuÆcient to implicitly

yield the solution, unlike the case of the free energy and magnetisation.

Nevertheless, we can obtain useful analytic information about the struc-

ture of the solution. We use the notation of [51], in which the susceptibility

of the Ising model is expressed as an expansion in terms of so called 2k + 1

particle excitations,

�(t1; t2) =
X
k

�2k+1(t1; t2):

We note in passing that this expansion applies to the high-temperature

susceptibility. For the low temperature susceptibility the corresponding ex-

pansion involves 2k particle excitations. The notion of particle excitations

11



is the language of a �eld-theoretic expansion of the Ising model, an expla-

nation of which would take us unnecessarily far a�eld. It suÆces to say that

such an expansion exists, and refer the interested reader to [51] for details.

Syozi and Naya [46] appear to have been the �rst to calculate �1; even

though their calculation preceded the particle excitation formulation of [51].

From [46] we �nd

�1 =
(1� t21)(1� t22)

(1� t1 � t2 � t1t2)2
(1� 16

t21t
2
2

(1 � t21)
2(1� t22)

2
)
1

4 =
X
n

H(1)
n (t1)t

n
2 ;

and H
(1)
n (t1) = Hn(t1) for n = 1; 2; 3; 5 while

H
(1)

4 (t) = 2(1+t8+14(t+t7)+56(t2+t6)+122(t3+t5)+146t4)=(1�t)5(1+t)3:

It is straightforward to show that, for all n; the numerators are symmetric,

unimodal polynomials (with positive coeÆcients). Further, for n even, the

denominator is (1 � t)n+1(1 + t)n�1; and for n odd, the denominator is

(1 � t)n+1(1 + t)n�3: In both cases negative subscripts are to be replaced

by zero. The structure of the numerator and denominator, taken together,

imply that the symmetry and inversion relations that hold for � also hold for

�1: For n even, the numerator and denominator polynomials are of degree

2n; hence there are 2n+1 coeÆcients to be determined. Symmetry reduces

this to n+ 1; while the inversion relation determines n coeÆcients, leaving

1 unknown. This can be determined by the observation that the residue at

t = �1 of H
(1)
n (t); for n even, is

�
(2n� 5)!!!!

2(n=2)!

where n!!!! = n(n�4)(n�8) � � � ; terminating at the smallest integer greater

than 0: For n odd, the numerator and denominator polynomials are of degree

2n � 2; hence there are 2n � 1 coeÆcients to be determined. Symmetry

reduces this to n� 1; and the inversion relation determines all of these.

For �3; �5; etc. no closed form expression is yet known - though they

can [24] be expressed as hyper-elliptic integrals, and at least the �rst few

are [6] di�erentiably �nite. (They probably all are but this hasn't been

proved.) However our numerical studies clearly imply (but do not prove)

that a similar, but more complex structure prevails in these cases.

The principal features we observe are that �2k+1 can be similarly ex-

panded in terms of rational functions, as shown explicitly for �1 above, with

numerators and denominators of equal degree. Furthermore, the numerators

are observed to be unimodal, symmetric and with all coeÆcients positive,

from which follows that the symmetry and inversion relations apply not only

to �; but to each term �2k+1 in its expansion | at least as far as we have

proceeded.

Further, we �nd that the denominator of the rational coeÆcients which

occur in the expansion of �2k+1 have, in addition to the factors in �1 given

12



above, systematic occurrences of powers of the terms (1�t3); (1�t5); � � � ; (1�
t2k+1); which can be predicted [24]. From the results for � and �1 given

above, it can be seen that the �rst contribution of �3 to � occurs in H4;

(as evidenced by the occurrence of the term (1 � t3) in the denominator).

Similarly, we �nd that the �rst contribution of �5 to � occurs in H12: Hence

it appears that the �rst occurrence of the factor 1�t2k+1 in the denominator

coincides with the �rst contribution of a 2k + 1 particle excitation.

It follows that, as n increases, the denominators of Hn(t) contain zeros

given by the (2k +1)th roots of unity. And as n increases, so does k: Hence

the structure of the functionsHn(t) is that of a rational function whose poles

all lie on the unit circle in the complex t-plane, such that the poles become

dense on the unit circle as n gets large. This behaviour implies (unless

miraculous cancellation of almost all poles suddenly starts to occur at high

order) that �(t1; t2) (a) has a natural boundary, and (b) when considered as

a formal power series in t2 with coeÆcients in C(t1) is neither algebraic nor

D-�nite, nor CDA:

Leaving these considerations aside for the moment, the signi�cance of

these observations of the Ising model is that the observed behaviour suggests

a new and powerful tool to investigate the analytic structure of a wide variety

of problems. By generalizing to the anisotropic model, and studying the

distribution of zeros of the denominators in the functions Hn(t) and their

analogues, we can distinguish between those that are likely to be solvable

in terms of simple functions, and those that are not. In the former case

there is a �nite number (usually one or two) of singularities on the unit

circle, while in the latter case there is, in the limit of large n; an in�nite

number, corresponding to a natural boundary. Numerically, this is signi�ed

by a steadily increasing number of singularities in the denominator of Hn(t)

as n increases. In favourable cases one can predict the behaviour of the

denominator, and thus prove that the number of denominator zeros grow

inde�nitely. The magnetisation and susceptibility of the two-dimensional

zero �eld Ising model, discussed above, are examples of the two types of

behaviour.

We do not claim that in the former case the solution is D-�nite, though

all the models we have studied that display this behaviour are D-�nite.

Indeed, it is easy to construct an example of non D-�nite functions that

display this behaviour. For example,

f(x; y) = e(x(e
y

1�x�1)) = 1 +
xy

1� x
+
x(1 + x)y2

2(1 � x)2
+
x(1 + 3x+ x2)y3

6(1� x)3
+ � � � :

(19)

Another example, corresponding to a model of interest, rather than just a

contrived function as above, is that of three-dimensional convex polygons

[10, 11] enumerated by perimeter. The generating function is not D-�nite,

yet the functions Hn appear to have only a single denominator zero (though

this has not been tested at high order).

A related but distinct observation is that the existence of inversion rela-
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tions, coupled with construction of the functions Hn, provides an alternative

method of solution in some cases. We show, in the next section, how this

concept can be applied to certain combinatorial problems too.

4 Staircase polygons

The enumeration of staircase polygons by perimeter is one of the simpler

combinatorial exercises, but is nevertheless useful pedagogically, as so many

distinct methods can be demonstrated in its solution. To this long list

we add the experimental approach of studying the early terms of the two

variable series expansion of the perimeter generating function and observing

a functional relation equivalent to the inversion relation discussed above for

certain statistical mechanical systems.

We �rst write the perimeter generating function as

P (x; y) =
1� x2 � y2

2
�

p
x4 � 2x2y2 � 2x2 + y4 � 2y2 + 1

2
(20)

=
X
m;n

pm;nx
2my2n =

X
n

Hn(x
2)y2n (21)

where pm;n is the number of staircase polygons with horizontal perimeter

2m and vertical perimeter 2n; de�ned up to a translation. Then Hn(x
2) is

the generating function for staircase polygons with 2n vertical bonds.

From observation of the early terms, it is clear that

Hn(x
2) = x2Sn(x

2)=(1 � x2)2n�1

for n > 1; where Sn(x
2) is a symmetric, unimodal polynomial with non-

negative coeÆcients, of degree (n � 2): This observed symmetry can be

expressed formally as

x2nHn(x
2) + x2Hn(1=x

2) = 0; n > 1:

This in turn translates into the functional relation

P (x; y) + x2P (1=x; y=x) = �y2:

There is also an obvious symmetry relation P (x; y) = P (y; x); and these

observations are suÆcient to implicitly solve the problem by calculating the

functions Hn order by order in polynomial time.

Of course, this must rank as one of the least impressive ways of solving

this fairly simple model. However the purpose of this example is twofold.

Firstly to show that this essentially experimental method can be applied to

combinatorial structures in order to discover an inversion relation. Secondly,

to show that once one has such an inversion relation, then this, coupled with

symmetry and the structure of the functions functionsHn, (plus certain ana-

lyticity assumptions) provides an alternative method for obtaining a solution

(albeit experimentally). Once one has such a conjectured solution, it is a

comparatively easy task to prove that it is correct.

Numerous other polygon problems can also be tackled similarly [43].
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5 Three-choice polygons

The problem of three-choice polygons [17] is an intriguing one, as we know

everything about this model except a closed form solution! We have a poly-

nomial time algorithm to generate the coeÆcients in its series expansion

| which is tantamount to a solution | and have made an analysis of its

asymptotic behaviour.

They are self-avoiding polygons on a square lattice, de�ned up to a

translation, and constructed according to the following rules: After a step

in the y direction, one may take a step in either the same direction or in the

�x direction. However after a step in the +x direction, one may only make

steps +x or +y; while after a step in the �x direction, one may only make

steps �x or �y: We have recently anisotropised the model [14, 41] in order

to see whether the ideas developed here give insight into the solution.

Let P3(x; y) =
P

m;n am;nx
myn be the perimeter generating function,

where am;n gives the number of 3-choice polygons, distinct up to translation,

with 2m horizontal bonds and 2n vertical bonds. Then

P3(x; y) =
X
n

Hn(x)y
n;

where

Hn(x) = Pn(x)=Qn(x)

is a rational function of x: The degree of the numerator polynomial increases

like 3n while the denominators are observed to be

Qn(x) = (1� x)2n�1(1 + x)2n�7; n even,

= (1� x)2n�1(1 + x)2n�8; n odd,

where there are no terms in (1+x) for n < 5: It is not diÆcult to construct a

combinatorial argument, based on the way the polygon can \grow", that is

consistent with this behaviour. This argument has recently been sharpened

to a proof [6]. It has also been proved [6] that the solution is D-�nite, and

it clearly cannot be algebraic as the asymptotic behaviour of the number of

coeÆcients [17] includes a logarithmic term.

An inversion relation for this model can be found experimentally [43], and

the solution possesses (x; y) symmetry. Nevertheless, because the degree of

the numerator polynomial grows like 3n we do not have enough constraints

to implicitly solve the model. What is needed is some additional constraint

on the behaviour of the coeÆcients, the discovery of which has so far eluded

us. We nevertheless consider this a promising approach, which has already

revealed valuable analytic information about the solution.

6 Hexagonal directed animals

A directed site animal A on an acyclic lattice is de�ned to be a set of vertices

such that all vertices p 2 A are either the (unique) origin vertex or may be
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reached from the origin by a connected path, containing bonds only in the

allowed lattice directions, through sites of A:
In [19, 15] it was found that the number of such animals of perimeter n

grew asymptotically like �n=
p
n; where � = 4 for the triangular lattice, and

� = 3 for the square lattice. Furthermore, the generating function was given

by the solution of a simple algebraic equation. For the hexagonal lattice

however we [15] found similar asymptotic growth but with � = 2:025131 �
0:000005; and we were unable to solve for the generating function.

In order to gain more insight into this seemingly anomalous situation,

the model was anisotropised [26]. Let Ah(x; s) =
P

m;n am;nx
msn be the site

generating function, where am;n gives the number of hexagonal lattice site

animals, with n sites supported [9] one particular way and m sites in total.

Then

Ah(x; s) =
X
n

Hn(x)s
n;

where

Hn(x) = Pn(x)=Qn(x)

is observed to be a rational function of x:

For the square (and triangular) lattices, the corresponding result has

been obtained exactly [9]. For the square lattice, it is

Asq(x; s) =
1

2

�
(1�

4x

(1 + x)(1 + x� sx)
)�

1

2 � 1

�
: (22)

Writing this as

Asq(x; s) =
X
n

Hn(x)s
n; (23)

expansion readily yields

H0(x) = x=(1 � x);

H1(x) = x2=(1� x)3;

H2(x) = x3(1 + x+ x2)=(1 � x)5(1 + x);

H3(x) = x4(1 + 2x+ 4x2x+ 2x3 + x4)=(1 � x)7(1 + x)2;

H4(x) = x5(1 + 3x+ 9x2 + 9x3 + 9x4 + 3x5 + x6)=(1 � x)9(1 + x)3;

H5(x) = x6[1; 4; 16; 24; 36; 24; 16; 4; 1]=(1 � x)11(1 + x)4:

Here it can be seen that the functions Hn(x) have just two denominator

zeros, at x = 1 and x = �1: As discussed above, this is the hallmark of a

solvable model.

However for the hexagonal lattice generating function, the denominator

pattern, while regular, contains terms of the form (1 � xk) where k is an

increasing function of n: In fact, the �rst occurrence of the factor (1� x2k)

is in Hk: The �rst few functions Hn(x) for the hexagonal lattice are:

H0(x) = x=(1� x);

H1(x) = x=(1� x)3(1 + x);
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H2(x) = x2(1 + x+ x3)=(1� x)5(1 + x)2(1 + x2);

H3(x) = x3(1 + x)(1 + x+ 3x3 � x4 + x5)=(1 � x)7(1 + x)3(1 + x2)2;

H4(x) = x4[1; 3; 4; 10; 12; 14; 16; 13; 14; 7; 6; 4; 0; 1]=

(1� x)9(1 + x)4(1 + x2)3(1� x� x2)(1 + x+ x2):

The enumerations in [26] are complete up to H9(x).

The degree of the numerator also increases faster than linearly. Thus this

model displays the same qualitative behaviour as the susceptibility of the

two-dimensional Ising model, discussed above. Hence similar conclusions

such as the existence of a natural boundary in the appropriate complex

plane, and that the solution is likely to be D-unsolvable may be drawn.

This is then consistent with the seemingly anomalous value of the con-

stant �:

7 Self avoiding walks and polygons

The problem of square lattice self avoiding walks (SAW) and self avoiding

polygons (SAP) are much studied problems, equally widely known for their

mathematical interest and their intractability. See for example [29, 38].

A study of anisotropic square lattice SAW has been reported in [16].

Writing the SAW generating function C(x) in the now familiar form as

C(x; y) =
X

m;n�0

cm;nx
myn =

X
n�0

Hn(x)y
n; (24)

we found the �rst eleven functions, H0(x); � � � ;H10(x):

The �rst few are:

H0(x) = (1 + x)=(1� x);

H1(x) = 2(1 + x)2=(1� x)2;

H2(x) = 2(1 + 7x+ 14x2 + 16x3 + 9x4 + 3x5)=(1 � x)3(1 + x)2 and

H3(x) = 2(1 + 10x+ 29x2 + 44x3 + 41x4 + 22x5 + 7x6)=(1� x)4(1 + x)2:

The �rst occurrence of the term (1 � x3) appears in H5(x) and the term

(1 + x2) �rst appears in H7: Higher order roots of �1 then systematically

occur as n increases. The denominator pattern appears to be predictable,

though we have not been able to prove this. The degree of the numerator is

equal to the degree of the denominator in all cases observed.

Thus we see again the, by now, characteristic hallmark of a D-unsolvable

problem. Similar behaviour is observed for SAP. We write the SAP gener-

ating function P (x) as

P (x; y) =
X

m;n�1

pm;nx
2my2n =

X
n�1

Hn(x)y
2n;
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where pm;n is the number of square lattice polygons, equivalent up to a

translation, with 2n horizontal steps and 2m vertical steps. We [20] cal-

culated the �rst nine functions, H1(x); � � � ;H9(x); and these were found to

behave in a manner characteristic of D-unsolvable problems | that is, the

zeros appear to build up on the unit circle. They �rst few are:

H1(x) = x=(1� x);

H2(x) = x(1 + x)2=(1 � x)3;

H3(x) = x(1 + 8x+ 17x2 + 12x3 + 3x4)=(1 � x)5;

H4(x) = x(1 + 18x+ 98x2 + 204x3 + 178x4 + 70x5 + 11x6)=(1 � x)7;

H5(x) = xP9(x)=(1 � x)9(1 + x)2;

H6(x) = xP15(x)=(1 � x)11(1 + x)4;

H7(x) = xP20(x)=(1 � x)13(1 + x)6(1 + x2 + x4):

In the above equations, Pk(x) denotes a polynomial of degree k: As was

the case for 3-choice polygons, a combinatorial argument can be given for

the form of the denominators. In that case there were only two roots of unity

in the denominator, whereas here the degree of the roots of unity steadily

increases. The occurrence of new terms in the denominator, corresponding

to higher roots of unity, can be identi�ed with the �rst occurrence of speci�c

graphs. In this way [6] the denominator pattern can be predicted, though

rather more work is required to re�ne this observation into a proof.

A similar study of hexagonal lattice polygons [20] leads to similar con-

clusions. Furthermore, we observed that the denominators of the functions

Hn for the square and hexagonal lattices are simply related.

8 The 8-vertex model

Very recently, as a test of the idea that \solvable" models should, when

anisotropised, have functions Hn with only one or two denominator zeros,

Tsukahara and Inami [48] studied the 8-vertex model | which is one of

the most diÆcult statistical mechanics models that has been exactly solved

[2]. While it might be thought straightforward to expand the solution in the

desired form, this turns out not to be so. According to Tsukahara and Inami

[48], the exact solution in terms of elliptic parameters is very implicit, and

they have been unable to obtain an expansion directly from the solution.

The model can be described as two inter-penetrating planar Ising models,

coupled by a four-spin coupling, with two spins in each of the sub-lattices.

Let the coupling in one sub-lattice be L; that in the other beK; and the four-

spin coupling be M: Then the usual high-temperature expansion variables

are t1 = tanhK; t2 = tanhL; t3 = tanhM: New high temperature variables

may be de�ned as follows:

z1 =
t1 + t2t3

1 + t1t2t3
; (25)
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z2 =
t2 + t1t3

1 + t1t2t3
; (26)

z3 =
t3 + t1t2

t1 + t2t3
: (27)

Then it has recently been shown [48] that the logarithm of the reduced

partition function per face

log �(z1; z2; z3) =
X
l;m;n

al;m;nz
2l
1 z

2m
2 z2n3

satis�es

log �(z1; z2; z3) + log �(
1� z22

z1(1� z23)
;�z2;�z3) = log(1� z22): (28)

A summation over l allows the reduced partition function to be written

as

log �(z1; z2; z3) =
X
m;n

Rm;n(z
2
1)z

2m
2 z2n3 : (29)

After a complicated graphical calculation [48], it was found that

R1;0(z
2) = z2=(1� z2); (30)

R1;1(z
2) = 2z4=(1 � z2)3; (31)

R2;0(z
2) = z2(2� 5z2 + z4)=(1 � z2) (32)

R1;2(z
2) = 3z6(1 + z2)=(1 � z2)5: (33)

It is then argued [48] that the general form of the coeÆcients is

Rm;n(z
2) = Pm;n(z

2)=(1 � z2)2m+2n�1:

This behaviour then accords with the expected behaviour of solvable

models. That is to say, there is only a �nite number | in this case 1 | of

denominator singularities.

9 The three-dimensional Ising model

These ideas are also applicable to three-dimensional models, such as the

three-dimensional Ising model. For this model there are no exact results

known. However inversion relations can still be proved, (indeed, the appro-

priate relation in the case of the free energy is given in Section 2). Similarly,

the susceptibility of the model on the simple cubic lattice, anisotropic in all

three directions, satis�es the inversion relation

�(t1; t2; t3) + �(1=t1;�t2;�t3) = 0: (34)

Here t1 = tanh(J1=kBT ); t2 = tanh(J2=kBT ); and t3 = tanh(J3=kBT ):

Summing over l allows us to write the susceptibility as

�(t1; t2; t3) =
X

l;m;n�0

cl;m;nt
l
1t
m
2 t

n
3 =

X
m;n�0

Hm;n(t1)t
m
2 t

n
3 : (35)

19



This approach was �rst taken in [28], in whichH1;1; H2;1; H3;1; and H2;2

were studied, though only the �rst three were identi�ed. They were found

to be

H1;1(t) = 8(1 + t)3=(1� t)3; (36)

H2;1(t) = 16(1 + 5t2 + 7t2 + 5t3 + t4)=(1 � t)4; (37)

H3;1(t) = 8(3 + 23t+ 46t2 + 46t3 + 23t4 + 3t5)=(1 � t)5: (38)

These display the simple behaviour also observed for the �rst few func-

tions Hn in the case of the two-dimensional model. That is to say, the

denominator has only a single zero. However the next term, which we have

managed to identify from the raw data given in [28], already shows the

occurrence of a cube root of unity in the denominator. It is

H2;2(t) = 16(3 + 3t10 + 34(t+ t9) + 143(t2 + t8) + 373(t3 + t7)

+623(t4 + t6) + 745t5)=(1� t3)(1� t)4(1 + t)3: (39)

Indeed, in structure it is very similar to H4(t) for the two-dimensional case.

We have not gone further, but it seems very likely that higher order functions

will be rational with denominators corresponding to higher roots of unity.

10 Percolation and directed percolation

Two widely studied but unsolved problems are that of ordinary and di-

rected percolation in dimension two and higher. For directed percolation,

Jensen [35] has obtained the �rst 23 functions H1; � � � ;H23: These display

the characteristic build-up of denominator zeros of a D-unsolvable model.

Our preliminary studies [35] of ordinary percolation suggest that it too dis-

plays the characteristic behaviour of D-unsolvable models | a build up of

higher roots of unity in the denominators of the functions Hn when the

model is anisotropised. At this stage our series for ordinary percolation is

rather short, and further work needs to be dona.

11 Conclusion

In this paper we have at worst developed a powerful numerical technique

capable of indicating whether a problem is likely to be readily D-solvable or

not. The hallmark of unsolvability, which is the build up of zeros around the

unit circle in the complex x-plane in the functionsHn(x) of the anisotropised

models, can, in favourable cases, be re�ned into a proof.

In the most favourable cases, where in addition an inversion relation can

be obtained | as in the case of the free energy of the two-dimensional Ising

model | or numerically inferred, as in the case of staircase polygons, and

in addition the functions Hn are suÆciently simple, with only a pole at 1 on

the unit circle, an exact solution can be implicitly obtained.
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Most tantalisingly, the prospect of solving hitherto unsolved problems

by predicting the numerator and denominator of the functions Hn by a

combination of combinatorial and symmetry based arguments remains open.

Other methods for conjecturing solutions from the available terms in a

series expansion include the computer program NEWGRQD [25], the Maple

package GFUN and its multivariate generalisation MGFUN [30], which all

search for D-�nite solutions.

The concept of a natural boundary as an indicator or proof of unsolv-

ability in some sense has been seen earlier in other areas. Flajolet [22] has

shown that certain context-free languages are ambiguous because their gen-

erating function has the unit circle as a natural boundary. In a study of

the ice model, which includes various models of ice and ferro-electrics [23] it

was found that the parameterised solution had the entire negative real axis

a natural boundary except for two special values of the parameter, which

coincided with the two cases, KDP and IKDP, that had been solved.

Clearly, much further work remains to be done in classifying precisely

what class of functions is excluded by certain observed behaviour, and in

developing methods to solve problems which are identi�able as D-unsolvable.
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