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Abstract

Let h(t) be a rational function. A constant of the form
∏

p h(p), where the
product ranges over all sufficiently large primes, is called an Artin type
constant. Many important number theoretical constants like the Artin
constant and the twin-prime constant are of this form. We show that
Artin type constants can be expanded in the form

∏∞
k=2 ζ(k)ek , where ζ

denotes the zeta-function, and use this to numerically approximate them.
In some cases the coefficients ek turn out to be related to conjugacy classes
of primitive words in cyclic languages.

1 Introduction

Let p1, p2, · · · denote the consecutive primes. Put p0 = 1. Several constants in
number theory are of the form Cf,g(n) :=

∏
p>pn

(1 − f(p)
g(p)

), where f(t) and g(t)
are monic polynomials with integer coefficients satisfying degf + 2 ≤ degg and
the product is over all primes p > pn.For example A =

∏
p(1 − 1

p(p−1)
), the Artin

constant, T =
∏

p>2(1 − 1
(p−1)2

), the twin-prime constant and S =
∏

p(1 − p
p3−1

),
the Stephens constant, all satisfy this format. In this paper we give a method
for numerically evaluating Cf,g(n) up to high precision, and in particular the
aforementioned constants will be considered in more detail.

The basic idea is to express log Cf,g(n) in the form
∑

k≥2 ek log ζn(k), where
ζn(s) = ζ(s)

∏
p≤pn

(1−p−s
n ) denotes the partial zeta function. Since one has good

numerical approximations for the ζn(k), a cut-off of the series should result in a
reasonable approximation of log Cf,g(n). Note that log ζn(k) = p−k

n+1(1 + o(1)), as
k tends to infinity. Thus we can improve efficiency by taking m > n, approximate
Cf,g(m) with the desired accuracy and then approximate Cf,g(n) in the obvious
way. In practice one easily obtains several hundred digits of precision in this way.
Bach [1] has shown that by this method A and T can be computed to t bits of
precision using O(t3+o(1)) bit operations, where the factor implied by the symbol
o(1) depends on the cost of the underlying arithmetic, but for practical purposes
can be taken as log t. Bach’s arguments also work for the constant Cf,g(n) and
one finds the precision bound O(t3+o(1)).
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The best published approximation to date of the Artin’s constant seems to
be that of Wrench [12]. He considers log A and expands it into series in terms
of
∑

p≥2 p−k, k ≥ 2. Using tables of
∑

p≥2 p−k to 50D prepared by R. Liénard he
then arrives at a 45D approximation to A. Proceeding similarly as for the Artin
constant, he also gave a 42D approximation to T. In both cases his decimals
match with those found by us.

The coefficients ek appearing in log Cf,g(n) =
∑

k≥2 ek log ζn(k) for A, T and
S turn out to have an interpretation in the theory of formal languages. Hence in
§4 we recall some basic notions and prove some results relevant for our purposes.
In §5 we investigate the sign of ck. In §6 we deal with several examples. Finally
in §7 we consider the error made if one approaches Artin type constants only
with finitely many zeta values.

2 The method

As usual let µ denote the Möbius function.

Lemma 1 Let F (t) = tδ + a1t
δ−1 + · · · + aδ ∈ Z[t] be a monic polynomial of

degree δ. Let α1, · · · , αδ be its roots. Put sF (k) = αk
1 + · · · + αk

δ . The sF (k) are
integers and satisfy the recursions

sF (k) + a1sF (k − 1) + · · ·+ ak−1sF (1) + kak = 0, (1)

with aδ+1 = aδ+2 = · · · = 0. Define bF (k) by bF (k) = 1
k

∑
d|k sF (d)µ(k

d
). Then

bF (k) ∈ Z. Moreover, F̂ (t), the reciprocal polynomial of F (t), satisfies the formal
identity

F̂ (t) =

∞∏
j=1

(1 − tj)bF (j). (2)

Proof. The recursions (1) were already known to Newton. They allow one to easily
compute the sF (k) and, moreover, they show that the sF (k) must be integers.
Another way of seeing that, is by noticing that the sF (k) are traces of algebraic
integers and hence rational integers.

Consider F̂ (t), the reciprocal polynomial of F (t). We have

F̂ (t) = tδF (
1

t
) = 1 + a1t + · · · + aδt

δ =
δ∏

j=1

(1 − αjt).

By logarithmic differentation one obtains

−tF̂ ′(t)

F̂ (t)
=

δ∑
j=1

αjt

1 − αjt
=

∞∑
j=1

sF (j)tj . (3)

We can formally write F̂ (t) in the form

F̂ (t) =

∞∏
j=1

(1 − tj)cF (j), (4)
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where by (1 − tj)cF (j), we denote
∑∞

k=0

(
cF (j)

k

)
tk. Notice that cF (1) = −a1. In

general cF (j) equals the coefficient of −tj in the Taylor series of

F̂ (t)

j−1∏
k=1

(1 − tk)−cF (k) (5)

and is thus uniquely determined. Clearly cF (1) is an integer, now assume that
cF (2), · · · , cF (j − 1) are integers. Then all the j terms in (5) have Taylor series
with integer coefficients and hence cF (j) is an integer.

We now complete the proof by showing that, for j ≥ 1, bF (j) = cF (j). From
(3) and (4) it follows that

∞∑
j=1

sF (j)tj =

∞∑
j=1

jcF (j)
tj

1 − tj
, (6)

and hence, for j ≥ 1, sF (j) =
∑

d|j dcF (d). By Möbius inversion it follows that

jcF (j) =
∑

d|j sF (d)µ(j/d), and thus bF (j) = cF (j). �

Remark. Let f(t) = 1 +
∑∞

i=1 ait
i be a Taylor series with ai ∈ Z. Then f(t)

satisfies a formal identity of the form f(t) =
∏∞

j=1(1 − tj)bf (j) with integer coef-
ficients bf (j). This is easily deduced from Lemma 1 on noticing that bf (k) only
depends on a1, · · · , ak.

Recall that ζn(s) = ζ(s)
∏

p≤pn
(1 − p−s).

Theorem 1 Let f(t), g(t) ∈ Z[t] be monic polynomials satisfying degf + 2 ≤
deg g. Let β be the modulus of a root of maximum modulus amongst those of
g − f and g. Let n0 be such that pn0+1 > 1/β. Then, for n ≥ n0,

Cf,g(n) =
∏
p>pn

(1 − f(p)

g(p)
) =

∞∏
j=2

ζn(j)bg(j)−bg−f (j), (7)

where the integers bg(j) and bf−g(j) are defined in Lemma 1. For all j sufficiently
large bg(j) = bg−f (j) if and only if 1 − f(t)/g(t) is a finite product of cyclotomic
polynomials.

Proof. Using (2) we find that

1 − f(1/t)

g(1/t)
=

∞∏
j=1

(
1 − tj

)bg−f (j)−bg(j)
. (8)

That bg−f (j) and bg(j) are integers follows from Lemma 1. The condition degf +
2 ≤ deg g implies that bg−f (1) = bg(1). Up to this point (8) is only established as
a formal identity. We want to establish (8) for all |t| < ρ, t ∈ C, for some ρ > 0.
Let β denote the modulus of a root of maximum modulus amongst those of g−f
and g. Since g and g−f are monic with integer coefficients, we have β ≥ 1. First
assume β = 1. Then g − f and g are products of cyclotomic polynomials. Using
the expression Φn(t) =

∏
d|n(td − 1)µ(n/d) for the nth cyclotomic polynomial, we
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then find that the product in (8) is actually finite. Moreover, the l.h.s. and the
r.h.s. in (8) agree everywhere not on the unit circle. Using this, the theorem easily
follows in this case. Thus we may assume β > 1. Notice that |bg−f(j) − bg(j)| ≤
2(deg g)βj. ¿From the theory of infinite products we use that a product

∏
(1+εν)

is called absolutely convergent if
∑

εν is absolutely convergent and that in an
absolutely convergent product the factors can be reordered without changing
its value. Using this we see that the product in (8) is absolutely convergent if∑∞

j=1 |bg−f (j) − bg(j)|tj is absolutely convergent, which is certainly the case for
|t| < 1/β. From this and (8) and the definition of n0, we deduce that, for n ≥ n0,

Cf,g(n) =
∏
p>pn

∞∏
j=2

(
1 − 1

pj

)bg−f (j)−bg(j)

.

Now if we can establish that the latter double product is absolutely convergent,
we have

Cf,g(n) =
∞∏

j=2

∏
p>pn

(
1 − 1

pj

)bg−f (j)−bg(j)

=

∞∏
j=2

ζn(j)bg(j)−bg−f (j)

and we are done. It remains to show that

∞∑
j=2

|bg−f (j) − bg(j)|
∑
p>pn

1

pj

converges. This is easy and left to the reader. �

3 Connection with arithmetic functions that are

prime-independent and multiplicative

Let f be a multiplicative arithmetic function. It is said to be prime-independent
if f(pν) depends at most on ν. To the constant Cf,g(0) we associate the Dirichlet
series

Lf,g(s) =
∏

p

(
1 − f(ps)

g(ps)

)
=
∑
m≥1

am

ms
.

Then m �→ am is a prime-independent multiplicative function. Let γ(n) denote
the core function, that is γ(n) =

∏
p|n p. An integer n is called square full if

γ(n)2|n. First consider the Artin constant. Then am = µ(γ(m)) if m is square
full and am = 0 otherwise. For the Stephens constant we have a1 = 1 and, for
m > 1, am = µ(γ(m)) in case all the exponents in the canonical prime factoriza-
tion of m are congruent to 2(mod 3) and am = 0 otherwise. For the twin-prime
constant one easily sees that if m is squarefull, then am = µ(γ(m))d(m/γ(m)2)
and am = 0 otherwise.

In [7] (see also [6, Ch.2, §7]) zeta-formulae for PIM functions are consid-
ered. We recall some of the results mentioned there, that are relevant for us.
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An arithmetic function h is said to have to have a zeta-formula if, formally,∑∞
m=1 h(m)m−s =

∏∞
k=1 ζ(ks)ek, with ek ∈ Z. In case ek �= 0 for at most finitely

many k, h is said to have a finite zeta-formula. To a function h that is PIM we
can associate a formal power series given by ĥ(y) =

∑∞
r=0 f(pr)yr, where for p we

can choose any prime. A series ĥ(y) ∈ Z[[y]] will be called a cyclotomic rational if
it can be expressed as a finite product of cyclotomic polynomials and inverses of
these, where a cyclotomic polynomial is one of the form Φm(y) =

∏
i(y−α̃i) ∈ Z[y]

(where α̃1, α̃2, · · · denote the distinct primitive mth roots of unity), if m > 1, or
Φ1(y) = 1 − y. It can be shown that h possesses a finite ζ-formula if and only if
h is PIM and its associated power series ĥ(y) is a cyclotomic rational. It follows
that Lf,g(s) has a finite zeta-formula if and only if 1 − f(t)/g(t) is a cyclotomic
rational. Clearly if Lf,g(s) converges for Re(s) ≥ 1, then Cf,g(0) =

∏∞
k=2 ζ(k)ek.

4 Formal languages

4.1 Languages

Let A be a set which we call an alphabet. (For our discussion we will assume
that A is finite.) A word w on A is a finite sequence of elements of A, that
is w = (a1, a2, · · · , an), ai ∈ A. The set A∗ of all words on the alphabet A
is equipped with the associative operation defined by the concatenation of two
sequences; (a1, a2, · · · , an)(b1, b2, · · · , bn) = (a1, a2, · · · , an, b1, · · · , bn). We say two
words are conjugate if they are obtained from each other by a cyclic permutation.
The conjugacy relation is an equivalence relation. A word x ∈ A∗ is called
primitive if it is not a power of another word. Thus x is primitive if x = yn with
n ≥ 0 implies x = y. It is not difficult to show that each non-empty word is a
power of a unique primitive word. Thus x = re, with r an unique primitive word.
The number e is called the exponent of x. It is not difficult to see that all words in
a conjugacy class C have the same exponent, say e. If the length of these words is
n, then card(C) = n/e. Any subset L of A is called a language. For convenience
we restrict ourself to languages that are closed under conjugation. For all n ≥ 1,
denote the number of words of length n by wL(n) and the number of conjugacy
classes of primitive words in L of length n by pL(n). We define

ζL(t) = exp

(∑
n≥1

wL(n)

n
tn

)
,

to be the zeta-function of L. As a first and one of the easiest examples of a
language let us consider, L1, the language of all words over an alphabet A with
k letters. Clearly wL(n) = kn. Now for n ≥ 1

kn =
∑
d|n

dpL1(d). (9)

Indeed, every word of length n belongs to exactly one conjugacy class of words
of length n. Each class has d = n/e elements, where e is the exponent of its
words. Since there are as many classes whose words have exponent n/e as there
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are classes of primitive words of length d = n/e, (9) is established. By Möbius
inversion it follows from (9) that

pL1(n) =
1

n

∑
d|n

kdµ(
n

d
). (10)

Note that ζL1(t) = (1 − kt)−1.
A language L is called cyclic if it is closed under conjugation and for any

integer n ≥ 1, w ∈ L if and only if wn ∈ L. For a cyclic language we have
similarly to equation (9) and (10)

wL(n) =
∑
d|n

dpL(d) and pL(n) =
1

n

∑
d|n

wL(d)µ(
n

d
).

Arguing as in the proof of Lemma 1 we deduce that for a cyclic language L

ζL(t) =
∏
n≥1

1

(1 − tn)pL(n)
. (11)

Obviously L1 is a cyclic language, we next discuss a slightly more complicated
cyclic language. Let L2 be the set of words on the alphabet {a, b, c} of the form
an0bcan1bc · · · bcanr for some r ≥ 1 and ni ≥ 0, or of the form can0bcan1bc · · · bcanrb
for some r ≥ 0 and ni ≥ 0. Then L2 is cyclic. Note that the cyclic per-
mutations of abc yield the words in L2 of length 3. Note that the two cyclic
permuations of bcbc and the four of aabc give all words of length 4. Thus
pL2(3) = 1 and pL2(4) = 1. For lengths 5,6 and 7 we find that representative
of the conjugacy classes of primitive words are aaabc, abcbc, aaaabc, aabcbc and
aaaaabc, aaabcbc, aabcabc, abcbcbc respectively. Using induction one sees that
wL2(n) = Ln −1, where Ln is the nth Lucas number (which is recursively defined
by Ln+1 = Ln + Ln−1, n ≥ 1, L0 = 2 and L1 = 1). Thus wL2(n) = θn + θ̄n − 1,
with θ = (1 +

√
5)/2. Note that ζL2(t) = (1 − t)/(1 − t − t2).

Let L3 be the set of words on the alphabet {a, b, c, d} that have the form
(abc)n0(ad)m0 · · · (abc)ni(ad)mi , or (bca)n0(da)m0(bca)n1(da)m1 · · · (bca)ni(da)mi, or
the form ca(da)m0b · · · ca(da)mib, with m0 ≥ 1. Then L3 is cyclic. Let Rn be the
recurrence defined by R1 = 0, R2 = 2, R3 = 3 and Rn = Rn−2 + Rn−3, n ≥ 4.
Then using induction one finds wL3(n) = Rn if 3 � n and wL3(n) = Rn − 3 oth-
erwise. Notice that there are no primitive words of length 6. For length 7 there
is just one, up to conjugation, namely abcadad. Thus pL3(6) = 0 and pL3(7) = 1.
Let ω denote a 3rd primitive root of unity. Note that Rn = αn

1 + αn
2 + αn

3 , where
α1, α2 and α3 are the roots of t3 − t − 1. Using this one finds that ζL3(t) =
(1 − t3)/(1 − t2 − t3).

4.2 Automata

An automaton A over A is composed of a set Q (the set of states), a subset I of Q
(the initial states), a subset T of Q (the terminal or final states), and a set F ⊂
Q × A × Q, called the set of edges. The automaton is denoted by A = (Q, I, T ).
The automaton is finite when the set Q is finite. A path in the automaton is a
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sequence c = (f1, · · · , fn) of consecutive edges fi = (qi, a, qi+1), 1 ≤ i ≤ n. The
word w = a1a2 · · ·an is the label of the path c. A path c : i → t with i ∈ I and
t ∈ T is called succesful. The set recognized by A, denote by L(A), is defined as
the set of labels of succesful paths.

Let Z[[A]] be the commutative algebra of formal power series in the variables
a ∈ A. Call matrix of an automaton A the matrix E in Z[A]Q×Q defined by

Ep,q =
∑

a
p→q

a,

where a
p→q

means that there is an edge labelled a from p to q. Call determinant

of A, det(A), the polynomial in Z[[A]] given by det(I −E), where I is the Q×Q
identity matrix. Let θ : Z[[A]] → Z[[t]] denote the homomorphism determined
by θ(a) = t, for any letter a in A. It is well-known that:

Proposition 1 Let A be a finite automaton and L(A) the language accepted by
it, then

ζL(A)(t) = θ(det(I − E)−1) = θ(det(A)−1).

It follows from Proposition 1 that ζL(A)(t) = 1/F̂ (t), with F̂ (t) the reciprocal of
a monic polynomial F (t) ∈ Z[t]. Comparison of (2) and (11) then shows that
bF (k) = pL(a)(n) ≥ 0. This gives rise to the question which monic polynomials

F (t) have the property that 1/F̂ (t) occurs as the zeta function of some finite
automaton. This seems a difficult question. If F (t) is of degree 2, the answer is
that this only happens if the coefficient of t is non-positive and the discriminant
is non-negative.

We next give an example of a fairly large class of polynomials that can be
realized as zeta functions of automata. Let n ≥ 1, a1, · · · , an be non-negative
integers and an > 0. Consider the following automaton, A(a1, · · · , an). It has
Q = I = {1, 2, · · · , n}. We label all its edges (n−1+

∑
ai in total), with different

letters. It has a1 edges going from the first to the first state. It has an edge going
from the first to the second state, from the second to the third, etc., and one
from state n − 1 to state n. For 2 ≤ i ≤ n, it has ai edges going from the ith
state to the first. These are all the edges in A(a1, · · · , an).

Lemma 2 We have

ζL(A(a1,···,an))(t) =
1

1 − a1t − a2t2 − · · · − antn
.

Proof. From the definition of A(a1, · · · , an) it follows that θ(det(A(a1, · · · , an)))
equals

det

⎛
⎜⎜⎜⎜⎝

1 − a1t −t 0 0 · · · 0 0
−a2t 1 −t 0 · · · 0 0
−a3t 0 1 −t · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
−ant 0 0 0 · · · 1 −t

⎞
⎟⎟⎟⎟⎠ = 1 − a1t − a2t

2 − · · · − antn,

where the latter equality is easily proved on using induction with respect to n.
The result now follows on invoking Proposition 1. �
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4.3 Traces of languages

Denote by Z〈〈A〉〉 the set of non-commutative formal powers series over Z on the
alphabet A. Each language L defines a series, its characteristic series defined by
L =

∑
w∈L w. Now, let A be a finite automaton over A, and define a formal power

series, called the trace of A and denoted by tr(A), by tr(A) =
∑

w∈A∗ αww, where
the coefficient αw of the word w is equal to the number of couples (q, c), where
q is a state in A and c is a path q → q in A labelled w. A language L is said
to be recognizable if there exists an automaton A such such that L = L(A). It
was proved by Berstel and Reutenauer [2] that the characteristic series of each
cyclic recognizable language is a linear combination over Z of traces of finite
deterministic automata. Thus for a cyclic recognizable language there exists
s ≥ 1 and automata, A1, · · · , As and b1, · · · , bs ∈ Z such that L =

∑s
i=1 bitr(Ai).

A consequence of this identity is (see [2, p. 539]) that

ζL(t) =
s∏

i=1

ζAi
(t)bi . (12)

Since the zeta functions of finite automata are rational, we deduce the important
consequence that the zeta function of a cyclic recognizable language is rational.
A question that arises is which rational functions occur as a zeta function of a
cyclic recognizable language. If a rational function can be realized as the zeta
function of a cyclic recognizable language, then one has an interpretation for the
coefficients in (7) for the associated Artin type constant.

5 Positivity

Once we have a representation of the form
∏∞

k=2 ζ(k)ek for an Artin type constant
it is of some importance to investigate the positivity of the ek. Thus if for every k
sufficiently large ek is positive, then

∏N
k=2 ζ(k)−ek is an upper bound for the Artin

type constant for every N sufficiently large. If all the roots having maximum
modulus amongst the roots of g − f and f are equal, are roots of g − f , are real
and greater than one, then it is easy to see that ek > 0 for every k sufficiently
large. The next few results help one further to determine the positivity of the ek.

Lemma 3 For every k ≥ 1 and t > 1 we have
∑

d|k tdµ(k/d) > 0.

Proof. For k = 1 the result is obvious, so assume k ≥ 2. For t > 1, we have
td = e(log t)d =

∑∞
r=0

(log t)rdr

r!
. Thus

∑
d|k

tdµ(k/d) =

∞∑
r=0

(log t)r

r!
Ar(k), (13)

where Ar(k) =
∑

d|k drµ(k/d). Notice that Ar(k) as a convolution product of two
multiplicative functions, is a multiplicative function of k. The latter observation
allows one to deduce almost immediately that Ar(k) = kr

∏
p|k(1 − 1/pr). In

particular A0(k) = 0 and Ar(k) > 0 for r ≥ 1. Thus every term in the infinite
series in (13), except the first which is zero, is positive. �
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Let Z−[t], respectively Z+[t], denote the set of monic polynomials f(t) =
tn + a1t

n−1 + · · · + an, with, for 1 ≤ i ≤ n, ai ≤ 0, respectively ai ≥ 0.

Lemma 4 Let F (t) = tδ − a1t
δ−1 − · · · − aδ ∈ Z−[t] and k ≥ 1. Then bF (k) ≥ 0.

Moreover, bF (k) > 0 for every k ≥ 1 if and only if a1 ≥ 2 or a1 = 1 and a2 ≥ 1.

Proof. The language accepted by a finite automaton with Q = I = T and having
different letters at each edge is cyclic. Thus, in particular, A(a1, · · · , an) is cyclic.
As such its zeta function satisfies (11). By Lemma 2 it then follows that

1 − a1t − · · · − antn =
∏
k≥1

(1 − tk)pL(A(a1,···,an))(k).

On the other hand, by the proof of Lemma 1, we have

1 − a1t − · · · − antn =
∏
k≥1

(1 − tk)bF (k). (14)

By the proof of Lemma 1 again the coefficients bF (k) are unique. Hence it follows
that bF (k) = pL(A(a1,···,an))(k) ≥ 0. The latter part of the assertion is left to the
reader. �

The next lemma shows that even in cases negative coefficients occur in (7),
an interpretation in terms of formal languages might still be possible.

Lemma 5 Let G(t) = tδ + · · · + (−1)i+1ait
δ−i + · · · + (−1)δaδ with ai ≥ 0 and

F (t) = G(−t). Then, for k odd, bG(k) = −bF (k) ≤ 0 and, for k even, bG(k) ≥
bF (k) ≥ 0.

Proof. Note that F (t) = tδ −a1t
δ−1 −· · ·−aδ. The reciprocal polynomial of G(t),

Ĝ(t), equals F̂ (−t). By the proof of Lemma 1 we have F̂ (t) =
∏∞

k=1(1 − tk)bF (k).

From this it easily follows that Ĝ(t) = F̂ (−t) =
∏∞

k=1(1 − tk)bG(k), with bG(k) =
−bF (k) for k is odd, bG(k) = bF (k) if 4|k and bG(k) = bF (k) + bF (k/2), for the
other even k. Since bF (k) ≥ 0 by Lemma 4, the proof is completed. �

Next we apply Lemma 5 to a constant related to the non-vanishing, on aver-
age, of L-series, see [10, p. 110]. Put

c =
1

8π2

∏
p

(
1 − 4p2 − 3p + 1

p4 + p3

)
.

Then using Lemma 5 and 4, we find that 48c =
∏∞

k=2 ζ(k)ek, with the ek integers
and sign(ek) = (−1)k+1.

Lemma 6 Let f ∈ Z[t], with f not necessarily monic. Suppose that f has
only non-negative coefficients. Moreover, let g ∈ Z−[t] with degg > degf. Then
bg−f(k) ≥ bf (k) for k ≥ 1.

Proof. We will construct a cyclic language Lf,g such that pLf,g
(k) = bg−f (k) −

bf (k). Since trivially pLf,g
(k) ≥ 0, the result then follows.

Write f(t) = b1t
n−1 + · · ·+bn and g(t) = tn−a1t

n−1 + · · ·−an. By assumption
ai, bi ≥ 0. Consider the automaton A(a1, · · · , an). By appropriately labelling the
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edges of A(a1 + b1, · · · , an + bn), L(A(a1, · · · , an)) becomes a subset of L(A(a1 +
b1, · · · , an + bn)). Now consider the language Lf,g = L(A(a1 + b1, · · · , an + bn)) −
L(A(a1, · · · , an)). We have Lf,g = tr(A(a1 + b1, · · · , an + bn)) − tr(A(a1, · · · , an))
and hence, by (12) and Lemma 2,

ζLf,g
(t) =

1 − a1t − · · · − antn

1 − (a1 + b1)t − · · · − (an + bn)tn
=

g(1
t
)

g(1
t
) − f(1

t
)
.

On the other hand, by (11),

ζLf,g
(t) =

∏
j≥1

1

(1 − tn)pLf,g
(j)

.

Thus

1 − f(1/t)

g(1/t)
=
∏
j≥1

(1 − tj)pLf,g
(j).

On comparing this with (8), the result follows. �

6 Examples

6.1 The Artin constant

Consider an integer a that is not −1 or a square. Artin conjectured in 1927 that
there are infinitely many primes p such that a is a primitive root mod p, that is
< a >∼= F∗

p. Hooley [5] proved, subject to GRH, the truth of this and, moreover,
computed, under GRH, the natural density of primes p such that a is a primitive
root mod p. This turns out to be a rational number, depending possibly on a,
times the Artin constant.

For the Artin constant we have f(t) = 1 and g(t) = t(t − 1). The condi-
tions of Lemma 6 are satisfied and we find A =

∏∞
k=2 ζ(k)−ek, with ek ≥ 0. Put

ak = (1+
√

5
2

)k +(1−√
5

2
)k − 1, thus ak is given by the recursion a1 = 0, a2 = 2 and,

for k ≥ 2, ak = ak−1+ak−2+1. Now ek = {∑d|k adµ(k/d)}/k. We find e1, e2, · · · is
0, 1, 1, 1, 2, 2, 4, 5, 8, · · · . Notice that ek = pL2(k) ≥ 0. Using the trivial inequality
ek ≥ τk/k − τk/2 − 1 with τ = (1 +

√
5)/2, it is easily seen that ek ≥ 1 for k ≥ 2.

This confirms a belief expressed by Bach [1, p. 149].

6.2 The Stephens constant

Let U = {Un}∞n=0 be a sequence of integers. We say that m divides the sequence
U if m divides at least one term of the sequence. Denote by δ(U) the natural
density of primes p that divide U, if it exists. Stephens [11] proved, subject
to GRH, that δ(U) exists for a large class of second order linear recurrences.
Moreover he showed, subject to GRH, that for these sequences δ(U) equals a
rational number times the Stephens constant.

For the Stephens constant we have f(t) = t and g(t) = t3 − 1. The conditions
of Lemma 6 are satisfied and we find S =

∏∞
k=2 ζ(k)−ek, with ek ≥ 0. Let α1, α2, α3

10



denote the roots of t3−t−1. Put rk = αk
1+αk

2+αk
3 . Then r1 = 0, r2 = 2 and r3 = 3

and, for k ≥ 4, rk = rk−2+rk−3. Put ω = e2π/3. Then ak = αk
1+αk

2+αk
3−1−ωk−ω2k

and thus ak = rk −3 if 3|k and ak = rk otherwise. Then ek = {∑d|k adµ(k/d)}/k.

Thus the coefficients we get are precisely the pL3(k). In particular it follows again
that they are all non-negative. We find e1, e2, · · · is 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 2, · · ·

6.3 The twin-prime constant

If p and p+2 are primes, they are called twin primes. Let π2(x) denote the number
of twin-primes not exceeding x. It was conjectured by Hardy and Littlewood that

π2(x) ∼ 2T
x

(log x)2
.

For the twin-prime constant we find T =
∏∞

k=2 ζ(k)−ek, with ek = k−1
∑

d|k 2dµ(k
d
).

By Lemma 3 it follows that ek > 0. In particular the coefficients we get are
the pL1(n) for an alphabet with two letters. There is in this case of course
an alternative interpretation of these numbers, namely as the number of irre-
ducible monic polynomials of degree k over the finite field F2. We find e2, e3, · · ·
is 1, 2, 3, 6, 9, 18, · · ·.

6.4 Mertens’ constant

In 1873 Mertens proved the existence of the limit

B = limx→∞

(∑
p≤x

1

p
− log log x

)
.

It turns out that B = γ − H, where

H = −
∑

p

(
log(1 − 1

p
) +

1

p

)

and γ denotes Euler’s constant. The language L4 associated to eH has as single
word and is non-cyclic. Trivially ζL4(t) = et.

7 Incomplete expansions in partial zeta values

In this section we will state and prove a result on partial zeta expansions of Artin
type that can be used to approximate them with any prescribed accuracy. It is
crucial for this to be able to efficiently compute zeta values at integers up to high
precision, for more on this see [3] and the references there in.

Theorem 2 Let f, g, β, n0, bf (j) and bg−f (j) be as in Theorem 1 and n ≥ n0.
Put ej = bg−f (j) − bg(j). Then Cf,g(n) =

∏∞
k=2 ζ(k)−ek. Furthermore,

− log Cf,g(n) =
M∑

k=2

ek log ζn(k) + EM(n), (15)
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where

EM(n) =

∫ ∞

pn+1

(π(t) − n)rM(t)dt,

with

rM(t) =
f(t)g′(t) − f ′(t)g(t)

g(t)(g(t) − f(t))
−

M∑
k=2

kek

t(tk − 1)
.

Moreover,

|EM(n)| ≤ 4degg

(
β

pn+1

)M
β

1 − β
pn+1

. (16)

Proof. The first assertion is just a restatement of Theorem 1. We have

− log Cf,g(n) = −
∑
p>pn

log

(
1 − f(p)

g(p)

)
= −

∫ ∞

pn+1−
log

(
1 − f(t)

g(t)

)
d(π(t) − n).

and hence, by partial integration,

− log Cf,g(n) =

∫ ∞

pn+1

(π(t) − n)

(
f(t)g′(t) − f ′(t)g(t)

g(t)(g(t) − f(t))

)
dt. (17)

Notice that the choice n ≥ n0 ensures that the sum and integrals are well-defined.
Likewise we deduce,

log ζn(k) =

∫ ∞

pn+1

k(π(t) − n)

t(tk − 1)
dt (18)

¿From (18) and (17) one deduces on invoking the definition of rM(t), the validity
of (15). ¿From (6) and the proof of Theorem 1 we deduce that, for t > β,

g′(t) − f ′(t)
g(t) − f(t)

− g′(t)
g(t)

=

∞∑
k=2

kek

t(tk − 1)
.

Thus, for t > β,

rM(t) =
∞∑

k=M+1

kek

t(tk − 1)
(19)

¿From this and the trivial estimate π(t) − n ≤ t the upper bound for |EM(n)| is
easily deduced. �

If one is only interested in bounding the error EM (n), a shorter argument
suffices. Note that

ζn(k) ≤
∞∑

m=pn+1

1

mk
≤ p−k

n+1 +

∫ ∞

pn+1

dt

tk
≤ p1−k

n+1

for k ≥ 3. Using this estimate we deduce that
∞∑

k=M+1

βk log ζn(k) ≤
∞∑

k=M+1

βk(ζn(k) − 1) ≤
∞∑

k=M+1

βkp1−k
n+1

= (
β

pn+1
)M β

1 − β/pn+1
.

This, together with Cf,g(n) =
∏∞

k=2 ζ(k)−ek and |ek| ≤ 2(degg)βk, then yields
(15) and (16).
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7.1 The Mertens constant revisited

The method of proof of Theorem 2 can sometimes be applied to constants that
are not of Artin type, cf. [4]. The Mertens constant provides such an example.
Put Hn = −∑p>pn

(log(1− 1/p)+ 1/p), thus H0 = H . Reasoning as in the proof
of Theorem 2 and making use of the identity

1

t2(t − 1)
= −

∞∑
m=2

µ(m)

t(tm − 1)

valid for t > 1, we obtain, for n ≥ 0,

Hn = −
M∑

k=2

µ(k)

k
log ζn(k) +

∫ ∞

pn+1

(π(t) − n)ρM(t)dt, (20)

with ρM(t) = 1/(t2(t − 1)) +
∑M

m=2 µ(m)/(t(tm − 1)). We close this section by
comparing this approach to compute H with that of Lindqvist and Peetre [9].
Their starting point is equation (20) with n = 0, that is

H = −
M∑

k=2

µ(k)

k
log ζ(k) +

∫ ∞

2

π(t)ρM(t)dt.

Put ρ̂M (t) = log(1 − 1/t) + 1/t + µ(M) log(1 − t−M)/M. Note that ρ̂M(t) is a
primitive of ρM(t). On partly evaluating the latter integral one obtains

H = −
M∑

k=2

µ(k)

k
log ζ(k) +

n∑
j=1

jρ̂M(t)|pj+1
pj

+

∫ ∞

pn+1

π(t)ρM(t)dt. (21)

Then by choosing M and n so as to minimize computational effort, they obtain
an approximation with the desired accuracy. It is an elementary but tedious
rewriting exercise to obtain (21) directly from (20) and the other way around.
Thus the method of Lindqvist and Peetre for approximating H is equivalent with
the incomplete partial zeta method.

The author likes to thank Gerd Mersmann, Prof. R. Tijdeman and Prof. Don
Zagier for some helpful suggestions.
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