
ar
X

iv
:m

at
h.

C
O

/0
00

22
20

 v
2

 1
 D

ec
 2

00
0

Tournament Sequences and Meeussen Sequences

Matthew Cook

Computational and Neural Systems Program
California Institute of Technology

Pasadena, CA 91125
cook@paradise.caltech.edu

Michael Kleber∗

Department of Mathematics

Massachusetts Institute of Technology
Cambridge, MA 02139

kleber@math.mit.edu

Submitted: March 22, 2000; Accepted: September 5, 2000

Abstract

A tournament sequence is an increasing sequence of positive integers (t1, t2, . . .)
such that t1 = 1 and ti+1 ≤ 2ti. A Meeussen sequence is an increasing sequence of
positive integers (m1,m2, . . .) such that m1 = 1, every nonnegative integer is the
sum of a subset of the {mi}, and each integer mi − 1 is the sum of a unique such
subset.

We show that these two properties are isomorphic. That is, we present a
bijection between tournament and Meeussen sequences which respects the natural
tree structure on each set. We also present an efficient technique for counting the
number of tournament sequences of length n, and discuss the asymptotic growth
of this number. The counting technique we introduce is suitable for application
to other well-behaved counting problems of the same sort where a closed form or
generating function cannot be found.

MSC: 11B99 (Primary), 05A15, 05A16 (Secondary).

∗Partially supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship

1

the electronic journal of combinatorics 7 (2000), #R44 2

1 Introduction

An infinite tournament sequence T is an infinite sequence of positive integers T =
(t1, t2, . . .) such that

• t1 = 1 and ti < ti+1 ≤ 2ti for i = 1, 2, . . .

For example, the first infinite tournament sequence in lexicographic order is ti = i, and
the last is ti = 2i−1. A finite tournament sequence T = (t1, . . . , tn) is a truncated infinite
tournament sequence.

An infinite Meeussen sequence M is an infinite sequence of positive integers M =
(m1, m2, . . .) such that

• m1 = 1 and mi < mi+1 for i = 1, 2, . . .,

• Every nonnegative integer is the sum of a subset of the {mi}, and

• Each integer mi − 1 is the sum of a unique subset of the {mi}.

For example, the first infinite Meeussen sequence in lexicographic order is mi = fi+1,
the (i + 1)st Fibonacci number, and the last is mi = 2i−1. A finite Meeussen sequence
M = (m1, . . . , mn) is a truncated infinite Meeussen sequence. We will see that this is
equivalent to requiring that every integer between 1 and

∑n
i=1 mi is the sum of a subset

of the {mi}.
We present a bijection {T} ↔ {M} between these two types of sequences. The

bijection is defined in Section 2; it preserves the length of the sequence and respects lex-
icographic ordering. It also acts in a surprising way on sequences with certain recurrence
relations, as discussed in Section 3.

Counting finite tournament (or equivalently Meeussen) sequences of length n is
straightforward ([9], sequence A008934), but if done in the obvious way takes time
exponential in n. In Section 4 we present an efficient polynomial-time algorithm for
producing the numbers. The technique is suitable for application to other well-behaved
counting problems of the same sort where a closed form or generating function cannot
be found. We also discuss the asymptotic growth, proving that the log2 of the number
of sequences of length n is

(

n
2

)

− log2(n!) + O(log(n)2).
Finite tournament sequences were studied in [4] under the name “random knock-out

tournaments.” A sequence (t1, . . . , tn) represented a tournament of n rounds beginning
with 1 +

∑

ti players; in the first round 2tn players are paired off randomly and the tn
losers are eliminated, leaving a tournament corresponding to (t1, . . . , tn−1). The paper
concerns the probabilities of certain pairings occurring in such a tournament.

The count which first appeared in [9] was performed by M. Torelli, who found the
notion of a tournament sequence useful in his investigation of sequences with certain
properties relating to Goldbach’s conjecture [10]. Tournament sequences also appear
independently in the work of J. Shallit, where they are the possible subword complexities
of infinite non-periodic bit strings [11].

the electronic journal of combinatorics 7 (2000), #R44 3

The observation that the beheaded Fibonacci sequence satisfies the property claimed
above was made by Wouter Meeussen [private communication, 1999], and we here name
sequences with this property Meeussen sequences in his honor. Part of their definition
is similar to that of so-called regular sequences [6], in which each term is a partial sum
of preceding terms, which arise in the study of finite probability measures. The unique
representability condition is reminiscent of 1-additive sequences (see [7], for example),
but the precise form of the condition seems new.

The authors would like to acknowledge W. Meeussen for suggesting the question,
and N. J. A. Sloane for his Encyclopedia of Integer Sequences [9], which led us to notice
the coincidence. Thanks also to J. Polito for useful conversations, J. Shallit for helpful
comments on an earlier draft of this work, and D. Knuth for excellent suggestions about
the asymptotics questions.

2 An Isomorphism on Trees

In this section we define a map which sends any tournament sequence, finite or infinite,
to a Meeussen sequence of the same length. The set of all sequences of either type can
naturally be viewed as a rooted tree: the nodes on level n of the tree correspond to
the sequences of length n, and the parent of the sequence (s1, . . . , sn) in the tree is the
sequence (s1, . . . , sn−1). Our map is an isomorphism on the tree structures of the two
types of sequences. Figure 1 shows how the beginnings of these trees look; the node for
(s1, . . . , sn) has the label sn written on it.

The definition of a tournament sequence (t1, . . . , tn+1) says that tn+1 can have any
value between tn+1 and 2tn. Therefore the tree of tournament sequences has a convenient
local description: the top node is labelled 1, and any node labelled k has k children,
with labels k + 1, k + 2, . . . , 2k, respectively. Trees with such local descriptions have
been called generating trees, and were introduced in [5]. They have been championed
by J. West ([12],[13]), who has used them to study pattern-avoiding permutations, and
by Barcucci et. al., who applied them to the enumeration of combinatorial objects [3];
see [2] and references therein for more on the subject. In West’s transparent notation,
the tree of tournament sequences is

Root: (1)
Rule: (k) → (k + 1)(k + 2) . . . (2k)

We will prove that the tree of Meeussen sequences is isomorphic to the tree of tour-
nament sequences by showing that it also has the property that if a node has k children,
then those children have k + 1, k + 2, . . . , 2k children, respectively. Since this tree
structure clearly has no automorphisms, we conclude that there is a unique bijection
between the two trees, and therefore a unique bijection between tournament sequences
and Meeussen sequences which respects the ideas of extending or truncating a sequence.

To better understand Meeussen sequences, we introduce some notation.

the electronic journal of combinatorics 7 (2000), #R44 4

1

2

3 4

4 5 6 5 6 7 8

5 6 7 8 6 7 8 9 10 7 8 9 10 11 12 6 7 8 9 10 7 8 9 10 11 12 8 9 10 11 12 13 14 9 10 11 12 13 14 15 16

1

2

3 4

5 6 7 5 6 7 8

8 10 11 12 8 9 11 12 13 8 9 10 12 13 14 9 10 11 12 13 9 10 11 12 13 14 9 10 11 12 13 14 15 9 10 11 12 13 14 15 16

Figure 1: The top five rows of the trees of tournament and Meeussen sequences.

Definition 1 For A = (a1, a2, . . .) an integer sequence, finite or infinite, define:

1. r(A) to be the set of integers which are representable as ai1 + . . . + ain for some
ai1 , . . . , ain in A, i1 < · · · < in, and

2. ur(A) to be the set of integers so representable in exactly one way.

For example, if A = (1, 2, 3) is our sequence, then r(A) = {0, 1, 2, 3, 4, 5, 6}, and ur(A) =
{0, 1, 2, 4, 5, 6}, where 3 is omitted because it can be represented as 3 and as 1 + 2.
An infinite increasing integer sequence M = (m1, m2, . . .) with m1 = 1 is Meeussen if
r(M) = Z≥0 and mi − 1 ∈ ur(M) for all i.

Given a finite Meeussen sequence M = (m1, . . . , mn) which we wish to extend, we
must certainly pick mn+1 to be u + 1 for some element u ∈ ur(M) with u ≥ mn. We
say such choices of u are candidates. For example, with M = (1, 2, 3), there are three
candidates 4, 5, 6 for m4 − 1, so m4 must be one of 5, 6, 7.

Our claim that the two trees are isomorphic then reduces to the following:

Proposition 2 Suppose M = (m1, . . . , mn) is a finite Meeussen sequence, and there are
k candidates for mn+1 − 1, which we designate u1 < u2 < · · · < uk. Then for each j,
1 ≤ j ≤ k, the extended sequence with mn+1 = uj + 1 is also Meeussen, and has k + j
candidates for mn+2 − 1.

the electronic journal of combinatorics 7 (2000), #R44 5

Proof: Let S denote the sum
∑n

i=1 mi of the sequence; note that S is also the largest
candidate, uk. Let M ′ = (m1, . . . , mn+1) be the extended sequence we get by choosing
mn+1 = uj + 1, and S ′ = S + mn+1 be its sum.

First, we can see by induction that r(M ′) is the entire interval of integers [0, S ′]. Each
representable sum in r(M ′) is an element of r(M) or is mn+1 added to such an element.
Assume inductively that each of these types forms a single interval, [0, S] and [mn+1, S

′],
respectively. There is no gap between the two intervals, since mn+1 − 1 = uj ∈ r(M),
and the induction holds.

Note that these two intervals have some overlap [mn+1, S], possibly empty if we chose
mn+1 = uk +1 = S +1. Anything in the overlap can be represented in at least two ways,
one with mn+1 and one without. Thus the candidates for M ′, the elements of ur(M ′)
larger than mn+1, are in fact all larger than S.

Next we observe that both r(M ′) and ur(M ′) are invariant under the involution
t 7→ S ′ − t, corresponding to taking the complement of a subset. The overlap [mn+1, S]
is similarly invariant and right in the middle, and for each candidate v of M ′, there will
be a corresponding member S ′ − v of ur(M ′) smaller than mn+1.

Similarly, ur(M) has the same property: aside from u1, . . . , uk it contains exactly k
more uniquely representable numbers, all of the form S − ui. We now know that the
elements of ur(M) are, in order, S − uk, . . . , S − u1, u1, . . . , uk.

We have also concluded that the candidates for M ′ are exactly the numbers of the
form u + mn+1 such that u ∈ ur(M) and the total is strictly larger than S. Therefore
when we chose mn+1 = uj +1, the candidates for M ′ are exactly the k numbers ui+uj +1
for i = 1, . . . , k and the j numbers (S − ui) + uj + 1 for i = 1, . . . , j. Thus there are
k + j candidates, as desired. �

Note that we incidentally showed that half of our definition of Meeussen sequences is
unnecessary. If we always choose the term mn+1 to be one more than a representable sum
from r(M), we argued above that at each finite stage, r(M) is the entire interval [0, S].
Thus an infinite sequence M generated this way will automatically have r(M) = Z≥0, a
condition imposed in the original definition.

Corollary 3 There is a unique isomorphism φ : {T} → {M} from the set of tournament
sequences to the set of Meeussen sequences which preserves the rooted tree structure.
Moreover, φ respects the lexicographic ordering on sequences of each type.

Proof: By Proposition 2, the tree structure of Meeussen sequences is precisely that of
tournament sequences: both trees start with a node with one child, and if a node has k
children, then those children have k + 1, k + 2, . . . , 2k children, respectively. Since the
children of a node are all distinguishable from one another, by virtue of their distinct
numbers of children, there is a unique bijection between the two trees.

The nodes in the trees are indexed by finite sequences of each type, so φ is immedi-
ately defined for finite sequences. In both trees, the distance from the root determines
the length of the sequence, so φ preserves it. Infinite sequences can be thought of as

the electronic journal of combinatorics 7 (2000), #R44 6

infinite paths in the tree heading away from the root, and therefore the tree bijection
lets us define φ in this case as well.

It is evident that φ respects the lexicographic ordering since, in the proof of Proposi-
tion 2, we showed that when extending a sequence M , the larger candidates correspond
to the nodes with more children, just as in tournament sequences. �

The proof of Proposition 2 also gives us a way to calculate φ(T) for any T =
(t1, . . . , tn) without constructing the full set ur(M), a task that could require expo-
nential time. We make repeated use of the fact that the candidates for extending
M = (m1, . . . , mn) are easily expressed in terms of the candidates for (m1, . . . , mn−1).
Letting u(n, k) be the kth smallest candidate for extending (m1, . . . , mn), we get the
following recurrence:

mn = u(n − 1, tn − tn−1) + 1, and

u(n, k) =

{

u(n − 1, k − (tn − tn−1)), if k > tn − tn−1

Sn − u(n − 1, tn − tn−1 + 1 − k), if k ≤ tn − tn−1

where Sn = m1 + · · ·+ mn.

Beginning with m1 = 1 and u(1, 1) = 1, we can quickly calculate each successive term
of φ(T) in linear time.

3 Properties of the Bijection

In the introduction, we stated without proof that the beheaded Fibonacci sequence
(1, 2, 3, 5, 8, 13, . . .) is a Meeussen sequence, and moreover that it is the smallest one
in lexicographic order, the image of (1, 2, 3, 4, 5, 6, . . .) under the map φ defined above.
This is a special case of a more general surprising property of φ, which we prove in this
section.

Since (1, 2, 3, 5, 8, 13, . . .) is, coincidentally, again a tournament sequence, we can
apply φ to it as well. This leads to the following computational observation:

(1, 2, 3, 5, 8, 13, 21, . . .)
φ
7→ (1, 2, 3, 6, 11, 20, 37, . . .)

φ
7→ (1, 2, 3, 7, 13, 25, 48, . . .)

The middle sequence is the “3-bonacci” sequence beginning (1, 2, 3) and the last is the
“4-bonacci” sequence beginning (1, 2, 3, 7), where we say a sequence is k-bonacci if each
term (after the first k) is the sum of the previous k terms. Further experimentation
reveals that, for example,

(1, 2, 4, 7, 12, 20, 33, 54, 88, 143, . . .)
φ
7→ (1, 2, 4, 7, 13, 24, 44, 81, 149, 274, . . .).

The first sequence begins (1, 2) and thereafter each term is one plus the sum of the
previous two, while the second sequence is the 3-bonacci sequence beginning (1, 2, 4),
with no additive constant in the recurrence.

Inspired by examples of this type, we make the following observation.

the electronic journal of combinatorics 7 (2000), #R44 7

Proposition 4 Suppose (t1, . . . , tn+1) is a finite tournament sequence, and suppose that
for some integers k, c, it happens that both

tn+1 = tn + tn−1 + · · · + tn−k+1 + c and
tn = tn−1 + tn−2 + · · · + tn−k + c.

Then (t1, . . . , tn+1)
φ
7→ (m1, . . . , mn+1), where

mn+1 = mn + mn−1 + · · ·+ mn−k+1 + mn−k.

While the statement of the proposition is designed to mimic the examples above,
the hypothesis simplifies to tn+1 = 2tn − tn−k. Since our map φ respects extending or
truncating a sequence, we are really just assuming that tn+1 = 2tn − tn−k for some single
pair n, k; the effect is purely local.

To prove the proposition, it would help to have a more concrete relationship between
terms of the tournament and Meeussen sequences associated to one another by our
bijection.

Lemma 5 Let T = (t1, t2, . . .) be a (finite or infinite) tournament sequence with as-
sociated Meeussen sequence φ(T) = M = (m1, m2, . . .). Write ur(M), the uniquely
representable sums of M , as {u1 < u2 < u3 < · · ·}. Then:

1. The ti’th uniquely representable sum uti is mi − 1, and

2. The next uniquely representable sum uti+1 is m1 + m2 + · · · + mi−1 + 1.

Proof:

1. When i = 1, we check that t1 = 1, u1 = 0, and m1 = 1 directly. Now assume
by induction that the map k 7→ 1 + uk sends ti to mi for some i. Then it sends
ti + 1, ti + 2, . . . to the first, second, . . . number in ur(M) greater than mi, which
we showed was the desired value during the proof of Proposition 2.

2. Consider the truncated sequence Mi = (m1, . . . , mi). The map t 7→ (m1 + · · · +
mi) − t, as we saw in the proof of Proposition 2, is an involution on ur(Mi), and
takes mi − 1 to m1 + · · · + mi−1 + 1. Certainly nothing in between is uniquely
representable; this is the “overlap” interval of numbers which can be represented
either with or without using mi. This in turn means that mi+1 is strictly larger
than m1 + · · · + mi−1 + 1, which is therefore in ur(M) since it is in ur(Mi). �

Proof of Proposition 4: Consider M = (m1, . . . , mn) with sum S = m1 + · · · + mn

and ur(M) = {u1 < u2 < u3 < · · ·}. By the first part of Lemma 5, we know that
mn = 1 + utn. Therefore ur(M) contains exactly 2tn numbers: u1 < · · · < utn , which
are less than mn, and another tn which are their images under the involution t 7→ S − t.
In particular, u2tn−i = S − ui+1.

the electronic journal of combinatorics 7 (2000), #R44 8

Now consider what happens when we pick tn+1 = 2tn − tn−k, as supposed by Propo-
sition 4, and extend M accordingly:

mn+1 = 1 + utn+1
by Lemma 5,

= 1 + u2tn−tn−k

= 1 + S − utn−k+1

= 1 + S − (m1 + · · · + mn−k−1 + 1) by Lemma 5 again,

= mn + mn−1 + · · ·+ mn−k

The new term of M is the sum of the previous k terms, as claimed. �

4 The Growth of the Tree

We would like to know the number of tournament or Meeussen sequences of length n,
which we will designate s(n). Equivalently, we want to know the number of nodes on the
nth level of the tree shown in Figure 1 (p. 4), where we can count that s(n) = 1, 1, 2, 7, 41
for n up to 5. Counting the nodes directly takes time exponential in n, and while
we cannot present a solution in closed form, we can offer an efficient polynomial-time
algorithm. We would also like to know the asymptotic behavior of s(n) as n gets large.
The asymptotics reveal that s(n) grows so quickly that its generating function cannot
be algebraic.

Exact Counting

Throughout this section, we consider the nodes to be labelled as in the tree of tournament
sequences: a node with label (k) has k children, with labels (k + 1), (k + 2), . . . , (2k),
respectively. Based on this definition, we note that the function c(n, k) counting the
number of nodes with label (k) in row n of the tree satisfies:

Recurrence 1

c(1, k) = δk,1

c(n, k) =
k−1
∑

j=⌈k
2
⌉

c(n − 1, j) for n > 1.

We could then find the number of nodes on row n by summing c(n, k) for all k up to 2n−1.
The work involved grows exponentially in n, though, so for large n this is impractical.
We could define a generating function in two independent variables

g(x, y) =
∑

n,k

xnykc(n, k) = xy + x2y2 + x3(y3 + y4) + · · ·

the electronic journal of combinatorics 7 (2000), #R44 9

which, based on Recurrence 1, must satisfy

g(x, y) = xy +
xy

1 − y
g(x, y)−

xy

1 − y
g(x, y2).

Rewriting this as g(x, y) = xy(y−1)
xy+y−1

+ xy
xy+y−1

g(x, y2), we can solve formally by iterated
substitution to get

g(x, y) =
∞
∑

n=0

(

y2n

− 1
)

n
∏

k=0

xy2k

xy2k + y2k − 1
.

This seems to offer dim prospects for a nice form for s(n), the coefficient of xn at y = 1.
Alternatively, one could hope to work with the function d(n, k) which counts the

number of nth-generation descendents of a node labelled (k). We can count these de-
scendents by summing the number of (n − 1)-generation descendents of the node’s k
children:

Recurrence 2

d(1, k) = k for all k ≥ 1,

d(n, 0) = 0 for all n ≥ 1, and otherwise,

d(n, k) =
2k
∑

j=k+1

d(n − 1, j).

The number of nodes on row n of our tree is then s(n) = d(n − 1, 1). Torelli points out
that this recurrence can be expressed in closed form, by replacing the last line with

d(n, k) = d(n, k − 1) − d(n − 1, k) + d(n − 1, 2k − 1) + d(n − 1, 2k)

This alternate version embodies the notion that the tree below a node labelled (k) looks
just like the tree below a (k−1), but modified by pruning the branch beginning with the
child (k) and grafting on branches beginning with (2k − 1) and (2k) instead. However,
as n increases, either version still involves calculating an exponentially growing set of
values.

We offer instead the following technique for calculating the growth of the tree in
polynomial time. Consider the family of functions pn for n = 1, 2, 3, . . . such that pn(k)
is the number of nth-generation descendents of a node labelled (k), what we called
d(n, k) above. Then in the spirit of Recurrence 2, we can get a recurrence relation for
the functions pn themselves:

Recurrence 3

p1(k) = k,

pn(k) =

2k
∑

j=k+1

pn−1(j).

the electronic journal of combinatorics 7 (2000), #R44 10

Purists would start the recurrence with p0(k) = 1 instead.
The key observation is that each pn is in fact a degree n polynomial in k, which we

obtain by symbolic summation of a range of values of pn−1. Recall that the sum
∑k

j=1 jn

is a polynomial in k of degree n + 1. Our recurrence states that pn(k) is the sum of the
first 2k values of pn−1 minus the sum of the first k values. Since pn−1 is a polynomial in
k by induction, so is pn. The next few polynomials after p1 = k are

p2 =
3k2 + k

2
, p3 =

7k3 + 6k2 + k

2
, p4 =

105k4 + 154k3 + 63k2 + 6k

8
, . . .

Modern computer algebra packages can generally carry out this type of symbolic
summation quickly, so we can use this polynomial recurrence directly to find pn, and
evaluate pn−1(1) to find the number of nodes on level n. For example, in Mapletm:

p := proc(n) option remember;

if (n=1) then k else sum(p(n-1), ’k’=k+1..2*k) fi; end;

s := n -> eval(p(n-1), k=1);

Then p(n) returns the polynomial pn in the variable k, and s(n) evaluates pn−1 at k = 1,
giving us the number of nodes on level n of the tree.

Now that we know that pn is an nth-degree polynomial, we need not calculate the
polynomial explicitly just to find some of its values. For example, pn is determined by
its values at the n + 1 points k = 0, 1, . . . , n, which we can find (using Recurrence 2)
once we know pn−1 at k = 0, 1, . . . , 2n. We could then fit an interpolating polynomial to
those points to find other desired values of pn. In this case, another trick presents itself;
we can use the linear dependence among n + 2 equally-spaced values of a polynomial p
of degree n:

∀a, b :
n+1
∑

i=0

(−1)i

(

n

i

)

p(a + bi) = 0.

Combining all of these tricks, we can efficiently calculate the number of nodes on row n
of our tree as follows:

Recurrence 4

d(0, k) = 1 for all k,

d(n, 0) = 0 for all n > 0,

d(n, k) = d(n, k − 1) − d(n − 1, k) + d(n − 1, 2k − 1) + d(n − 1, 2k)

for k ≤ n, and

d(n, k) =
n+1
∑

j=1

(−1)(j−1)

(

n + 1

j

)

d(n, k − j) for n < k ≤ 2k + 2.

the electronic journal of combinatorics 7 (2000), #R44 11

As before, s(n) = d(n − 1, 1) gives the number of nodes on level n of our tree.
Now that we have a refined computational technique, we would like to evaluate its

efficiency and justify our statement that it can calculate s(n) in time polynomial in
n. The difficulty here is that we cannot in good conscience simply count the number
of arithmetic operations involved in finding d(n − 1, 1) using Recurrence 4, because
the values we encounter grow quickly as n increases. Observe, for example, that s(n)
certainly grows faster than cn for any fixed constant c, because on row n of the tree,
every node has at least n (and at most 2n−1) children.

In this situation, an analysis of algorithmic complexity must take into account the
magnitude of the numbers involved in arithmetic operations. Bach and Shallit [1] argue
for what they call the naive bit complexity measure, in which we can calculate a + b and
ab in time O(log a + log b) and O(log a log b), respectively. These time estimates reflect
the speed of the naive, grade-school algorithms for adding and multiplying two numbers
with log a and log b digits; the authors argue that these estimates are both asymptotically
realistic and pragmatic for predicting real-world behavior of computations.

Theorem 6 The naive bit complexity of calculating s(n) is O(n6).

Note that this is not what one might generally call a polynomial-time computation, since
it is polynomial in n, not in log n, the length of the input. As already mentioned, s(n)
grows so quickly that it could not even be written down in time polynomial in log n.

To calculate s(n), we will compute all values d(m, k) for 0 ≤ m ≤ n− 1 and 0 ≤ k ≤
2m + 2, in lexicographic order, using Recurrence 4. We first need some bound on the
size of the numbers we encounter.

Lemma 7 d(n, k) ≤ 2n(n−1)/2 kn

Proof: The bound is based on Recurrence 2, d(n, k) =
∑2k

j=k+1 d(n − 1, j). For a fixed
n ≥ 1, we know d(n, k) is an increasing function on positive integers k. Therefore the
largest of the k terms in the sum is d(n − 1, 2k), and we have d(n, k) ≤ k d(n − 1, 2k).
Repeating, we get:

d(n, k) ≤ k d(n − 1, 2k) ≤ (k)(2k) d(n − 2, 4k) ≤ · · ·

≤ (k)(2k) · · · (2n−1k) d(0, 2nk)

= 2n(n−1)/2 kn

In the next section we will discuss the asymptotic growth of s(n), which we have just

bounded by 2(n−1

2). �

Proof of Theorem 6: We will perform the calculation using Recurrence 4, storing partial
results so we never calculate any value of d twice.

Fix some n, and suppose we know d(n− 1, k) for all 0 ≤ k ≤ 2n. Calculating d(n, k)
for all 0 ≤ k ≤ 2n + 2 involves two phases.

the electronic journal of combinatorics 7 (2000), #R44 12

1. For each k with 0 ≤ k ≤ n, we compute the sum of four numbers. By Lemma 7,
the summands are of length O(n2 + n log k), which is O(n2) since k is small. Thus
each value of k takes time O(n2), and the whole phase takes time O(n3).

2. For n + 1 ≤ k ≤ 2n + 2, we compute
∑n+1

j=1 (−1)(j−1)
(

n+1
j

)

d(n, k − j). As above,

d(n, k − j) has length O(n2). The binomial coefficient
(

n+1
j

)

has length O(n),
since numbers in the nth row of Pascal’s Triangle are bounded by 2n; the cost of
computing it is negligible because we are using all of the top n rows of Pascal’s
Triangle, which we can compute by additive recurrence.

Then we form each product in time O(n3) and take their sum in time O(n4) for
each k. Thus the whole phase takes time O(n5).

Thus passing from n − 1 to n takes time O(n5), and we can calculate s(n) from scratch
in time O(n6). �

In practice, Recurrence 4 is easy to implement and seems to perform much better
than the above analysis suggests for values of n we are interested in. In Mapletm:

d := proc(n,k)

local j;

option remember;

if n=0 then 1

elif k=0 then 0

elif k<=n then d(n,k-1)-d(n-1,k)+d(n-1,2*k-1)+d(n-1,2*k)

else add((-1)^(j-1) * binomial(n+1,j) * d(n,k-j), j=1..n+1)

fi

end;

s := n -> d(n-1,1);

This code seems empirically to calculate s(n) after having done the work for s(n− 1) in
time O(n2) even when n is around 190, when s(n) has over 5000 decimal digits. This is
the behavior one would expect if multiplication had a constant unit cost and addition
were free.

On a modest desktop Pentium II, this computes up to s(30) in under a second, s(85)
in under a minute, and s(190) in about an hour; a little extra work to avoid computing
the binomial coefficients multiple times speeds it up even more. We record s(n) for
1 ≤ n ≤ 22 here. The sequence also appears as entry A008934 in Sloane’s On-Line
Encyclopedia of Integer Sequences [9].

1, 1, 2, 7, 41, 397, 6377, 171886, 7892642, 627340987, 87635138366,
21808110976027, 9780286524758582, 7981750158298108606,
11950197013167283686587, 33046443615914736611839942,
169758733825407174485685959261, 1627880269212042994531083889564192,
29264239787495935863325877024506142042,

the electronic journal of combinatorics 7 (2000), #R44 13

989901541366810465070950556260422637919176,
63214893835996484808167529681187283166038800097,
7643667309922877343580868981767361594845888953165967, . . .

Asymptotic Behavior

Now we turn to the asymptotic growth of s(n). We know from Lemma 7 that
(

n−1
2

)

is an
upper bound for lg s(n), where lg denotes log2. We will first prove that a lower bound

for s(n) is α 2(n

2)/(n− 1)! for a certain constant α, and then we will show that lg s(n) is
asymptotic to

(

n
2

)

− lg n! + O(log n)2.
We are grateful to Donald Knuth for suggesting the method used here. The technique

rests on the following observation:

Theorem 8 (Knuth) Let T be a rooted tree in which we want to know the number of
vertices on the nth level. Select n − 1 vertices v1, . . . , vn−1 in T by choosing v1 to be the
root and picking vi+1 uniformly at random from among the children of vi, of which there
are deg(vi). Then the expected value

E(deg(v1) deg(v2) · · ·deg(vn−1))

is exactly the number of vertices on the nth level of T .

Proof: See [8] for a discussion of this technique in greater generality. In this case, a
proof by induction is straightforward: if this technique works for counting the nth level
of each of k trees T1, . . . , Tk, then it clearly also works for counting level n + 1 of the
tree T whose root has k children, the roots of T1, . . . , Tk. �

We will apply Theorem 8 to the tree of tournament sequences, in which, conve-
niently, each vertex is already labelled with its degree. This means we can calculate
s(n) by finding the expected value of the product t1t2 · · · tn−1, where (t1, t2, . . . , tn−1) is
a tournament sequence selected at random by setting t1 = 1 and picking ti+1 uniformly
at random from among ti +1, ti +2, . . . , 2ti. For the remainder of this section, whenever
we talk about a distribution for ti, it is implicitly with respect to this way of picking a
tournament sequence.

Lemma 9 Let s(n) be the number of tournament sequences of length n. Then

s(n) ≥ α
2(n

2)

(n − 1)!

where α = (1 − 1
2
)(1 − 1

4
)(1 − 1

8
) · · · ≈ .28878837 . . .

the electronic journal of combinatorics 7 (2000), #R44 14

Proof: Observe that there is a natural continuous analogue to the expected value
E(t1t2 · · · tn−1) = s(n). Consider instead the expected value E(r1r2 · · · rn−1), where
r1 = 1 and ri+1 is a real number chosen uniformly at random from the interval (ri, 2ri].
Equivalently, we are taking random variables ui (1 ≤ i ≤ n − 2) each with a uniform
distribution over (1, 2], and setting ri+1 = uiri.

The expected value in the continuous case will give an underestimate of the expected
value for the discrete version, in which the ui are distributed the same way but we set
ti+1 = ⌈uiti⌉. The independence of the various ui make the expected value easy to
calculate:

E(r1r2r3 · · · rn−1) = E((1)(u1)(u1u2) · · · (u1u2 · · ·un−2))

= E(un−2
1 un−3

2 · · ·u1
n−2)

=
2n−1 − 1

n − 1

2n−2 − 1

n − 2
· · ·

22 − 1

2

≥ α
2(n

2)

(n − 1)!

�

Now we show that this lower bound is quite good, by finding the rate of growth of
the error. We use lg to denote log2.

Theorem 10 lg s(n) =
(

n
2

)

− lg n! + O(log n)2

Proof: In the proof of Lemma 9, we calculated E(un−k−1
k), where uk = rk+1/rk was

uniformly distributed over (1, 2]. In the original problem, tk and tk+1 are integers, so
the ratio tk+1/tk instead takes on a discrete set of values, each with equal probability:

E

((

tk+1

tk

)p)

=

(

t+1
t

)p
+
(

t+2
t

)p
+ · · ·+

(

t+t
t

)p

t

where t = tk throughout. We can rewrite this and take advantage of the ability to sum
consecutive pth powers:

E

((

tk+1

tk

)p)

=
(t + 1)p + (t + 2)p + · · ·+ (t + t)p

tp+1

≤

(2t)p+1

p+1
+ (2t)p

2
+ O(2t)p−1

tp+1

=
2p+1

p + 1
+

2p

2t
+ O

(

2p

t2

)

the electronic journal of combinatorics 7 (2000), #R44 15

The 2p+1/p + 1 term is exactly the lower bound we used in Lemma 9, and we now have
an idea of how much error this introduced:

E

(

(

tk+1

tk

)n−k−1
)

=
2n−k

n − k
+

2n−k

4tk
+ O

(

2n−k

t2k

)

= E(un−k−1
k)

(

1 +
n − k

4tk
+ O

(

n − k

t2k

))

The expected value now depends on tk, and to bound the error, we need some idea of
how large we expect tk to be.

Consider again the continuous analogue used in the proof of Lemma 9. We expect sk

to grow exponentially, as ck for some c, so look at the distribution of s
1/k
k . Taking logs,

we see that log s
1/k
k is distributed as the average of k copies of log x on (1, 2], each with

mean 2 log 2 − 1. Thus as k increases without bound, the distribution of s
1/k
k converges

towards a point distribution at 4/e. As we already noted, the tk certainly grow no slower
than the sk. We conclude that for any constant c < 4/e and probability p < 1, there is
a sufficiently large k0 such that Pr(tk > ck) > p for all k ≥ k0.

The error we want to bound is the product of the n error terms ek = 1+ n−k
4tk

+O(n−k
t2
k

)

for k = 1, . . . , n. To simplify bookkeeping, we will instead think about lg s(n) and bound
the sum of the logs of the error terms. We separate the work into two cases, depending
on whether k is less or greater than 2 log n.

When k < 2 log n, the denominator tk may be small, and the error terms log ek may
be as much as O(log n). Adding up all 2 log n of these terms gives a total which is
O(log n)2, the error term in the statement of our theorem.

Finally, when k = 2 log n, we know that as long as n is sufficiently large, with high
probability tk > c2 log n, which is on the order of n2. Thus with high probability, ek is
1+O(1/n), and log ek = O(1/n). Since the error terms monotonically decrease, the sum
of all the terms with k ≥ 2 log n is bounded by ne2 log n = O(1). So taking n sufficiently
large ensures that the error in the lower bound is concentrated almost entirely in the
first 2 log n error terms, and we are done. �

Computational evidence based on the actual values of s(n) for n up to 190 indicates
that the constant needed to make lg s(n) <

(

n
2

)

− lg n! + c(log n)2 reaches a peak of
c ≈ 1.18304060 . . . at n = 32 and decreases slowly thereafter.

References

[1] Bach, E.; Shallit, J. Algorithmic Number Theory , vol. 1. MIT Press, Cambridge,
MA, 1996.

[2] Banderier, C.; Bousquet-Mélou, M.; Denise, A.; Flajolet, P.; Gardy, D.; Gouyou-
Beauchamps, D. Generating functions for generating trees. Preprint, 2000.

the electronic journal of combinatorics 7 (2000), #R44 16

[3] Barcucci, E.; Del Lungo, A.; Pergola, E; Pinzani, R. ECO: a methodology for the
enumeration of combinatorial objects. J. Differ. Equations Appl. 5 (1999), no. 4–5,
435–490.

[4] Capelli, P.; Narayana, T. V. On Knock-Out Tournaments. Canad. Math. Bull. 13
(1970), 105–109

[5] Chung, F. R. K.; Graham, R. L.; Hoggatt, V. E., Jr.; Kleiman, M. The number of
Baxter permutations. J. Combin. Theory Ser. A 24 (1978), 382–394.

[6] Fishburn, P. C.; Odlyzko, A. M. Unique subjective probability of finite sets. J.
Ramanujan Math. Soc. 4 (1989), 1–23

[7] Finch, S. Conjectures about 1-additive sequences. Fibonacci Quart. 29 (1991), 209–
214.

[8] Knuth, D. Estimating the Efficiency of Backtrack Programs. Math. Comput. 29
#129 (1975), 121–136.

[9] Sloane, N. J. A. Sloane’s On-Line Encyclopedia of Integer Sequences.
http://www.research.att.com/~njas/sequences/

[10] Torelli, M. Increasing Integer Sequences and Goldbach’s Conjecture. Preprint, 1996.

[11] Tromp, J.; Shallit, J. Subword complexity of a generalized Thue-Morse word. In-
formation Processing Lett. 54 (1995), 313–316.

[12] West, J. Generating trees and the Catalan and Schröder numbers. Discrete Math.
146 (1995), 247–262.

[13] West, J. Generating trees and forbidden subsequences. Proceedings of the 6th Con-
ference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ,
1994). Discrete Math. 157 (1996), 363–374.

