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Abstract

We use the finite lattice method to calculate the radius of gyration, the first and

second area-weighted moments of self-avoiding polygons on the square lattice. The

series have been calculated for polygons up to perimeter 82. Analysis of the series

yields high accuracy estimates confirming theoretical predictions for the value of the

size exponent, ν = 3/4, and certain universal amplitude combinations. Furthermore,

a detailed analysis of the asymptotic form of the series coefficients provide the firmest

evidence to date for the existence of a correction-to-scaling exponent, ∆ = 3/2.

1 Introduction

A self-avoiding polygon (SAP) can be defined as a walk on a lattice which returns to the
origin and has no other self-intersections. The history and significance of this problem is
nicely discussed in [1]. Generally SAPs are considered distinct up to translations, so if
there are pn SAPs of perimeter length n there are 2npn walks (the factor of two arising
since the walk can go in two directions). In addition to enumerations by perimeter, one can
also enumerate polygons by the enclosed area (or number of unit cells), or both perimeter
and area. Of particular interest are the first few area-weighted moments of the perimeter
generating function. Also of great interest is the mean-square radius of gyration, which
measure the typical size of a SAP.

This paper builds on the work of Enting [2] who used transfer matrix techniques to
enumerate square lattice polygons by perimeter to 38 steps. This enumeration was later
extended by Enting and Guttmann to 46 steps [3] and then to 56 steps [4]. This latter
work also included calculations of moments of the caliper size distribution. Hiley and
Sykes [5] obtained the number of square lattice polygons by both area and perimeter up
to perimeter 18. Enting and Guttmann extended the calculation to perimeter 42 [6]. The
radius of gyration was calculated for SAPs up to 28 steps by Privman and Rudnick [7],
using a technique based on direct counting of compact site animals on the dual lattice.
Recently, Jensen and Guttmann devised an improved algorithm for the enumeration of
SAPs and extended the calculation to 90 steps [8]. The work reported here is based on
generalisations of this improved algorithm. This has enabled us to extend the calculation
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of the radius of gyration and the first two area-weighted moments to 82 step SAPs. The
generalisation of the transfer matrix technique to area-weighted moments is similar to
the one used by Conway [9] in his calculation of series for percolation problems and
lattice animals. The generalisation to the radius of gyration has to our knowledge no
counterpart in the published literature, and represents a major advance in the design
of efficient counting algorithms. Previous calculations of the radius of gyration were
based on direct counting algorithms. The transfer matrix algorithm used in this paper
is exponentially faster and thus enables us to significantly extend the series (see [8] for
further details).

The size exponent, ν, for self-avoiding polygons is believed to be identical to that of
self-avoiding walks. This has been argued theoretically from the connection between the
energy-energy and spin-spin correlation functions of the n-vector model in the limit n → 0,
and SAPs and SAWs, respectively [10, 11]. Alternatively it has also been obtained from
real space renormalization group arguments [12]. The exponent describing the growth of
the mean area of polygons of perimeter n is expected to be 2ν [13]. Intuitively this is
not surprising since it just means that the average area of a polygon is proportional to
the square of the radius of gyration. So one is merely finding that for this problem the
typical area and typical length scale match one another nicely. These expectations have
been confirmed reasonably accurately by numerical work [4, 6, 7].

The functions we consider in this paper are: (i) the polygon generating function,
P(u) =

∑

pnun; (ii) kth area-weighted moments of polygons of perimeter n, 〈ak〉n; and (iii)
the mean-square radius of gyration of polygons of perimeter n, 〈R2〉n. These quantities
are expected to behave as

pn = Bµnnα−3[1 + o(1)],

〈ak〉n = E(k)n2kν [1 + o(1)], (1)

〈R2〉n = Dn2ν [1 + o(1)],

where µ = u−1
c is the reciprocal of the critical point of the generating function, and

α = 1/2 and ν = 3/4 are known exactly [14], though non-rigorously. It is also known [15]
that the amplitude combination E(1)/D is universal, and that

BD =
5

32π2
σa0, (2)

where a0 is the area per site and σ is an integer such that pn is non-zero only if n is
divisible by σ. For the square lattice a0 = 1 and σ = 2. These predictions have been
confirmed numerically [15, 16].

In the next section we describe the generalisation of the finite lattice method required
in order to calculate the radius of gyration and area-weighted moments of self-avoiding
polygons. The results of the analysis of the series are presented in Section 3.

2 Enumeration of self-avoiding polygons

The method used to enumerate self-avoiding polygons in this work is based on the method
devised by Enting [2] for enumerations by perimeter and uses the enhancements of Jensen
and Guttmann [8]. In the following we first very briefly outline the original method and
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then show how to generalize it in order to calculate area-weighted moments and the radius
of gyration. Details of the algorithm can be found in the papers cited above.

The first terms in the series for the perimeter generating function can be calculated
using transfer matrix techniques to count the number of polygons spanning (in both
directions) rectangles W + 1 edges wide and L + 1 edges long. The transfer matrix
technique involves drawing a boundary through the rectangle intersecting a set of W + 2
edges. For each configuration of occupied or empty edges along the boundary we maintain
a (perimeter) generating function for partially completed polygons. Polygons in a given
rectangle are enumerated by moving the boundary so as to add one site at a time. Due
to the obvious symmetry of the lattice one need only consider rectangles with L ≥ W .
Any polygon spanning such a rectangle has a perimeter of length at least 2(W + L). By
adding the contributions from all rectangles of width W ≤ Wmax (where the choice of Wmax

depends on available computational resources) and length W ≤ L ≤ 2Wmax−W +1, with
contributions from rectangles with L > W counted twice, the number of polygons per
vertex of an infinite lattice is obtained correctly up to perimeter nmax = 4Wmax + 2. The
number of configurations required as Wmax is increased grows exponentially as λWmax,
where λ ≃ 2 for the improved algorithm [8]. In addition to the dominant exponential
growth in memory requirements there is a prefactor, which is proportional to the number
of terms nmax.

2.1 Area-weighted moments

Area-weighted moments can easily be calculated from the perimeter and area generating
function

C(u, v) =
∑

n,m

cn,munvm, (3)

where cn,m is the number of polygons with perimeter n and area m. From this we get the
area-weighted generating functions,

P(k)(u) = (v
∂

∂v
)kC(u, v)|v=1 =

∑

n

∑

m

mkcn,mun =
∑

n

p(k)
n un, (4)

and we define the average moments of area for a polygon with perimeter n

〈ak〉n = p(k)
n /p(0)

n =
∑

m

mkcn,m/pn. (5)

In order to calculate the moments of area through this approach we need to calculate
a full two-parameter generating function, which generally will require a lot of computer
memory. If we are only interested in the first few moments there is a much more efficient
approach [9]. We simply replace the variable v by 1 + z thus obtaining the function

F (u, z) =
∑

n,m

cn,mun(1 + z)m =
∑

n,m

m
∑

k=0

(

m
k

)

cn,munzm. (6)

Let, Fi(u), be the coefficient of zi in F (u, z). Then we see that

F0(u) =
∑

n,m

cn,mun = P(u),
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F1(u) =
∑

n,m

mcn,mun = P(1)(u),

F2(u) =
∑

n,m

m(m−1)/2cn,mun = [P(2)(u) − P(1)(u)]/2,

and so on. Thus if we are only interested in the first and second moments of area we
can truncate the series F (u, z) at second order in z and find the relevant moments as
P(1)(u) = F1(u) and P(2)(u) = 2F2(u) + F1(u). The growth in memory requirements is
still dominated by the exponential growth in the number of configurations. However, we
have managed to turn the calculation of these moments from a problem with a prefactor
cubic in Wmax (the area is proportional to W 2

max) into a problem with a prefactor linear
in Wmax.

2.2 Radius of gyration

In the following we show how the definition of the radius of gyration can be expressed
in a form suitable for a transfer matrix calculation. Note that we define the radius of
gyration according to the vertices of the SAP and that the number of vertices equals the
perimeter length. The radius of gyration of n points at positions ri is

n2R2
n =

∑

i>j

(ri − rj)
2 = (n−1)

∑

i

(x2
i + y2

i ) − 2
∑

i>j

(xixj + yiyj). (7)

This last expression is suitable for a transfer matrix calculation. As usual [7] we
actually calculate the generating function, R2

g(u) =
∑

n pn〈R
2〉nn2un. In order to do

this we have to maintain five partial generating functions for each possible boundary
configuration σ, namely

• P (u), the number of (partially completed) polygons according to perimeter.

• R2(u), the sum over polygons of the squared components of the distance vectors.

• X(u), the sum of the x-component of the distance vectors.

• Y (u), the sum of the y-component of the distance vectors.

• XY (u), the sum of the ‘cross’ product of the components of the distance vectors,
e.g.,

∑

i>j(xixj + yiyj).

As the boundary line is moved to a new position each boundary configuration σ might
be generated from several configurations σ′ in the previous boundary position. The partial
generation functions are updated as follows

P (u, σ) =
∑

σ′

un(σ′)P (u, σ′),

R2(u, σ) =
∑

σ′

un(σ′)[R2(u, σ′) + δ(x2 + y2)P (u, σ′)],

X(u, σ) =
∑

σ′

un(σ′)[X(u, σ) + δxP (u, σ′)], (8)

Y (u, σ) =
∑

σ′

un(σ′)[Y (u, σ) + δyP (u, σ′)],

XY (u, σ) =
∑

σ′

un(σ′)[XY (u, σ′) + δxX(u, σ′) + δyY (u, σ′)]
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where n(σ′) is the number of occupied edges added to the polygon and δ = min(n(σ′), 1).

2.3 Further particulars

Finally a few remarks of a more technical nature. The number of contributing configura-
tions becomes very sparse in the total set of possible states along the boundary line and as
is standard in such cases one uses a hash-addressing scheme. Since the integer coefficients
occurring in the series expansions become very large, the calculation was performed using
modular arithmetic. Up to 8 primes were needed to represent the coefficients correctly.
Further details and references are given in [8]. The series for the radius of gyration and
area-moments were calculated for SAPs with perimeter length up to 82. The maximum
memory required for any given width did not exceed 2Gb. The calculations were per-
formed on an 8 node Alpha Server 8400 with a total of 8Gb memory. The total CPU
time required was about three days per prime. Obviously the calculation for each width
and prime are totally independent and several calculations were done simultaneously.

In Table 1 we have listed the series for the radius of gyration and first and second
area-weighted moments. The series for the radius of gyration of course agree with the
terms up to length 28 computed previously [7], while the terms up to length 40 for the
first area moment agree with the series in [6]. The number of polygons of length ≤ 56
can be found in [4] while those up to length 90 were reported in [8].

3 Analysis of the series

The series listed in Table 1 have coefficients which grow exponentially, with sub-dominant
term given by a critical exponent. The generic behaviour is G(u) =

∑

n gnun ∼ (1 −
u/uc)

−ξ, and hence the coefficients of the generating function gn ∼ µnnξ−1, where µ =
1/uc. To obtain the singularity structure of the generating functions we used the numerical
method of differential approximants [17]. In particular, we used this method to estimate
the critical exponents (we already have very accurate estimates for uc from [8]). Since
all odd terms in the series are zero and the first non-zero term is g4 we actually analysed
the function F (u) =

∑

n g2n+4u
n. Combining the relationship given above between the

coefficients in a series and the critical behaviour of the corresponding generating function
with the expected behaviour (1) of the mean-square radius of gyration and moments of
area yields the following prediction for their generating functions:

R2
g(u) =

∑

n

p2n+4〈R
2〉2n+4n

2un =
∑

n

rnu
n ∼ R(u)(1 − uµ2)−(α+2ν), (9)

P(k)(u) =
∑

n

p2n+4〈a
k〉2n+4u

n =
∑

n

a(k)
n un ∼ a(k)(u)(1 − uµ2)2−(α+2kν). (10)

Thus we expect these series to have a critical point, uc = 1/µ2 = 0.14368062927(1), known
to a very high degree of accuracy from the analysis in [8], and as stated previously the
exponent α = 1/2, while it is expected that ν = 3/4.

Estimates of the critical point and critical exponents were obtained by averaging values
obtained from second order [L/N ; M ; K] inhomogeneous differential approximants. For
each order L of the inhomogeneous polynomial we averaged over those approximants
to the series which used at least the first 80% - 90% of the terms of the series. We
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used only approximants where the difference between N , M , and K didn’t exceed 2.
Some approximants were excluded from the averages because the estimates were obviously
spurious. The error quoted for these estimates reflects the spread (basically one standard
deviation) among the approximants. Note that these error bounds should not be viewed
as a measure of the true error as they cannot include possible systematic sources of error.
In Table 2 we have listed the results of our analysis. It is evident that the estimates for
uc and the critical exponents are in agreement with the expected behaviour. There are
only some minor discrepancies in the fourth digit between the conjectured exponents and
the estimates. This discrepancy is readily resolved by looking at the evidence in figure 1,
where we have plotted the estimates for the critical point and exponent of R2

g. Each point
in these figures represent an estimate obtained from a specific second order differential
approximant with the various points obtained by varying the order of the polynomials
in the approximants. It is clear that the estimates have not yet settled down to their
asymptotic values and that they do converge towards the expected values as the number
of terms used by the approximants is increased.

Now that the exact values of the exponents has been confirmed we turn our attention
to the “fine structure” of the asymptotic form of the coefficients. In particular we are
interested in obtaining accurate estimates for the amplitudes B, D and E(1). We do this
by fitting the coefficients to the assumed form (1).

The asymptotic form of the coefficients pn of the polygon generating function has
been studied in detail previously [18, 8]. As argued in [18] there is no sign of non-analytic
corrections-to-scaling exponents to the polygon generating function and one therefore
finds that

pn = µnn−5/2
∑

k=0

ak/n
k. (11)

This form was confirmed with great accuracy in [8]. Estimates for the leading amplitude
B = a0 can thus be obtained by fitting pn to the form given in equation (11). In order
to check the behaviour of such estimates we did the fitting using from 2 to 10 terms in
the expansion. The results for the leading amplitude are displayed in figure 2. We notice
that all fits appear to converge to the same value as n → ∞, and that, as more and more
correction terms are added to the fits the estimates exhibits less curvature and that the
slope become smaller (although the fits using 10 terms are a little inconclusive). This is
very strong evidence that (11) indeed is the correct asymptotic form of pn. We estimate
that B = 0.5623012(1).

The asymptotic form of the coefficients rn in the generating function for the radius of
gyration has not been studied previously. When fitting to a form similar to equation (11),
assuming that here are only analytic corrections-to-scaling, we find that the amplitudes of
higher order terms are very large and that the leading amplitude converge rather slowly.
This indicates that this asymptotic form is incorrect. We find that the coefficients fit
better if we assume a leading non-analytic correction-to-scaling exponent ∆ = 3/2. This
result confirms the prediction of Nienhuis [14]. Note, that since the polygon generating
function exponent 2 − α = 3/2 a correction-to-scaling exponent ∆ = 3/2 is perfectly
consistent with the asymptotic form (11). Because 2 − α + ∆ is an integer the non-
analytic correction term becomes part of the analytic background term [18]. We thus
propose the following asymptotic form:

6



rn = µnn[BD +
∑

k=0

ak/n
k/2]. (12)

Alternative we could fit to the form

rn/pn = n7/2[D + n5/2
∑

k=0

ak/n
k/2]. (13)

In figure 3 we show the leading amplitudes resulting from such fits while using from 1 to
10 terms in these expansions. Also shown in these figures (solid lines) are the predicted
exact value of BD, given in equation 2, and the prediction for D using the estimate for
B obtained above. As can be seen the leading amplitudes clearly converge towards their
expected values and from these plots we can conclude that the prediction for BD has been
confirmed to at least 6 digit accuracy. Assuming that equation (2) is exact and using the
very accurate estimate for B we find that D = 0.05630944(1).

Fitting the coefficients for the area-weighted moments to asymptotic forms similar to
equations (12) and (13) above (only the leading exponent was changed accordingly) leads
to the estimates E(1) = 0.141520(1) and E(2) = 0.0212505(4).

As stated above the analysis of the polygon generating function is fully consistent
with the prediction ∆ = 3/2. However, all one can conclude from the analysis is that,
if non-analytic correction-to-scaling terms are present, the exponents have to be “half-
integer”, so that the correction terms become part of the analytic background. The
detailed analysis of the asymptotic form of the coefficients in the generating functions for
the radius of gyration and area-weighted moments provide the firmest evidence to date
for the actual existence of a leading non-analytic correction to scaling exponent ∆ = 3/2,
thus confirming the theoretical predictions made by Nienhuis [14].

4 Conclusion

We have presented an improved algorithm for the calculation of the radius of gyration and
area-weighted moments of self-avoiding polygons on the square lattice. This algorithm
has enabled us to calculate these series for polygons up to perimeter length 82. Our
extended series enables us to give very precise estimate of the critical exponents, which
are consistent with the exact values α = 1/2 and ν = 3/4. We also obtain a very precise
estimate for the amplitude B = 0.5623012(1). Analysis of the coefficients of the radius of
gyration series yielded results fully compatible with the prediction BD = 5/16π2. This
allows us to obtain the very accurate estimate D = 0.05630944(1). From the first area-
weighted moment we obtained the estimate E(1) = 0.141520(2), which allows us to give
a much improved estimate for the universal amplitude ratio E(1)/D = 2.51326(3). We
also find firm evidence for the existence of a non-analytic correction-to-scaling term with
exponent ∆ = 3/2.

E-mail or WWW retrieval of series

The series for the various generating functions studied in this paper can be obtained via
e-mail by sending a request to I.Jensen@ms.unimelb.edu.au or via the world wide web on
the URL http://www.ms.unimelb.edu.au/∼iwan/ by following the instructions.
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Table 1: The mean-square radius of gyration, first and second area-moments of n-step
self-avoiding polygons on the square lattice. Only non-zero terms are listed.

n pnn2〈R2〉n pn〈a〉n pn〈a2〉n

4 8 1 1
6 66 4 8
8 600 22 70

10 5164 124 560
12 42872 726 4358
14 346828 4352 33160
16 2754056 26614 248998
18 21549780 165204 1851040
20 166626744 1037672 13655432
22 1275865332 6580424 100126648
24 9690096824 42062040 730548788
26 73090383120 270661328 5308524968
28 548064459968 1751614248 38442000664
30 4088719617824 11391756176 277565593032
32 30367415294800 74406502814 1999068564026
34 224659143155964 487838450116 14365917755936
36 1656259765448200 3209229661682 103038218758426
38 12172580326973688 21175301453040 737765745264544
40 89212147340159520 140097533633112 5274413814993896
42 652183776123444404 929160187609096 37655943519835560
44 4756877451862073312 6176075676719784 268506373782824280
46 34623252929242595840 41135052992574928 1912438211281990104
48 251526960780642980968 274482801972069490 13607405560541031042
50 1824061566724351292496 1834665820375683428 96728883661202188552
52 13206639904144205117592 12282315178525359966 687010148492686667614
54 95476389002729304216548 82344395405972692656 4875571799890192459056
56 689283065294740945143208 552806313387704627982 34575571741149137524846
58 4969805963839723557919424 3715834986939390916244 245029144855912573003776
60 35789811145967164348552960 25006203000374020526746 1735367234605432029439794
62 257449325423816274956954508 168466668960946012707912 12283126555855361655011856
64 1849981836861769186990365288 1136122707072612282498874 86893466632100569644163186
66 13280506839637150191613774736 7669275741518968346891172 614385797629196735502076968
68 95248670945282200958664147712 51817515409677258092083006 4341950222145487318409546446
70 682533032784692897614712920788 350404221555935013278573224 30671194434233707728683946784
72 4886864684580008620898035643960 2371438542131929578320200646 216565948566766116053230547838
74 34962179240623880562564354461036 16061466455829089444235194204 1528529336761773075102657075616
76 249946063483045736235271147799248 108860864860439323866007261128 10784279532727353410458586600848
78 1785625611982607482936563853493112 738338427155234332385671368928 76059086282576056911156299311952
80 12748122227351375676612377672210416 5010964557143508508512736679936 536243262589039476652829061618528
82 90955298658999234326739061737970500 34029495976431151261075225822320 3779470144925357385934811283997288

Table 2: Estimates for the critical point uc and exponents obtained from second order
differential approximants to the series for the radius of gyration, first and second moments
of area of square lattice self-avoiding polygons. L is the order of the inhomogeneous
polynomial.

Series: R2
g(u) P(1)(u) P(2)(u)

L uc −(α + 2ν) uc 2 − (α + 2ν) uc 2 − (α + 4ν)
0 0.14368045(10) -1.99941(23) 0.143680543(86) 0.00027(19) 0.143680502(35) -1.499523(78)
1 0.14368057(14) -1.99976(54) 0.143680556(33) 0.000279(78) 0.143680539(19) -1.499662(62)
2 0.14368063(13) -1.99997(58) 0.143680558(31) 0.000266(66) 0.143680535(22) -1.499658(86)
3 0.14368048(11) -1.99948(21) 0.143680562(25) 0.000267(48) 0.143680530(20) -1.49958(21)
4 0.143680540(71) -1.99956(18) 0.143680567(25) 0.000253(57) 0.143680541(21) -1.499636(57)
5 0.143680553(60) -1.99959(18) 0.143680566(27) 0.000254(66) 0.143680545(15) -1.499654(28)
6 0.143680542(33) -1.999544(92) 0.143680577(13) 0.00018(17) 0.143680542(15) -1.499649(58)
7 0.14368046(10) -1.99942(14) 0.143680564(23) 0.000255(58) 0.143680542(16) -1.499658(64)
8 0.143680511(43) -1.999474(96) 0.143680568(21) 0.000246(48) 0.143680539(17) -1.499650(57)
9 0.143680527(64) -1.99952(15) 0.1436805828(92) 0.000214(30) 0.143680548(28) -1.499674(71)
10 0.143680511(41) -1.999472(94) 0.143680572(17) 0.000238(43) 0.143680544(16) -1.499665(52)
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Figure 1: Estimates for the critical point and exponent of the generating function for the
radius of gyration of square lattice polygons as a function of the number of terms used by
the second order differential approximants. The solid lines indicate the expected values
uc = 0.14368062927(1) and ξ = −(α + 2ν) = −2.
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Figure 2: Estimates for the leading amplitude a0 = B of square lattice polygons as a
function of 1/n. Each data set is obtained by fitting pn to the form given in equation (11)
using from 2 to 10 correction terms. The lower panel displays a detailed look at the data
in the upper panel.
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Figure 3: Estimates for the leading amplitude BD and D of the radius of gyration of
square lattice polygons as a function of 1/n. Each data set in the top panels is obtained
by fitting the coefficients rn of the radius of gyration generating function to the form given
in equation (12), using from 1 to 10 correction terms. Each data set in the bottom panels
is obtained by fitting rn/pn to the form given in equation (13). The right panels are a
detailed look at the data in the left panels. The solid lines indicate the expected values
given in the text.
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