
ar
X

iv
:c

on
d-

m
at

/0
00

81
78

v1
 [

co
nd

-m
at

.s
ta

t-
m

ec
h]

 1
1

A
ug

 2
00

0 A transfer matrix approach to the enumeration of

plane meanders

Iwan Jensen∗,
Department of Mathematics and Statistics,

The University of Melbourne,
Victoria 3010, Australia

February 1, 2008

Abstract

A closed plane meander of order n is a closed self-avoiding curve intersecting an

infinite line 2n times. Meanders are considered distinct up to any smooth defor-

mation leaving the line fixed. We have developed an improved algorithm, based on

transfer matrix methods, for the enumeration of plane meanders. While the algo-

rithm has exponential complexity, its rate of growth is much smaller than that of

previous algorithms. The algorithm is easily modified to enumerate various systems

of closed meanders, semi-meanders, open meanders and many other geometries.

1 Introduction

Meanders [1] form a set of combinatorial problems concerned with the enumeration of self-
avoiding curves crossing a line through a given number of points. Meanders are considered
distinct up to any smooth deformation. This problem seems to date back at least to work
of Poincaré on differential geometry [2]. Since then it has from time to time been studied
by mathematicians in various contexts such as the folding of a strip of stamps [3, 4] or
folding of maps [5]. More recently it has been related to enumerations of ovals in planar
algebraic curves [6] and the classification of 3-manifolds [7]. During the last decade or so
has it has received considerable attention in other areas of science. In computer science
meanders are related to the sorting of Jordan sequences [8] and have been used for lower
bound arguments [9]. In physics meanders are relevant to the study of compact foldings
of polymers [10, 11], properties of the Temperley-Lieb algebra [12, 13], matrix models
[14, 15, 16], and defects in liquid crystals and 2 + 1 dimensional gravity [17].

The difficulty in the enumeration of most interesting combinatorial problems is that,
computationally, they are of exponential complexity. That is to say, the time it takes to
calculate the first n terms in the generating function grows asymptotically as λn, where
λ > 1 is the growth rate. Initial efforts at computer enumeration of meanders were
based on direct counting. Independently, Koehler [4] and Lunnon [5], studied the number

∗e-mail: I.Jensen@ms.unimelb.edu.au

1

http://arXiv.org/abs/cond-mat/0008178v1

of ways of folding a strip of stamps (or a map) of length n, and published result up
to, respectively, n = 16 and 24. Lando and Zvonkin [1] studied closed meanders, open
meanders and multi-component systems of closed meanders, and calculated the number
of open meanders up to n = 26 and the number of closed meanders up to n = 14. The
calculation of the number of closed meanders was subsequently extended up to n = 16 by
Pratt [18]. Di Francesco et al. studied semi-meanders, a problem equivalent to the stamp
folding problem [10], and extended the calculation to n = 29 [11], in addition they studied
numerous other problems including that of multi-component systems of semi-meanders.

Few exact and mathematically rigorous results have been obtained for any of the
many meander problems. However, in a recent paper it was conjectured that some of the
meander problems can be related to a gravitational version of a certain loop model [19].
From the conformal field theory of the model, conjectures were proposed for the exact
critical exponent of closed and open meanders, α = (29 +

√
145)/12 = 3.4201328 . . ., as

well as the exponent for semi-meanders, α = 1 +
√

11(
√

29 +
√

5)/24 = 2.0531987
This work has recently been extended to multi-component systems of closed and semi-
meanders [20] and to various other geometries. Conjectures were given for the critical
exponents as functions of the loop-fugacity q. These were checked numerically [20] and
found to be correct within numerical error. In a recent paper [21] we analysed extended
series for the meander generating functions. Using the numerical technique of differential
approximants [22] we obtained accurate estimates for the exponents and found that the
conjecture for the semi-meander exponent is unlikely to be correct, while the conjecture
for closed meanders is just consistent with the results from the analysis.

The purpose of this paper is to give a detailed description of the new and improved
algorithm used to derive the series studied in [21]. While the algorithm still has expo-
nential complexity, the growth rate is much smaller than that experienced with direct
counting, and consequently the calculation can be carried much further. The algorithm is
easily modified to enumerate various multi-component systems of closed meanders, semi-
meanders or open meanders. In particular we have extended the calculation for closed
meanders up to n = 24, for open meanders up to n = 43, and for semi-meanders up to
n = 45.

In section 2 we shall briefly describe some meander problems and define the meandric
numbers. Section 3 contains a detailed description of the transfer matrix algorithm for
the enumeration of closed meanders and an outline of generalisations to other problems.
Finally we give our conclusions in section 4.

2 Definitions of meanders

A closed meander of order n is a closed self-avoiding curve crossing an infinite line 2n times
(see figure 1). The meandric number Mn is simply the number of such meanders distinct
up to smooth transformations. Note that each meander forms a single connected curve.
The number of closed meanders is expected to grow exponentially, with a sub-dominant
term given by a critical exponent, Mn ∼ CR2n/nα. The exponential growth constant R
is often called the connective constant. The generating function is expected to behave as

M(x) =
∞∑

n=1

Mnx
n ∼ A(x)(1 − R2x)α−1, (1)

2

n = 2 n = 3 n = 3
Figure 1: A few examples of closed meanders of order 2 and 3, respectively.

and hence have a singularity at xc = 1/R2 with exponent α − 1.
We can extend the definition to multi-component systems of closed meanders, where we

allow configurations with several disconnected closed meanders. The meandric numbers
M (k)

n are the number of meanders with 2n crossings and k components, and we thus obtain
the more general generating function:

M(x, q) =
∞∑

n=1

n∑

k=1

M (k)
n xnqk. (2)

Obviously, Mn = M (1)
n , and M(x) = ∂M(x, q)/∂q|q=0. An example of a multi-component

meander system with several pieces is shown in figure 2. In addition one could also look
at further restrictions on these systems. Two obvious examples would be to exclude
configurations where meanders are nested within one another or where meanders can be
separated from one another, i.e., all smaller meanders are completely enclosed within a
larger meander.

n = 7, k = 3
A B C

Figure 2: An example of a system of closed meanders of order 7 with 3 components.

An open meander of order n is a self-avoiding curve running from west to east while
crossing an infinite line n times (see figure 3). The number of such curves is mn and
we can define a generating function for this problem in analogy with (1). It should be
noted [1] that Mn = m2n−1, and hence the critical exponent is identical to that of closed
meanders and the connective constant is R.

Finally, instead of looking at crossings of an infinite line one could consider a semi-
infinite line and allow the curve to wind around the end-point of the line [10]. A semi-
meander of order n is a closed self-avoiding curve crossing the semi-infinite line n times.

3

n = 11
Figure 3: An example of an open meander of order 11.

�
n = 7, k = 1, w = 1

�
n = 7, k = 4, w = 3

A B C D
Figure 4: Two examples of semi-meanders. The first of these has one component, crosses
the line 7 times and winds around the origin once, while the second has 4 components
crosses the line 7 times and winds around the origin 3 times.

The number of semi-meanders of order n is denoted by Mn ∼ C ′R/nα and we define a
generating function as in (1). In this case a further interesting generalisation is to study
the number of semi-meanders Mn(w) which wind around the end-point of the line exactly
w times. Again we could also study systems of multi-component semi-meanders according
to the number of independent meanders. Two semi-meanders are shown in figure 4.

3 Enumeration of meanders

The method used to enumerate meanders is based on the transfer matrix algorithm de-
vised by Enting [23] in his pioneering work on the enumeration of self-avoiding polygons.
Derrida [24] used a similar algorithm to study self-avoiding walks. The transfer matrix
technique involves drawing a boundary line perpendicular to the infinite line. The inter-
section between the boundary and a given meander results in a set of loop-ends. Each
loop-end is connected (to the left of the boundary) to at most one other loop-end. In the
case of closed meanders the matching is perfect and each loop-end is connected to exactly
one other loop-end. In the case of open meanders there is in addition one and only one
loop-end which is free and therefore not connected to any other loop-ends, as illustrated
in figure 5. In addition to the information describing the configuration of loop-ends, and
how they are connected, we need to know where the infinite line is situated within the

4

loop-ends. This can be done simply by specifying how many loop-ends lie beneath the
infinite line. For each such configuration we keep count of all the possible (partially com-
pleted) meanders which gives rise to that particular configuration of loop-ends. Meanders
can then be enumerated by successive moves of the boundary line, so that exactly one
crossing is added with each move. An extra crossing is added either by putting in a new
loop across the infinite line or by taking an existing loop-end immediately above/below
the line and dragging it to the other side.

These general remarks hold for all the meander enumeration problems. In the fol-
lowing we give a detailed description of the algorithm used in the enumeration of closed
connected meanders. Afterwards we describe how to generalise the method to other me-
ander problems.

1223
443
1

11free223
3

Figure 5: Examples of loop-configurations along the boundary (vertical line) during the
transfer matrix calculation for closed meanders (left panel) and open meanders (right
panel). Numbers along the boundary give a possible encoding of the loop-ends in the
partially completed meander.

3.1 Enumeration of closed connected meanders

In the enumeration of closed connected meanders the two major constraints which must
be observed are self-avoidance and the constraint that all meanders constructed during
the calculation must consist of a single connected component. As we move the boundary
line, the partially completed meanders will consist of a number of disjoint loop segments,
which must be connected to each other if a valid closed meander is to be produced. A
pair of loops can be placed relative to one another in two distinct ways, namely, side
by side or nested, as shown in the left panel of figure 6. In each case it is possible to
connect the loop-ends so as to form a single loop (middle panel) or so as to form graphs
with two separate components (right panel). It is connections equivalent to these latter
cases which we must avoid. So the constraint, which must be observed in order to avoid
separate components, is that a loop can be closed on itself only if the boundary intersects
no other loops.

To avoid loops closing on themselves we have to label the loop-ends so we can keep
track of how they are connected to one another. One scheme would be to assign a unique

5

a b
Figure 6: Illustration of how two partial loops can be placed (a), how they can be
connected to from a single loop (b), and connections leading to graphs with more than
one component (c).

label to each loop as indicated in figure 5. However, due to the two-dimensional nature of
the problem and since the curve making up a meander is self-avoiding, there is a scheme
better suited to a computer algorithm. Each configuration of loop-ends can be represented
by an ordered set of states {σi}, where

σi =

{
0 lower end of a loop,
1 upper end of a loop.

(3)

It is easy to see that this encoding uniquely describes which loop-ends are connected. In
order to find the upper loop-end, matching a given lower end, we start at the lower end
and work upwards in the configuration counting the number of ‘0’s and ‘1’s we pass (the
‘0’ of the initial lower end is not included in the count). We stop when the number of
‘1’s exceeds the number of ‘0’s. This ‘1’ marks the matching upper end of the loop. It
is worth noting that there are some restrictions on the possible configurations. Firstly,
every lower loop-end must have a corresponding upper end, and it is therefore clear that
the total number of ‘0’s is equal to the total number of ‘1’s. Secondly, as we look through
the configuration starting from the bottom the number of ‘0’s is never smaller than the
number of ‘1’s. Those familiar with algebraic languages will immediately recognise that
each configuration of labelled loop-ends forms a Dyck word (see [25]).

3.1.1 The transfer matrix algorithm

The total configuration of loop-ends and their placement relative to the infinite line can
thus be described by a pair of integers (h, S), where h is the number of loop-ends below
the infinite line and S is the integer whose binary representation corresponds to the
configuration of loop-ends. We shall call such a (h, S)-pair a signature, and in practise
we represent it by a 64-bit integer with the first 6 bits coding h and the remaining bits
coding S. In the following we shall often explicitly write out the binary representation,
{b0b1 . . . bn} of S, and use the notation {S1S2} to mean a configuration of loop-ends
obtained by concatenating the binary strings S1 and S2.

The algorithm for enumerating closed connected meanders is:

6

1 2 3 4 5 6 7 8 9 10 111 2 1 2 3 2 3 2 1 0 101 00
11

0
011

00
1011

001
011

00
11

000
111

000
111 00

11 01 01
Figure 7: Positions of the boundaries (dashed lines) during the transfer matrix cal-
culation. Numbers along the boundaries give the encoding of the loop structure of the
intersection with the partially completed meander to the left of the boundaries.

1. Set the maximum order n of the meandric numbers we wish to calculate. Start with
the signature (1, {01}) with a count of 1, that is one loop crossing the infinite line.
Set the number of crossings nc = 1. Set the meandric number M1 = 1.

2. Next move the boundary one step ahead and add one more crossing, nc = nc +1, to
all existing signatures. A new crossing is added either by putting in an additional
loop or by dragging an existing loop-end (immediately above or below) across the
infinite line.

Adding: A new loop is inserted simply by taking an existing source signature
(h, {S1S2}), where S1 (S2) is the configuration of loop-ends below (above)
the infinite line, and creating a new target signature (h + 1, {S101S2}). The
count of the source is added to the count of the target. This first type of
move is illustrated in figure 7 where in moving to position 2 we generate the
target signature (2, {0011}) from the source (1, {01}). Additional loops are
also inserted while moving to positions 4 and 7.

Dragging: As we cross the infinite line with an existing loop-end we either leave it
at that or we may be allowed to connect the loop-end to the loop-end on the
other side of the infinite line.

No connection: From the source (h, S) we produce the the two targets (h−
1, S) and (h + 1, S), by dragging a loop-end from below to above and vice
versa. Both these updates are allowed provided h−1 ≥ 0 and h+1 ≤ 2m1,
where m1 is the number of ‘1’s in S. For h = 0 only the target (1, S) is
allowed and for h = 2m1 only the target (h − 1, S) is allowed. Examples
of these moves are given in figure 7 when moving to positions 3, 5, 8 and
11.

Connecting loop-ends: There are four distinct cases depending on whether
the loop-ends below and above are of type ‘0’ or ‘1’.

7

Case 00: In this case we connect a lower loop-end from below the line
to a lower loop-end above the line. From a source (h, {S100S2}) we
generate the target (h − 1, {S1Ŝ2}), where the symbol Ŝ2 indicates
that this string is changed via further processing. This is so because by
connecting the two lower loop-ends an upper loop-end elsewhere in the
old configuration S2 becomes a lower loop-end in the new configuration
Ŝ2. An example of this type of relabelling is shown in figure 7 where in
the move to position 9 we see that the signature (2, {000111}) before
the step becomes the configuration (1, {0011}) after the step. That
is, the upper end of the third loop before the step becomes the lower
end of the second loop after the step. In general the nesting of loops
could be more complicated and the general rule for the relabelling of
the configuration is as follows: When connecting two ‘0’s we work
upwards in the configuration, counting the number of ‘0’s and ‘1’s we
pass until the number of ‘1’s exceeds the number of ‘0’s. This ‘1’ is the
matching end of the inner loop and it should now be changed to a ‘0’,
thus becoming the lower end of the outer loop (drawing a few further
figures should make this relabelling clearer).

Case 10: In this case we connect an upper loop-end from below to a lower
loop-end above. So from a source (h, {S110S2}) we generate the target
(h − 1, {S1S2}).

Case 01: This is never allowed since it would result in a closed loop and
thus generate graphs with separate components. The only exception
is when there are no other loop-ends in S, but this case is dealt with
in 3.

Case 11: In this case we connect an upper loop-end from below the line
to an upper loop-end above the line. From a source (h, {S111S2}) we
generate the target (h − 1, {Ŝ1S2}). The rule for the relabelling of S1

Ŝ1 is similar to the case ‘00’, but we work downwards in the string S1

until we find the unmatched lower loop-end, which is then changed to
an upper loop-end.

Note that all of the above moves may be allowed. So from a given source we can
generate up to four targets, by adding a new loop, by dragging a loop-end from
below to above the infinite line, doing the reverse, or by connecting two loop-ends
across the infinite line. As we move along and generate new target signatures their
counts are calculated by adding up the count for the various source signatures which
could generate that target. For example the target (2, {0011}) is generated from
the sources (1, {01}), (1, {0011}), (3, {0011}), and (3, {001011}), by, respectively,
putting in an additional loop, moving a loop-end below the line, moving a loop-end
above the line and connecting two loop-ends across the line.

3. If nc is odd then set j = (nc + 1)/2 and extract the meandric number Mj as the
count of the signature (1, {01}). This is the only case in which we are allowed to
close a loop. Doing so obviously adds one more crossing.

4. If nc < 2N − 1 go to 2.

8

Not all possible signatures that can be generated in a calculation to order n are
actually required. The main restriction is that no meanders should have more than 2n
crossings. Since each move adds one more crossing and reduces the number of loop-ends
above/below the infinite line by at most one, it is clear that for a given signature we have
to add at least na = max(h, 2m1 − h) additional crossings in order to produce a closed
meander. Thus if, for a given signature, nc + na > 2n, we can discard the signature since
it would contribute only to a meandric number exceeding the order to which we wish to
carry out the calculation. Further savings of a factor of almost 2 is obtained by using the
symmetry with respect to reflection in the infinite line. A further factor of approximately
2 is obtained as follows. Note that na is the minimum number of additional crossings and
that for some signatures further crossings are needed. The most obvious case is when the
loop-ends above and below the infinite line are connected to one another. In this case we
cannot connect the two ends and first we have to move one of the loop-ends across the line.
So when h = m1, this results in at least two extra crossings. In the general case one can
readily write an algorithm to count the actual number of additional crossings required,
and as stated above this results in a saving of close to 2 in the number of signatures one
need retain.

3.2 Generalisations to other meander problems

3.2.1 Multi-component systems of closed meanders

As we noted above connecting a ‘0’ below the line to a ‘1’ above the line results in a
closed loop. Failure to observe the restriction on this closure would result in graphs
with disconnected components, either one closed meander over another or one closed
meander within another. Obviously these are just the types of graphs required in order
to enumerate multi-component systems of closed meanders. So by noting that each such
closure adds one more component it is straightforward to generalise the algorithm to
enumerate systems of closed meanders. The only major change is that, rather than just
storing the number of partially completed meanders, for each signature we have to store
a generating function, that is a polynomial giving the number of partially completed
meanders with k components, where 1 ≤ k ≤ n.

3.2.2 Open meanders

Open meanders are a little more complicated. The first part of the necessary generalisation
consists in adding an extra piece of information to our signature. We have to keep track
of a single free end by specifying its position within the configuration of connected loop-
ends. One simple way of doing this is, in analogy with the infinite line, to specify the
number, hf − 1, of (connected) loop-ends below the free end, so that hf is the position
of the free end as counted from the bottom. So a configuration is now described by a
signature (h, hf , S). Naturally, we also have to generalise the algorithm described above.
We now start with the signature (1, 1, 0), that is a single free end below the infinite line,
and no crossings. The updating rules for adding a new crossing are very similar to the
ones described above for closed meanders. One difference is that when a new loop is
added (two loop-ends joined) below the free end, hf is increased (decreased) by 2. We
also need to consider what happens when joining the free end to a connected loop-end. In
this case we have to change the matching end of the connected loop to the new free end

9

in the target signature and we have to change hf accordingly. An example illustrating
this is shown in figure 8. The updating rule when the free end does not join with the
loop-end on the other side is obviously just to increase (decrease) h by 1 as the free end
is moved below (above) the line.

01free
0011

01
free01

Figure 8: An example of the transformation of a signature as the free end is joined
to a loop-end. In this case the source signature (3, 3, {010011}) gives rise to the target
(2, 5, {0101}).

3.2.3 Semi-meanders

Finally, in order to enumerate semi-meanders all we need do is change the starting con-
figuration. We now start in a position just before the first crossing of the semi-infinite
line with w loops nested with one another. By running the algorithm for each w from
0 to n we can count all semi-meanders with up to n crossings. The generalisation to
multi-component systems of semi-meanders is the same as for closed meanders.

3.3 Computational complexity

Using the new algorithm we have calculated Mn up to n = 24 as compared to the previous
best of n = 16 obtained by V. R. Pratt [18]. To fully appreciate the advance it should be
noted that the computational complexity grows exponentially, that is the time required
to obtain n term grows asymptotically as λn. For direct enumerations time is simply
proportional to Mn and thus λ = limn→∞ Mn+1/Mn ≈ 12.26. Thus extending the count of
the meandric number from 16 to 24 by direct counting would have required approximately
12.288 ≃ 5× 108 as much CPU time as the calculation of the first 16 terms. The transfer
matrix method employed in this paper is far more efficient. In figure 9 we have plotted
the maximum number of signatures required in order to calculate the number of closed
meanders up to order n. As can be seen, the number of signatures grows exponentially
with n, and the numerical evidence suggests that the computational complexity is such
that λ ≈ 2.5, which obviously is a very significant improvement on direct counting. The
drawback of the transfer matrix method is that, since we need to store all the different
signatures, the memory requirement of the algorithm also grows exponentially with growth
rate λ, whereas direct counting algorithms typically have memory requirements which are
linear in n. In fact it is exactly the memory requirement which is the major limitation of

10

the transfer matrix method. The calculations reported in this paper used up to 2Gb of
memory and typically took a few days of CPU time.

0 5 10 15 20 25n
10

0

10
3

10
6

10
9

N
um

be
r

of
 s

ig
na

tu
re

s

Figure 9: The number of distinct signatures required during the transfer matrix calcula-
tion of the number of closed meanders with 2n crossings. The solid line, drawn as a guide
to the eye, corresponds to a growth rate λ = 2.5.

Di Francesco et al. [20] carried out a more detailed analysis of the complexity of the
algorithm as it applies to multi-component systems of closed meanders and obtained the
estimate Nsig ∼ an = (2.582603 . . .)n, for the number of signatures, very close to the
purely empirical estimate obtained here.

Another way of gauging the improved efficiency is to note that the calculations for
semi-meanders carried out in [11] were “done on the parallel Cray-T3D (128 processors)
of the CEA-Grenoble, with approximately 7500 hours × processors.” Or in total about
100 years of CPU time. The equivalent calculations can be done with the transfer matrix
algorithm in about 15 minutes on a single processor workstation!

3.4 Further particulars

Finally a few remarks of a more technical nature. The number of contributing configura-
tions becomes very sparse in the total set of possible states along the boundary line and
as is standard in such cases one uses a hash-addressing scheme [26]. Since the integer
coefficients occurring in the expansion become very large, the calculation was performed
using modular arithmetic [27]. This involves performing the calculation modulo various
prime numbers pi and then reconstructing the full integer coefficients at the end. In calcu-
lations involving only single component meanders most of the memory is used storing the
signatures so we used primes of the form pi = 230 − ri. The Chinese remainder theorem
ensures that any integer has a unique representation in terms of residues. If the largest

11

integer occurring in the final expansion is M , then we have to use a number of primes
m such that p1p2 · · ·pm > M . Up to 3 primes were needed to represent the coefficients
correctly. In calculations involving systems of multi-component meanders the main stor-
age requirement comes from the generating functions. In order to save memory we used
primes of the form pi = 215 − ri so that the residues of the coefficients in the polynomials
could be stored using 16 bit integers. In this case we used up to 6 primes.

4 Conclusion

We have presented an improved algorithm for the enumeration of plane meanders. The
computational complexity of the algorithm for the problem of closed meanders is estimated
to be 2.5n, much better than direct counting algorithms which have complexity 12.26n.
Implementing this algorithm enabled us to obtain closed meanders up to order n = 24,
compared to the previous best of n = 16. We also counted the number of open meanders
up to order n = 43 and semi-meanders up to order n = 45. From our extended series
we obtained precise estimates for the connective constants and critical exponents [21].
This showed that a recent conjecture for the exact value of the semi-meander critical
exponent is unlikely to be correct, while the conjectured exponent value for closed and
open meanders is just consistent with the results from the analysis.

E-mail or WWW retrieval of series

The series for the various generating functions so far generated with this algorithm and
studied in [21] can be obtained via e-mail by sending a request to I.Jensen@ms.unimelb.edu.au
or via the world wide web on the URL http://www.ms.unimelb.edu.au/∼iwan/ by fol-
lowing the instructions.

Acknowledgements

Financial support from the Australian Research Council is gratefully acknowledged.

References

[1] S. K. Lando and A. K. Zvonkin, Theoret. Comput. Science 117, 227 (1993).

[2] H. Poincaré, Rend. Circ. Mat. Palermo 33, 375 (1912).

[3] J. Touchard, Canad. J. Math. 2, 385 (1950).

[4] J. E. Koehler, J. Combin. Theory 5, 135 (1968).

[5] W. Lunnon, Math. Comp. 22, 193 (1968).

[6] V. Arnold, Siberian Math. J., 29 717 (1988).

[7] K. H. Ko and L. Smolinsky, Pacific J. Math. 149, 319 (1991).

12

http://www.ms.unimelb.edu.au/~iwan/

[8] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan, Information and Con-
trol 68, 170 (1988).

[9] N. Alon and W. Maass, J. Comput. System Sci. 37, 118 (1988).

[10] P. Di Francesco, O. Golinelli and E. Guitter, Math. Comput. Modelling 26, 97 (1997).

[11] P. Di Francesco, O. Golinelli and E. Guitter, Nucl. Phys. B 482, 497 (1996).

[12] P. Di Francesco, O. Golinelli and E. Guitter, Commun. Math. Phys. 186, 1 (1997).

[13] P. Di Francesco, Commun. Math. Phys. 191, 543 (1998); J. Math. Phys. 38, 5905
(1997).

[14] Y. Makeenko, Nucl. Phys. Proc. Suppl. 49, 226 (1996).

[15] G. W. Semenoff and R. J. Szabo, Int. J. Mod. Phys. A12, 2135 (1997).

[16] P. Di Francesco, preprint http:://arxiv.org/abs/math-ph/9911002

[17] A. L. Kholodenko, J. Geom. Phys. 33, 23 (2000).

[18] V. R. Pratt, in N. Sloane, Sloane’s On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/˜njas/sequences/

[19] P. Di Francesco, O. Golinelli and E. Guitter, Nucl. Phys. B 570, 699 (2000).

[20] P. Di Francesco, E. Guitter and J. L. Jacobsen, Nucl. Phys. B 580, 757 (2000).

[21] I. Jensen and A. J. Guttmann, J. Phys. A 33, L187 (2000).

[22] A. J. Guttmann, in Phase Transitions and Critical Phenomena, Vol. 13, eds. C.
Domb and J. L. Lebowitz, Academic Press, New York (1989), pp 1-234.

[23] I. G. Enting, J. Phys. A 13, 3713 (1980).

[24] B. Derrida, J. Phys. A 14, L5 (1981).

[25] M.-P. Delest and G. Viennot, Theoret. Comput. Sci. 34, 169 (1984).

[26] K. Mehlhorn, Data Structures and Algorithms I: Sorting and Searching, EATCS
Monographs on Theoretical Computer Science, Springer-Verlag, Berlin (1984).

[27] D. E. Knuth, Seminumerical Algorithms (The Art of Computer Programming 2),
Addison-Wesley, Reading, MA (1969).

13

http://www.research.att.com/~njas/sequences/

