
ar
X

iv
:m

at
h.

N
T

/0
01

01
48

 v
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Abstract

In this paper we consider the generalized Catalan numbers F (s, n) = 1
(s−1)n+1

(

sn

n

)

,

which we call s-Catalan numbers. We find all natural numbers n such that for p prime,

pq divides F (pq, n), q ≥ 1 and all distinct residues of F (pq, n) (mod pq), q = 1, 2. As a

byproduct we settle a question of Hough and the late Simion on the divisibility of the

4-Catalan numbers by 4. We also prove that
(

p
q
n+1
n

)

, pq ≤ 99999, is squarefree for n

sufficiently large (explicit), and with the help of the generalized Catalan numbers we

find the set of possible exceptions. As consequences, we obtain that
(

4n+1
n

)

,
(

9n+1
n

)

are

squarefree for n ≥ 21518, respectively n ≥ 3956, with at most 218.2, respectively 315.3

possible exceptions.

Keywords. Binomial Coefficients, Divisibility, Congruences, Residues
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p
q-Catalan Numbers and Squarefree Binomial Coefficients

1 Introduction

Problems involving binomial coefficients were considered by many mathematicians for over

two centuries. R.K. Guy in [6] mentions several problems on divisibility of binomial coef-

ficients (see B31, B33). Erdös conjectured that for n > 4,
(2n

n

)

is never squarefree. This

was proved by Sárközy in [12], for sufficiently large n, and by Granville and Ramaré in [5]

for any n > 4.

Many people (see, for instance, [1, 2, 7, 8, 9, 11, 15]) proposed and studied the following

generalization of classical Catalan numbers 1
n+1

(2n
n

)

, which we will call s-Catalan numbers,

F (s, n) = 1
(s−1)n+1

(

sn
n

)

. There are many interpretations of this sequence [2, 7, 9, 11, 15], for

instance: the number of s-ary trees with n source-nodes, the number of ways of associating

n applications of a given s-ary operator, the number of ways of dividing a convex polygon

into n disjoint (s+1)-gons with nonintersecting diagonals, and the number of s-good paths

(below the line y = sx) from (0,−1) to (n, (s− 1)n − 1).

Naturally, some of the questions proposed by Erdös on the classical Catalan numbers,

may be asked here as well, as Hough and the late Simion proposed [8]: (a) When p is

prime, for what values of n is F (p, n) divisible by p? (b)∗ For what values of n is F (4, n)

divisible by 4? (c)∗ What can you say when s takes on the other composite values? There

are no known answers for (b), (c). In this paper we give a simple proof to (a), and we show

that F (p2, n) is divisible by p2, unless (p2 − 1)n+ 1 is an even power of p, or a sum of odd

powers of p (with the numbers of distinct powers summing to p), thereby proving (b), and

(c) for s = p2. We also prove that
(

pqn+1
n

)

, pq ≤ 99999, is squarefree for n sufficiently large

(explicit), and with the help of the generalized Catalan numbers we find the set of possible
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exceptions. As consequences, we obtain that
(4n+1

n

)

,
(9n+1

n

)

are squarefree for n ≥ 21518,

respectively n ≥ 3956, with at most 218.2, respectively 315.3 possible exceptions.

2 Preliminary Results

Let [x] be the largest integer smaller than x. In this section we state a few results which

will be needed later. Lucas (1878) (see [3]) found a simple method to find
(m

n

)

(mod p).

Theorem 1 (Lucas). If p is prime, then
(m

n

)

≡
([m/p]

[n/p]

)(m0

n0

)

(mod p), where m0, n0 are

the least non-negative residues modulo p of m, respectively n.

Define n!p to be the product of all integers ≤ n, that are not divisible by p. We see that

n!p =
n!

[n/p]!p[n/p]
. Granville in [4] proves the following beautiful generalization of Lucas’

Theorem.

Theorem 2 (Granville). Suppose that the prime power pq and positive integers m = n+r

are given. Let Nj be the least positive residue of [n/pj ] (mod pq) for each j ≥ 0 (that

is, Nj = nj + nj+1p + · · · + nj+q−1p
q−1): also make the corresponding definitions for

mj ,Mj , rj , Rj . Let ej be the number of indices i ≥ j for which mi < ni (that is, the

number of carries, when adding n and r in base p, on or beyond the jth digit). Then

1

pe0

(

m

n

)

≡ (±1)eq−1
M0!p

N0!pR0!p

M1!p
N1!pR1!p

· · · Md!p
Nd!pRd!p

(mod pq),

where (±) is (−1) except if p = 2 and q ≥ 3.

In 1808 Legendre showed that the exact power of p dividing n ! is

[n/p] + [n/p2] + [n/p3] + · · · . (1)
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We define (see [4]) the sum of digits function σp(n) = n0 +n1 + · · ·+nd, if n = n0 +n1p+

· · · + ndp
d. Then, using σ, (1) transforms into

n− σp(n)

p− 1
. (2)

We will need the following result which belongs to Kummer

Theorem 3 (Kummer). The power to which the prime p divides the binomial coefficient

(m
n

)

, say vp(
(m

n

)

), is given by the number of carries when we add n and m− n in base p.

Our first result gives a complete answer to the first posed question (a), generalizing

the well-known result on Catalan numbers, or equivalently, on middle binomial coefficients

(see [6]), which states that 4 |
(

2n
n

)

, unless n = 2k.

Theorem 4. Let p be a prime. Then, p divides F (p, n), unless n is of the form pk−1
p−1 , k ∈

N, in which case F (p, n) ≡ 1 (mod p).

Proof. We re-write F (p, n) =
1

(p − 1)n+ 1

(

pn

n

)

=
1

pn+ 1

(

pn+ 1

n

)

. We shall find the

values n such that p 6 |F (p, n). Since p 6 |F (p, 0), we assume n 6= 0. Applying Lucas’

Theorem repeatedly for the base p representations (0 ≤ mi, ni ≤ p− 1), m = m0 +m1p+

· · ·+mdp
d and n = n0 +n1p+ · · ·+ndp

d, we obtain
(m

n

)

≡
(m0

n0

)(m1

n1

)

· · ·
(md

nd

)

(mod p). For

m = pn+ 1 ≡ 1 (mod p), we get

F (p, n) ≡
(

pn+ 1

n

)

≡
(

1

n0

)(

n0

n1

)

· · ·
(

nd−1

nd

)

(mod p), nd 6= 0.

Let n−1 = 1. Since for any j, nj < p, if
(ni−1

ni

)

6= 0, then p 6 |
(ni−1

ni

)

. Thus, the numbers

n with p 6 |F (p, n) are those positive integers n with
(ni−1

ni

)

6= 0, i = 0, 1, . . . , d, or n = 0.

From ni−1 ≥ ni, n−1 = 1, nd 6= 0, and
(ni−1

ni

)

6= 0, we obtain ni−1 = ni. Thus, n =

1+p+· · ·+pd = pd+1−1
p−1 . Therefore, if p is prime, p|F (p, n) for any number n 6= pk−1

p−1 , k ∈ N.
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Using Lucas’ Theorem we easily see that for n = pk−1
p−1 , the least residue of F (p, n) modulo

p is 1.

The following lemma will be extensively used throughout the paper

Lemma 5. We have

vp(F (pq, n)) =
σp((p

q − 1)n + 1) − 1

p− 1
.

Proof. We use the identity F (pq, n) = 1
pqn+1

(

pqn+1
n

)

. Using (2) we get that the power of p

dividing
(m

n

)

is

vp

((

m

n

))

=
σp(n) + σp(m− n) − σp(m)

p− 1
. (3)

Let m = pqn+ 1. Thus, (3) becomes

vp(F (pq, n)) =
σp(n) + σp((p

q − 1)n + 1) − σp(p
qn+ 1)

p− 1
=
σp((p

q − 1)n + 1) − 1

p− 1
,

since σp(p
qn+ 1) = σp(n) + 1.

3 Scarce squarefree p
2-Catalan numbers

Denote by n = (ab . . . )p the base p representation of n, a being the most significant bit.

Our next result refers to the third question of Hough and Simion.

Theorem 6. Given a prime p, p2 divides F (p2, n), unless n is of the form
p2t − 1

p2 − 1
, t ∈ N,

in which case F (p2, n) ≡ 1 (mod p2), or of the form
c1p

2i1+1 + · · · + csp
2is+1 − 1

p2 − 1
, i1 <

· · · < is, with

s
∑

i=1

ci = p, s ∈ N, 0 ≤ ci < p, in which case F (p2, n) ≡
(

p

c1, c2, . . . , cs

)

(mod p2) (the multinomial coefficient).
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Proof. As before F (p2, n) = 1
p2n+1

(

p2n+1
n

)

. A number n, which does not satisfy the divisi-

bility, must satisfy (see Lemma 5)

vp(F (p2, n)) =
σp((p

2 − 1)n + 1) − 1

p− 1
≤ 1, (4)

which implies σp((p
2 − 1)n+ 1) ≤ p.

Assume first that σp((p
2 − 1)n + 1) = 1. Therefore, (p2 − 1)n + 1 = pk ≡ (−1)k

(mod p2 − 1), therefore k must be even, say k = 2t, so n =
p2t − 1

p2 − 1
.

Assume now that σp((p
2 − 1)n+ 1) = l, and 1 < l ≤ p. It follows that (p2 − 1)n+ 1 =

pα1 + · · ·+pαl , α1 ≤ α2 ≤ · · · ≤ αl. Therefore, (p2−1)n+1 ≡ l ≡ 1 (mod p−1), and since

1 < l ≤ p, we get that l = p. Then, (p2 − 1)n + 1 = pα1 + · · · + pαp , α1 ≤ α2 ≤ · · · ≤ αp.

It follows that

(p2 − 1)n ≡ −1 + p
∑

αi odd

1 +
∑

αi even

1

≡ −1 + p2 − (p − 1)
∑

αi even

1

≡ −(p− 1)
∑

αi even

1 (mod p2 − 1),

so
∑

αi even

1 must be divisible by p + 1. Since 0 ≤
∑

αi even

1 ≤ p, we see that
∑

αi even

1 must

be an empty sum. Therefore, all αj = 2ij + 1. We obtain n =
p2i1+1 + · · · + p2ip+1 − 1

p2 − 1
,

i1 ≤ i2 ≤ · · · ≤ ip, and the first claim is proved.

Let n−1 = 0. Consider n =
p2t − 1

p2 − 1
. It follows that n = (1010 · · · 101)p and p2n + 1

attaches to this string the block 01 to the right, so it is of the same form. Since Mi = Ni−2

and Ri = 1, except for R2t−1 = p, we get, using Granville’s theorem,

1

(p2 − 1)n+ 1

(

p2n

n

)

≡ 1

p2n+ 1

(

p2n+ 1

n

)

≡ pe0(−1)e1
M0!pM1!p
R2t−1!p

(mod p2). (5)
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Now, M0 = m0 +m1p = m0 +n−1p = 1, M1 = m1 +m2p = n−1 + n0p = p and R2t−1 = p,

implies M0!p = 1,M1!p = p!p = (p − 1)! and R2t−1!p = (p − 1)!. Thus, (5) becomes

F (p2, n) ≡ pe0(−1)e1 ≡ 1 (mod p2), since e0 = e1 = 0.

Consider n =
c1p

2i1+1 + · · · + csp
2is+1 − 1

p2 − 1
, i1 < · · · < is and c1 + c2 + · · · + cs = p.

Observe that s ≥ 2. It follows that

n =
cs(p

2is+1 − p) + · · · + c1(p
2i1+1 − p) + p2 − 1

p2 − 1
(6)

= cs(p
2is−1 + p2is−3 + · · · + 1) + · · · + c1(p

2i1−1 + p2i1−3 + · · · + 1) + 1 (7)

= csp
2is−1 + csp

2is−3 + · · · + (cs + cs−1)p
2is−1−1 + · · · + 1. (8)

But p2n + 1 attaches the block 01 to the right of the base p representation of n, and

since there is a carry in this case, we get e0 = e1 = 1. Also, n0 = 1, M0!p = 1,M1!p =

(p − 1)!, Ri!p = 1 except for R2ik !p = (ckp)!p =
(ckp)!

ck!pck
and R2ik+1!p = (ck)!p = ck!, for

k = 1, 2, . . . , s. Now, applying Granville’s theorem we get

F (p2, n) ≡ pe0(−1)e1
M0!pM1!p

R0!p · · ·Rd+2!p
≡ (−1)p

(p − 1)!
∏

k

(ckp)!p ck!

≡ (−1)p
(p − 1)!
∏

k
(ckp)!
pck

≡ (−1)pp+1(p − 1)!
∏

k

(ckp)!
(mod p2),

(9)

since
s
∑

k=1

ck = p. We prove that the last expression is the multinomial coefficient (this was

observed by one of our referees, whom we thank). First, assume p = 2. Since s = 2 in this

case, we get c1 = c2 = 1 and the claim is trivially satisfied. Let p > 2. We observe that

(mp+ 1) · · · (mp+ p− 1)

(p − 1)!
=

p−1
∏

j=1

(1 +
mp

j
) ≡ 1 +mp

p−1
∑

j=1

1

j
(mod p2) ≡ 1 (mod p2),

since in the last sum 1
j + 1

p−j ≡ 0 (mod p) for p > 2. Therefore,

(ckp)!

pck
≡ ck! (p− 1)! (mod p2).
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Taking the product

s
∏

k=1

(ckp)!

pck
≡ (p− 1)!p

s
∏

k=1

ck! ≡ −
s
∏

k=1

ck!, since (p − 1)!p ≡ −1 (mod p),

which replaced in (9) produces the claim. The theorem is proved.

The following corollary gives a complete answer to the second question of Hough and

Simion.

Corollary 7. F (4, n) is divisible by 4, unless n is of the form
22t − 1

3
, in which case

F (4, n) ≡ 1 (mod 4), or of the form
22t+1 + 22j+1 − 1

3
, for t > j, in which case F (4, n) ≡ 2

(mod 4).

We include here the base 2 representations of the above numbers ≤ 60, namely 1, 3,

5, 11, 13, 21, 43, 45, 53 since it suggests a recursive construction of the sequence,

12, 112,

1012, 10112, 11012,

101012, 1010112, 1011012 , 1101012.

We see that on each row, we start with 1010 . . . 1, obtaining the rest of the strings by

inserting the bit 1 to the right of an already existent bit 1, starting with the rightmost one.

What are the possible least distinct residues of the p2-Catalan numbers modulo p2?

We give the following table, with the least residues of
1

(p2 − 1)n + 1

(

p2n

n

)

(mod p2), for

p = 2, 3, 5, 7, computed easily by hand, using Theorem 6. We listed the partitions of

p, and we computed the residue modulo p2 of the multinomial coefficient corresponding

to each partition, eliminating duplicates. For instance, if p = 5, the partitions of 5 are:

{{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}, so by Theorem 6 the least

residues of F (52, n) modulo 52 are: 0 and
(

5
5

)

= 1,
(

5
4,1

)

= 5,
(

5
3,2

)

= 10,
(

5
3,1,1

)

= 20,
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( 5
2,2,1

)

= 30 ≡ 5 (mod 25),
( 5
2,1,1,1

)

= 60 ≡ 10 (mod 25),
( 5
1,1,1,1,1

)

= 120 ≡ 20 (mod 25)

p least residues modulo p2 of F (p2, n)

2 0, 1, 2

3 0, 1, 3, 6

5 0, 1, 5, 10, 20

7 0, 1, 7, 14, 21, 35, 42

We provide here the following weak bound.

Corollary 8. The number of distinct residues of p2-Catalan numbers (mod p2) is less

than or equal to π(p) + 1, where π(p) is the number of partitions of p.

Proof. Straightforward.

Remark 9. If we denote by as the number of distinct residues of s2-Catalan numbers

(mod s2), then {as}s is the sequence A053991 in [14].

4 Divisibility of p
q-Catalan numbers

Now we attempt to find all natural numbers for which pq divides F (pq, n), q ≥ 3. Denote

by ji the least non negative residue of αi (mod q). We prove the result

Theorem 10. When p is an odd prime and q ≥ 3, then pq divides F (pq, n), unless n is of

the form
ptq − 1

pq − 1
, for some t ∈ N, or of the form

pqt1+j1 + · · · + pqtm(p−1)+1+jm(p−1)+1 − 1

pq − 1
,

for some ti ∈ N, 1 ≤ m ≤ q − 1, 0 ≤ ji ≤ q − 1, and
∑

i

pji ≡ 1 (mod pq − 1).

Proof. By Lemma 5, if pq 6 |F (pq, n), then

vp(F (pq, n)) =
σp((p

q − 1)n + 1) − 1

p− 1
≤ q − 1,

so σp((p
q −1)n+1) ≤ (p−1)(q−1)+1. If σp((p

q −1)n+1) = 1, then (pq −1)n+1 = ptq+i,

for some 0 ≤ i ≤ q − 1. Working modulo pq − 1 implies i = 0. Thus, n =
ptq − 1

pq − 1
. Assume
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σp((p
q−1)n+1) = l, 1 < l ≤ (p−1)(q−1)+1. We obtain (pq−1)n+1 = pα1 +· · ·+pαl , α1 ≤

· · · ≤ αl. Modulo (p− 1), this transforms into

(pq − 1)n ≡ −1 + l ≡ 0 (mod p− 1),

which will imply l = m(p − 1) + 1, for some m. Since 1 < l ≤ (q − 1)(p − 1) + 1, we get

0 < m ≤ q − 1. We obtain, for αi = qti + ji, 0 ≤ ji ≤ q − 1,

n =
pqt1+j1 + · · · + pqtm(p−1)+1+jm(p−1)+1 − 1

pq − 1
, m ∈ N,

with the condition
∑

i

pji ≡ 1 (mod pq − 1).

We use in the next section the following

Corollary 11. pq | 1
(pq−1)n+1

(pqn
n

)

if and only if pq |
(pqn+1

n

)

.

5 Squarefree Binomial Coefficients

In this section we study squarefree binomial coefficients of the form
(pqn+1

n

)

, with the help of

generalized Catalan numbers. Thus, in order to study these squarefree binomial coefficients,

it suffices to consider only n of the form
pqt1+j1 + · · · + pqtm(p−1)+1+jm(p−1)+1 − 1

pq − 1
, ti ∈ N,

1 ≤ m ≤ q − 1, 0 ≤ ji ≤ q − 1, such that
∑

i

pji ≡ 1 (mod pq − 1).

In [5], the authors proved that if

(

n

k

)

is squarefree, then n or n − k must be small.

Finding explicit bounds is a much more difficult task. They showed that

(

2n

n

)

is squarefree

for n > 21617, and used some arguments to simplify the computer’s work, in checking the

possible exceptions n = 2r. However, our job is not as hard; we rely on [5] and use

some estimates on the Chebyshev’s function ψ(x) =
∑

d≤x Λ(d), where Λ(d) is the Von

Mangoldt’s function, Λ(d) = log r, if d = rs, r prime and Λ(d) = 0, otherwise, to show our
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results. Define e(x) = ex and ψ(x) = 0, if x is an integer, and ψ(x) = {x} − 1
2 , otherwise,

where {x} is the fractional part of x.

The following lemma proves to be very useful

Lemma 12. If pq ≤ 99999, the inequality

0.9999975
√

pqn+ 1 − 1.0000025
√

(pq − 1)n+ 1 >

21.683 p
23q

48 n
23
48 (log (256((pq − 1)n + 1))))

11
4 +

11

8
(3 log n+ 2q log p).

(10)

is true for n ≥ τ0 sufficiently large.

Proof. First we prove that
√

1 + x +
√

1 + x− n ≤ 2
√
x, 2 ≤ n ≤ x + 1. By squaring we

get 2x+ 2 − n+ 2
√

(x+ 1)(x+ 1 − n) ≤ 4x, which is equivalent to 4(x+ 1)(x+ 1 − n) ≤

(n + 2x − 2)2. The last inequality is equivalent to n2 − 16x + 8nx ≥ 0, which is certainly

true if n ≥ 2. Now, let x′ = 1 + x. We evaluate

(1 − α)
√

1 + x− (1 + α)
√

1 + x− n =
(1 − α)2x′ − (1 + α)2(x′ − n)

(1 − α)
√
x′ + (1 + α)

√
x′ − n

=
n(1 + α)2 − 4αx′

(1 − α)
√
x′ + (1 + α)

√
x′ − n

≥ n(1 + α)2 − 4αx′

(1 + α)(
√
x′ +

√
x′ − n)

≥
n
(

(1−α)2

1+α − 4α
n(1+α)x

)

2
√
x

.

Therefore,

(1 − α)
√

1 + x− (1 + α)
√

1 + x− n ≥
(

(1 − α)2

1 + α
− 4α

1 + α

x

n

)

n

2
√
x
. (11)

Taking x = pqn, α =
1

4 · 105
, in (11), we get

0.9999975
√

pqn+ 1 − 1.0000025
√

(pq − 1)n + 1

≥
(

0.99999752

1.0000025
− 1

100000.25
pq

)

1

2
√
pq
n

1
2 .

(12)

If pq ≤ 99999, then (12) implies our claim that the inequality (10) is true for n ≥ τ0

sufficiently large, since, by (12), the left side is O(n
1
2 ) and the right side is O(n

23
48 ).

Our main result of this section is stated in the next
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Theorem 13. Assume pq ≤ 99999. Then,
(pqn+1

n

)

is not squarefree for n ≥ τ1 =

max

(

e60 − 1

pq − 1
, 510p5q, τ0

)

. Moreover, the exceptions, for n < τ1, if they exist, are of the

form
ptq − 1

pq − 1
, for any t ∈ N, or of the form

pqt1+j1 + · · · + pqtm(p−1)+1+jm(p−1)+1 − 1

pq − 1
, for

any ti ∈ N, 1 ≤ m ≤ q − 1, 0 ≤ ji ≤ q − 1, and
∑

i

pji ≡ 1 (mod pq − 1).

We proceed to the proof of the theorem. Let P = n(pqn − n+ 1)(pqn + 1). Corollary

3.2 (p. 82) of [5] implies

Lemma 14. Suppose that
(pqn+1

n

)

is squarefree. Then,

∣

∣

∣

∣

∣

∑

d∈I

ψ

(

pqn+ 1

d

)

Λ(d)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

d∈I

ψ
(n

d

)

Λ(d)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

d∈I

ψ

(

(pq − 1)n+ 1

d

)

Λ(d)

∣

∣

∣

∣

∣

≥ 1

2

∑

d∈I,(d,P )=1

Λ(d),

(13)

where I is the set of integers d in the range
√

(pq − 1)n+ 1 < d ≤ √
pqn+ 1.

An immediate consequence of Lemma 7.1 of [5] (see also [16]) is

∣

∣

∣

∣

∣

∑

d∈I

ψ

(

X

d

)

Λ(d)

∣

∣

∣

∣

∣

≤ 1

2R + 2

∑

d∈I

Λ(d) +





∑

0<|r|≤R

|a±r |



 max
X≤x≤XR

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

,

where a±r =
i

2π(R + 1)

(

π

(

1 − |r|
R+ 1

)

cot

(

πr

R+ 1

)

+
|r|
r

)

± 1

2R+ 2

(

1 − |r|
R+ 1

)

.

Taking R = 10 and using Mathematica1 we obtained
∑

0<|r|≤10

|a±r | ∼ 0.868 ≤ 86

99
, which

implies

Lemma 15.

∣

∣

∣

∣

∣

∑

d∈I

ψ

(

X

d

)

Λ(d)

∣

∣

∣

∣

∣

≤ 1

22

∑

d∈I

Λ(d) +
86

99
max

X≤x≤10X

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

.

1A Trademark of Wolfram Research
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Using (13) and the previous lemma we get

1

2

∑

d∈I, (d,P )=1

Λ(d) ≤
∣

∣

∣

∣

∣

∑

d∈I

ψ

(

pqn+ 1

d

)

Λ(d)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

d∈I

ψ
(n

d

)

Λ(d)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

d∈I

ψ

(

(pq − 1)n + 1

d

)

Λ(d)

∣

∣

∣

∣

∣

≤ 3

22

∑

d∈I

Λ(d)

+
86

99
max

pqn+1≤x≤10(pqn+1)

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

+
86

99
max

(pq−1)n+1≤x≤10((pq−1)n+1)

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

+
86

99
max

n≤x≤10n

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

≤ 3

22

∑

d∈I

Λ(d) +
86

33
max

n≤x≤10(pqn+1)

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

.

Since,
∑

d∈I, (d,P )>1

Λ(d) ≤ log n + log ((pq − 1)n + 1) + log (pqn+ 1) ≤ 3 log n + 2q log p, for

n ≥ 2, we obtain

∑

d∈I

Λ(d) ≤ 43

6
max

n≤x≤10(pqn+1)

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

+
11

8
(3 log n+ 2q log p). (14)

Schoenfeld [13], obtained, for x ≥ e30, (see also [10])
∣

∣

∣

∣

∣

∣

∑

d≤x

Λ(d) − x

∣

∣

∣

∣

∣

∣

<
1

4 · 105
x.

Since
∑

d∈I

Λ(d) =
∑

d≤√
pqn+1

Λ(d) −
∑

d≤
√

(pq−1)n+1

Λ(d), we obtain

√

pqn+ 1− 1

4 · 105

√

pqn+ 1 −
√

(pq − 1)n + 1 − 1

4 · 105

√

(pq − 1)n+ 1

−11

8
(3 log n+ 2q log p) = 0.9999975

√

pqn+ 1 −

1.0000025
√

(pq − 1)n+ 1 − 11

8
(3 log n+ 2q log p)

<
43

6
max

n≤x≤10(pqn+1)

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

,

(15)
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for n ≥ e60 − 1

pq − 1
.

Now, we apply Theorem 9 of [5], a consequence of some very important bounds on

exponential sums.

Theorem 16 (Granville-Ramaré). If k > 0 integer and y ≤ 1
5x

3/5, then
∣

∣

∣

∣

∣

∣

∑

y≤d≤y′

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

∣

≤ 50

3
y

(

x

y
k+3
2

) 1

4(2k
−1)

(log 16y)
11
4 ,

for any y ≤ y′ ≤ 2y.

Since
√
pqn+ 1 ≤ 2

√

(pq − 1)n + 1, using the above theorem of Granville and Ramaré

we get, for n > 510p5q (to have the bound y ≤ 1
5x

3/5),

max
n≤x≤10(pqn+1)

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

≤ max
n≤x≤10(pqn+1)

50

3

√

(pq − 1)n+ 1 ·

(

x

((pq − 1)n+ 1)
k+3
4

)
1

4(2k
−1) (

log (16
√

(pq − 1)n + 1)
) 11

4

=
50

3

√

(pq − 1)n + 1

(

10(pqn+ 1)

((pq − 1)n + 1)
k+3
4

)
1

4(2k
−1)

·

(

log (16
√

(pq − 1)n+ 1)
)

11
4 ≤ 50

3
11

1

4(2k
−1) p

q

4(2k
−1) ·

n
1

4(2k
−1) ((pq − 1)n + 1)

1
2
− k+3

42(2k
−1) 2−

11
4 (log (256(pq − 1)n + 1))

11
4 ≤

50

3
2−

11
4 11

1

4(2k
−1) p

q
(

1
2
− k−1

42(2k
−1)

)

n
1
2
− k−1

42(2k
−1) (log (256((pq − 1)n + 1)))

11
4 .

We obtain (by taking k = 2 - that will suffice for our purpose)

max
n≤x≤10(pqn+1)

∣

∣

∣

∣

∣

∑

d∈I

e
(x

d

)

Λ(d)

∣

∣

∣

∣

∣

≤ 50

3
2−

11
4 11

1
12 p

23q

48 n
23
48 (log (256((pq − 1)n+ 1)))

11
4

By combining (15) and the previous inequality, we get

0.9999975
√

pqn+ 1 − 1.0000025
√

(pq − 1)n + 1 ≤

21.683 p
23q

48 n
23
48 (log (256((pq − 1)n + 1)))

11
4 +

11

8
(3 log n+ 2q log p),

(16)
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which is certainly false for n sufficiently large by Lemma 12. Thus the assumption in

Lemma 14 is false, which implies our Theorem 13.

Remark 17. The inequality (10) provides explicit bounds for n for any choice of p and q,

with pq ≤ 99999. We can increase the bound for pq, by using a weaker result of Schoenfeld

[13]. However, in doing that we increase the bound on n as well, so we preferred a better

bound on n.

Theorem 18.
(4n+1

n

)

is squarefree for n ≥ 21518, and if n < 21518 there are at most

289, 179 =
(761

2

)

∼ 218.2 possible exceptions.

Proof. If (p, q) = (2, 2), the inequality (10), valid for n ≥ max
(

e60−1
3 , 510210

)

changes into

0.9999975
√

4n+ 1 − 1.0000025
√

3n+ 1 >

42.1311n
23
48 (log (768n + 1))

11
4 +

33

8
log n+ 1.65566,

(17)

which is certainly true for n ≥ 21518. Theorem 6 and Corollary 11 imply that the exceptions

(if they exist) are of the form
22t+1 + 22j+1 − 1

3
, j ≤ t. Therefore, since the number of

pairs (j, t), giving different numbers of the above form, is less than
(761

2

)

∼ 218.2, we get

the theorem.

Theorem 19.
(4n+1

n

)

is squarefree for n ≥ 3956, and if n < 3956, there are at most

18088476 =
(478

3

)

∼ 315.3 possible exceptions.

Proof. If (p, q) = (3, 2), the inequality (10), valid for n ≥ max
(

e60−1
8 , 510310

)

, changes into

0.9999975
√

9n + 1 − 1.0000025
√

8n+ 1 >

26.04n
23
48 (log (2048n + 1))

11
4 +

33

8
log n+ 2.62417,

(18)
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which is true for n ≥ 3956. As in the previous proof, we get that the exceptions (if they

exist) are of the form
22t+1 + 22j+1 + 22i+1 − 1

8
, i ≤ j ≤ t. Therefore, since the number

of triples (i, j, t), giving different numbers of the above form, is less than
(478

3

)

∼ 315.3, we

get the result.

Although, there are not that many possible exceptions, because of their size, to check

each value in acceptable time, is beyond any computer’s capability at this moment, and

we were not able to decrease the complexity. However, we conjecture

Conjecture 20. Except for 1, 3 and 45,
(4n+1

n

)

is not squarefree. Except for 1, 4 and 10,

(

9n+1
n

)

is not squarefree.

Acknowledgements. The author would like to thank the anonymous referee for his
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