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We consider two-family neutrino oscillations in a medium of 
continuously-varying density as a limit of the process in a series 
of constant-density layers. We construct analytic expressions 
for the conversion amplitude at high energies within a medium 
with a density profile that is piecewise linear. We compare 
some cases to understand the type of effects that depend on the 
order of the material traversed by a neutrino beam. 

 
 
 
I. Transition amplitudes for structured matter. 
 
The problem of neutrino oscillations in matter is of obvious importance, and it is interesting to 
see to what extent and in what manner analytic solution is possible. In this note we discuss a 
general approach to the problem which allows us to solve in a new way the case of neutrino 
passage through matter whose density varies linearly with distance. 

Under the assumption that a two-channel approximation to neutrino mixing holds, the 
amplitude Aj for passage of a neutrino beam of energy E through a medium of constant electron 
density, whose properties (density Nj and thickness x j) we label by j, is a 2 × 2 matrix whose 
indices label flavors. It is given by the expression 
 
 ( ) ( )cos sin cos 2 sin sin 2j

j j j z j j xA i iφ φ θ σ φ θ σ= + −  (1.1) 

 
where the work [1] of Mikheyev and Smirnov and of Wolfenstein [MSW] showed that the 
effect of the matter is summarized by 
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The mass parameter ∆m2 = m2
2 − m1

2 is positive. We recover the vacuum result, Cabibbo 
angle θ, for V = 0. 

Let us now consider the elements of the amplitude A123..  = A1A2...An for passage 
through a series of layers labeled sequentially from n to 1. These can be found either by trace 
techniques or by the following direct technique: We extract a factor of cosφj from each factor 
Aj. Then the amplitude takes the form 
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where 
 1j jBβ σ= + ⋅

rr
 (1.5) 

and 
 ( )tan sin2 ,0,cos2j j j jB i φ θ θ= −

r
 (1.6) 

To find the ordered product over the β j, we require products of the form 

( )( ) ( )1 2 mB B Bσ σ σ⋅ ⋅ ⋅
r r rr r r

L , and these can be found recursively using the m = 2 result 

 ( )( ) ( )1 2 1 2 1 2B B B B i B Bσ σ σ⋅ ⋅ = ⋅ + ⋅ ×
r r r r r rr r r

. 

(In the recursive development, it is helpful that the vector B has no y-component.) The general 
form for our product is thereby found to be 
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In turn the transition matrix elements of interest are 
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One can immediately check that |A11|2 + |A12|2 = 1. 
 
Recovery of the vacuum result. A useful check on Eqs. (1.8) follows from the assumption 
that the parameter ξ j is small compared to cos2θ for all j. We can thus approximate θj ≅ θ as 
well as ∆mj

2 ≅ ∆m2. Assuming that the n slabs have equal width, we in addition have tanφj ≅ 
tan(φfull/n), where φfull = ∆m2X/(4E) is the angle appropriate to passage of a total length X 
through vacuum. Thus when there are an odd number of angles, 

2θi − 2θj +...+ 2θk ≅ 2θ, 
and when there are an even number of angles 

2θi − 2θj +...− 2θk ≅ 0. 
Thus, with φ ≡ φfull/n, the 11 element of the amplitude is 
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We have here used 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

3

2

1 21
1 1

2 3!
11

1 1 1
2 2!

n n

n n

n n n
x x nx x

n n
x x x

− − + − − = + + 

− + + − = + + 

…

…

 

Similarly, 
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The expressions (1.9) match the vacuum result for a single width X, Eq. (1.1) with the angles 
replaced by their vacuum values. 
 
A Given ordering and its reverse. One of the important features of oscillations within matter 
is that the amplitude for transitions depends on the order of the density of the layers through 
which a beam passes. The amplitude for passage through a single layer, Eq. (1.1), is symmetric, 
Aj = Aj

T. Therefore 

 ( )21 12 ,
Tn nA A=L L  (1.10) 

where we recall that the sequence of superscripts matches the layer order. That means in 
particular that the diagonal (survival) elements are equal, e.g., 
 21 12

11 11
n nA A=L L  (1.11) 

Unitarity in the two channel problem then gives us equal probabilities for the off-diagonal 
(conversion) elements for a given order and its reverse, 

 
2 221 12

12 12
n nA A=L L  (1.12) 

This proof fails for the three-channel conversion problem [2]. 
 To learn the relation between the off-diagonal elements of the amplitudes themselves, 
we note that A12…n has the simple form 

 12 ,
* *

nA
α β
β α

 =  − 
L  (1.13) 

To see this, one can for example use a recursive proof: Equation (1.1) shows it is true for one 
layer, and explicit calculation shows that it is also true for two layers. Then one calculates 

 12 ( 1) 12 1 * *
,

* * * * * * * * * *
n n nA A A

α β γ δ αγ βδ αδ βγ
β α δ γ β γ α δ β δ α γ
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and this has the requisite property. 
 We can now put Eqs. (1.10) and (1.13) together to show that 

 21 *

*
nA

α β
β α

− =  
 

L . (1.14) 

Thus in particular 
 ( )21 12

12 12 *n nA A= −L L . (1.15) 

 These results have been verified for the particular profiles we study below. 
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High energy limit. Let us call ξmin = 2EVmin/∆m2 the minimum value taken on by the 
parameter ξ j as j runs from 1 to n. Then we can study a high energy limit, 
 ξmin >> cos2θ, sin2θ (1.16) 
In this limit 

 
min

sin2 sin2
2 1j

j

θ θ
θ

ξ ξ
≅ ≤ =  (1.17) 

and, because ∆mj
2 ≅ ξ j ∆m2 in this limit, we also have 

 
1

j full jn
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For arbitrary n this could be large or small; however, because we are ultimately interested in 
large n and because for many situations this quantity is small in any case, we shall also assume, 
as part of the definition of the high energy limit, that φj is small for all j and retain only first order 
terms in φj. In particular the prefactor of the product over the cosφj in Eqs. (1.9) is unity. 
 The effect of our limit is most easily seen in the 12 element of the transition amplitude A, 
Eq. (1.8b). Let us refer to the m-tuple sum in the curly brackets on the right of Eq. (1.8b) as 
Tm, so that A12 is a sum over these sums. 
 Generally Tm is a function of the potential V; however for m = 1, which is the one term 
in A12 that is order independent, the potential dependence cancels, 

 1
1

tan sin2 sin2
n

j j full
j

T i iφ θ φ θ
=

= − = −∑ . (1.19) 

This leading term essentially reproduces the vacuum result, independent of n. Both the potential 
and the order dependence are present in the m = 2 term, 
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This expression sets the pattern for the general term, 
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where the multiple sum Sm is defined by 
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In the following section, we consider these sums for specific potentials. 
 The continuum limit of the sums of Eq. (1.22) can also be found in the usual manner. 
With the scaling variables zk ≡ jk/n, the large n limit of Sm(V) is 
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  (1.23) 
 
 
II. Linear density profile 
 
Here we consider a simple linear profile V1 given by 
 V1(x j) = Vmin + V′jX/n. (2.1) 
The linear case has in fact been solved in other ways. In work [3, 4] on passage of neutrinos 
through layers of constant density matter, a linear density profile was used to interpolate the 
layers, and in so doing it was noticed that a formally identical problem had been solved much 
earlier in the context of atomic physics [5, 6]. This work was more thoroughly recalled and 
refined by Petcov [7]. More recently, another approach has produced a solution to the case of 
linear matter for an arbitrary number of channels [8]. In addition there is a body of work based 
on various approximations[9]. What we present here differs considerably in technique from the 
exact work cited and the high energy approximation that applies to the examples below 
complements the approximate work. 
 For the profile of Eq. (2.1) the double sum term, Eq. (1.22), takes the form 
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This behaves as n2 at large n, and since there is an additional factor n−2 in T2, Eq. (1.20), T2 
itself has a finite large n limit, namely 

 
( ) ( ) ( ) 2

2 1 2

2

1 1 1 2
sin2

6

1
sin2 .

12

full

fulln

n n nX E
T V V

n n m

V X

φ θ

φ θ→∞

+ −    ′= −    ∆   

′→ −

 (2.3) 

The pattern is repeated for the general term1. We have 
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This multiple sum is explicitly calculable for any finite n but is not very enlightening. The large n 
behavior is simpler, and we give here the first results for the first few values of m: 
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1 We have ignored the terms containing Vmin because they are nonleading as n becomes large. In other 
words, the expression of Eq. (2.4) is already a large-n approximation. 
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These results can be found either with the large n behavior of the multiple sums of Eq. (1.22) or, 
more simply, with the multiple integrals of the large n form Eq. (1.23). 
 We first remark that the factors of n are those necessary to make the result finite, since 
Tm contains an additional factor of n−m. The sequence in the denominator can be identified [10] 
as follows: 
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where a(m) obeys the two-term recurrence relation 
 a(m + 1) = a(m) + 2m(2m + 1)a(m − 1), with a(0) = a(1) = 1. (2.7) 
The quantity a(m) is an expansion coefficient in several elementary functions, including some 
combinations of inverse trigonmetric functions and algebraic functions. Perhaps the most 
interesting relation is 
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a relation that can be applied to our case with the substitution 
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The result is 
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III. Comparison to other density profiles 
 
It is instructive to compare the results of the previous section with two other density profiles of 
the same total thickness X, each representing a rearrangement of the matter that composes the 
profile V1, i. e., each having the same integral of V over x from 0 to X. Specifically, we consider 
a profile peaked at the center, 
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n X n
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 (3.1) 

and a constant profile, 
 V3(x j) = Vmin + V ′X/2. (3.2) 
We again work at our high energy regime. 
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 The profile V2 can be treated by many of the same techniques that we used for V1, even 
if the algebra is rather more complicated. We find for the double sum term, Eq. (1.22) with m = 
2, 

 ( ) ( ) ( )2 2 2 2
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2k j

j k

S V V x V x VXn
<

  ′= − = − ∑ . (3.3) 

This result should be compared to the corresponding one for S2(V1), Eq, (2.2), which is 
proportional to n2 at large n. The term T2(V2) vanishes in the large-n limit. The cancellation is a 
consequence of the symmetry of the matter distribution about X/2 (as will be confirmed below 
for the V3 case); indeed it is generally true that Sm(V2) = 0 for even values of m in the large-n 
limit. For odd values of m, however, there is a nonzero limit. We have worked through the first 
few odd-m expressions for Sm(V2) for finite n . These are not simple, even in the large-n limit, 
unless we set Vmin to 0, which we do to make the expressions clear2. Then the large-n results 
for all m are 
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This gives for the conversion amplitude 

 ( ) ( )

1
2

12 2 1
1,3

1
2 2 1 !!

m

m

i
A V T V X

m

−

=

 ′= −  − 
∑

…

 (3.5) 

where T1 is the amplitude for passage through a single layer of vacuum, Eq. (1.19). The sum on 

the right is a Lommel function [11] ( ) ( )
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The Lommel function is associated with diffraction from edges. 
 The amplitude for V3 is simply given by the MSW result of Eq. (1.1), i.e. 
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2 Strictly speaking, this violates our high energy condition Eq. (1.16); however, because V is only non-zero 
for an arbitrarily small range of x this should not be troublesome. 
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 The complete high energy expressions of Eqs. (3.6) and (3.7) are not very useful as 
grounds for comparison with the full result for V1, Eq. (2.9). It is more transparent to expand 
each result for small values of V ′X2 (as well as for Vmin = 0). In that case, 
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From these the conversion probabilities are, to leading order in V ′X2, 
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The ratios of these probabilities is in principle subject to experimental test, although it is clear 
that such tests would be very difficult. 
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