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IMPROVED BOUNDS ON THE NUMBER OF TERNARY

SQUARE-FREE WORDS

UWE GRIMM

Abstract. Improved upper and lower bounds on the number of square-
free ternary words are obtained. The upper bound is based on the enu-
meration of square-free ternary words up to length 110. The lower bound
is derived by constructing generalised Brinkhuis triples. The problem of
finding such triples can essentially be reduced to a combinatorial prob-
lem, which can efficiently be treated by computer. In particular, it is
shown that the number of square-free ternary words of length n grows
at least as 65n/40, replacing the previous best lower bound of 2n/17.

1. Introduction

A word w is a string of letters from a certain alphabet Σ, the number of
letters of w is called the length of the word. The set of words of length n is
L(n) = Σn, and the union

L =
⋃

n≥0

L(n) = ΣN0 (1)

is called the language of words in the alphabet Σ. This is a monoid with
concatenation of words as operation and the empty word λ, which has zero
length, as neutral element [11]. For a word w, we denote by w̄ the corre-
sponding reversed word, i.e., the word obtained by reading w from back to
front. A palindrome is a word w that is symmetric, w = w̄.

Square-free words [1–13] are words w that do not contain a “square” yy
of a word y as a subword (factor). In other words, w can only be written
in the form xyyz, with words x, y and z, if y = λ is the empty word.
In a two-letter alphabet {0, 1}, the complete list of square-free words is
{λ, 0, 1, 01, 10, 010, 101}. However, in a three-letter alphabet Σ = {0, 1, 2},
square-free words of arbitrary length exist, and the number of square-free
words of a given length n grows exponentially with n [4, 3, 7].

We denote the set of square-free words of length n in the alphabet Σ =
{0, 1, 2} by A(n) ⊂ L(n). The language of ternary square-free words is

A =
⋃

n≥0

A(n) ⊂ ΣN0. (2)

We are interested in the number of square-free words of length n

a(n) = |A(n)| (3)

1



2 UWE GRIMM

and in estimating the growth of a(n) with the length n. For n = 0, 1, 2, 3,
the sets of ternary square-free words are

A(0) = {λ}, (4)

A(1) = {0, 1, 2}, (5)

A(2) = {01, 02, 10, 12, 20, 21}, (6)

A(3) = {010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210, 212}, (7)

where λ denotes the empty word. Hence a(0) = 1, a(1) = 3, a(2) = 6,
a(3) = 12, and so on, see [1] where the values of a(n) for n ≤ 90 are
tabulated. In [15], the sequence is listed as A006156 (formerly M2550).

2. Upper bounds obtained by enumeration

Obviously, a word w of length m+n, obtained by concatenation of words
w1 of length m and w2 of length n, can only be square-free if w1 and w2

are square-free. This necessary, but not sufficient, condition implies the
inequality

a(m + n) ≤ a(m)a(n) (8)

for all m,n ≥ 0. By standard arguments, see also [1], this guarantees the
existence of the limit

s := lim
n→∞

a(n)
1

n , (9)

the growth rate or “connective constant” of ternary square-free words [8].
The precise value of s is not known, but lower [4, 3, 7] and upper bounds [1]
have been established. It is the purpose of this paper to improve both the
lower and the upper bounds.

It is relatively easy to derive reasonable upper bounds from the inequality
(8). In fact [1], one can slightly improve on (8) by considering two words w1

and w2 of length m ≥ 2 and n ≥ 2, such that the last two letters of w1 are
equal to the first two letters of w2, and we join them to a word w of length
m + n− 2 by having the two words overlap on these two letters. This yields

a(m + n − 2) ≤
1

6
a(m)a(n), (10)

for all m,n ≥ 2, because there are precisely a(n)/6 square-free letters of
length n ≥ 2 that start with the last two letters of w1. Taking n fixed, one
obtains

sn−2 = lim
m→∞

a(m + n − 2)

a(m)
≤

a(n)

6
(11)

and hence the upper bound

s ≤

(

a(n)

6

)
1

n−2

(12)
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Table 1. The number of ternary square-free words a(n) of
length n for 91 ≤ n ≤ 110.

n a(n) n a(n)
91 336 655 224 582 101 4 704 369 434 772
92 438 245 025 942 102 6 123 969 129 810
93 570 491 023 872 103 7 971 950 000 520
94 742 643 501 460 104 10 377 579 748 374
95 966 745 068 408 105 13 509 138 183 162
96 1 258 471 821 174 106 17 585 681 474 148
97 1 638 231 187 596 107 22 892 370 891 330
98 2 132 586 986 466 108 29 800 413 809 730
99 2 776 120 525 176 109 38 793 041 799 498

100 3 613 847 436 684 110 50 499 301 907 904

for any n ≥ 3. This bound can be systematically improved by calculating
a(n) for as large values of n as possible. The bound given in [1], from
a(90) = 258 615 015 792, is

s ≤ 43 102 502 632
1

88 = 1.320 829 . . . (13)

The results given in table 1 extend the previously known values of a(n) [1]
to lengths n ≤ 110. They were obtained by a simple algorithm, extending
square-free words letter by letter and checking that the new letter does not
lead to the formation of any square. The value a(110) yields an improved
upper bound of

s ≤ 8 416 550 317 984
1

108 = 1.317 277 . . . (14)

3. Brinkhuis triples and lower bounds

While the upper bound is already relatively close to the actual value of
s, which was estimated in reference [1] to be about 1.301 76 on the basis
of the first 90 values, it is much more difficult to obtain any reasonable
lower bound for s. In order to derive a lower bound, one has to show that
a(n) grows exponentially in n with optimal growth bound. This can be
achieved by demonstrating that each square-free word of length n gives rise
to sufficiently many different square-free words of some length m > n. This
was first done by Brinkhuis [4], by constructing what is now known as a
Brinkhuis triple or a Brinkhuis triple pair.

Definition 1. An n-Brinkhuis triple pair is a set B = {B(0),B(1),B(2)} of

three pairs B(i) = {U (i), V (i)} ⊂ A(n), i ∈ {0, 1, 2}, of pairwise different
square-free words such that the set of 96 words of length 3n

⋃

w1w2w3∈A(3)

{

W1W2W3 | Wj ∈ B(wj), j = 1, 2, 3
}

⊂ A(3n).
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In other words, it is required that all 3n-letter images of the twelve ele-
ments of A(3) under any combination of the eight maps

̺x,y,z :











0 → x ∈ B(0)

1 → y ∈ B(1)

2 → z ∈ B(2)

(15)

are square-free. This property is sufficient to ensure that images of any
square-free word in the alphabet Σ under any combination of the eight maps
to each of its letters is again square-free. This can be shown as follows.

Consider the six-letter alphabet Σ̃ = {0, 0′, 1, 1′, 2, 2′} and a language Ã
consisting of all words of A with an arbitrary number of letters replaced by
their primed companions. In other words,

Ã =
⋃

n≥0

Ã(n), Ã(n) =
{

w ∈ Σ̃n | π(w) ∈ A(n)
}

(16)

where π is the map

π : Σ̃ → Σ, π(0)=π(0′)=0, π(1)=π(1′)=1, π(2)=π(2′)=2, (17)

that projects back to the three-letter alphabet Σ. The map

̺ :











0 → U (0), 0′ → V (0)

1 → U (1), 1′ → V (1)

2 → U (2), 2′ → V (2)

(18)

is a uniformly growing morphism from the language Ã into the language L.
By the condition (1), this morphism is square-free on all three-letter words

in Ã, i.e., the images of elements in Ã(3) are square-free. As ̺ is a uniformly

growing morphisms, being square-free on Ã(3) implies, as proven in [5] and

[3], that ̺ is a square-free morphism, i.e., it maps square-free words in Ã
onto square-free words in L, thus onto words in A.

Lemma 1. The existence of an n-Brinkhuis triple pair implies the lower
bound s ≥ 21/(n−1).

Proof. The existence of an n-Brinkhuis triple pair implies the inequality

a(mn) ≥ 2ma(m) (19)

for any m > 0, because each square-free word of length m yields 2m different
square-free words of length mn. This means

(

a(mn)

a(m)

)
1

m

≥ 2, (20)

for any m > 0, and hence

sn−1 = lim
m→∞

(

a(mn)

a(m)

)
1

m

≥ 2, (21)

establishing the lower bound.
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The first lower bound was derived by Brinkhuis [4], who showed that

s ≥ 21/24 by constructing a 25-Brinkhuis triple pair consisting entirely of
palindromic words. In that case, the conditions on the square-freeness of
the images of three-letter words can be simplified to the square-freeness of
the images of two-letter words and certain conditions on the “heads” and the
“tails” of the words, which are easier to check explicitly. Brandenburg [3]

produced a 22-Brinkhuis triple pair, which proves a lower bound of s ≥ 21/21.
For a long time, this was the best lower bound available, until, quite recently,
Ekhad and Zeilberger [7] came up with a 18-Brinkhuis triple pair equivalent
to

U (0) = 012021020102120210 V (0) = 012021201020120210 = Ū (0)

U (1) = 120102101210201021 V (1) = 120102012101201021 = Ū (1)

U (2) = 201210212021012102 V (2) = 201210120212012102 = Ū (2), (22)

thus establishing the bound s ≥ 21/17. We note that the simpler defini-
tion for a Brinkhuis triple pair in [7], which is akin to Brinkhuis’ original
approach, is in fact incomplete, as it does not rule out a square that over-
laps three adjacent words if the words are not palindromic. Nevertheless,
the Brinkhuis triple (22) given in [7] is correct, and so is the lower bound

s ≥ 21/17 = 1.041 616 . . . derived from it. In fact, it has been claimed (see
[17]) that this is the optimal bound that can be obtained in this way, and
this is indeed the case, see the discussion below.

It is interesting to note that, although this minimal-length Brinkhuis triple
pair does not consist of palindromes, it is nevertheless invariant under rever-
sion of words, as V (i) = Ū (i). In addition, it also shares the property with
Brinkhuis’ orginial triple that the words U (1), V (1) and U (2), V (2) which
replace the letters 1 and 2, respectively, are obtained from U (0), V (0) by a
global permutation τ of the three letters

τ :







0 → 1
1 → 2
2 → 0

(23)

i.e.,

U (2) = τ(U (1)) = τ2(U (0)), V (2) = τ(V (1)) = τ2(V (0)). (24)

Clearly, given any Brinkhuis triple pair, the sets of words obtained by re-
version or by applying any permutation of the letters are again Brinkhuis
triple pairs, so it may not be too surprising that a Brinkhuis triple pair of
minimal length turns out to be invariant under these two operations.

4. Generalised Brinkhuis triples

As we cannot improve on the lower bound by constructing a shorter
Brinkhuis triple, we proceed by generalising the notion. The idea is to
allow for more than two words that replace each letter. This leads to the
following general definition.
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Definition 2. An n-Brinkhuis (k0, k1, k2)-triple is a set of k0 + k1 + k2

square-free words B = {B(0),B(1),B(2)}, B(i) = {w
(i)
j ∈ S(n) | 1 ≤ j ≤ ki},

ki ≥ 1, such that, for any square-free word ii′i′′ of length 3 and any 1 ≤ j ≤

ki, 1 ≤ j′ ≤ ki′ , 1 ≤ j′′ ≤ ki′′ , the composed word w
(i)
j w

(i′)
j′ w

(i′′)
j′′ of length 3n

is square-free.

Note that the definition reduces to definition 1 in the case k0 = k1 = k2 =
2 of an “ordinary” Brinkhuis triple pair. From the set of square-free words
of length 3, we deduce that the number of composed words that enter is
6k0k1k2 + k2

0(k1 + k2) + k2
1(k0 + k2) + k2

2(k0 + k1).

Lemma 2. The existence of an n-Brinkhuis (k0, k1, k2)-triple implies the

lower bound s ≥ k1/(n−1), where k = min(k0, k1, k2).

Proof. The proof proceeds as in lemma 1 above, with 2 replaced by k =
min(k0, k1, k2).

As far as the lower bound is concerned, we do not gain anything by
considering triples where the number of words k0, k1 and k2 differ from each
other. Nevertheless, the generality of definition 2 shall be of use below. In
order to derive improved lower bounds, we shall in fact concentrate on a
more restricted class of triples.

Definition 3. A special n-Brinkhuis k-triple is an n-Brinkhuis (k, k, k)-

triple B = {B(0),B(1),B(2)} such that B(2) = τ(B(1)) = τ2(B(0)) and w ∈ B(0)

implies w̄ ∈ B(0), where τ is the permutation of letters defined in equation
(23).

The first condition means that all words in B(1) and B(2) can be obtained
from the words in B(0) by the global permutation τ . The second condition
implies that the words in B(0), and hence also in B(1) and B(2), are either
palindromes, i.e., w = w̄, or occur as pairs (w, w̄). This means that a special
n-Brinkhuis k-triple is characterised by the set of palindromes w = w̄ ∈ B(0)

and by one member of each pairs of non-palindromic words (w, w̄) ∈ B(0).

If there are kp palindromes and kn pairs in B(0), then these generate a
special Brinkhuis k-triple with k = kp + 2kn. We shall call K = (kp, kn)
the signature of the special Brinkhuis k-triple, and denote a set of kp + kn

generating words by G.
In order to obtain the best lower bound possible, we are looking for op-

timal choices of the length n and the number of words k. There are two
possibilities, we may look for the largest k for given length n, or for the
smallest length n for a given number k. This is made precise by the follow-
ing definitions.

Definition 4. An optimal special n-Brinkhuis triple is a special n-Brinkhuis
k-triple such that any special n-Brinkhuis l-triple has l ≤ k.

Definition 5. A minimal-length special Brinkhuis k-triple is a special n-
Brinkhuis k-triple such that any special m-Brinkhuis k-triple has m ≥ n.
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If B is a special n-Brinkhuis k-triple, so is its image σ(B) under any
permutation σ ∈ S3 of the three letters. Therefore, without loss of generality,

we may assume that the first word w
(0)
1 ∈ B starts with the letters 01. This

has the following consequences on the other words of the triple.

Lemma 3. Consider a special n-Brinkhuis k-triple B, with n > 1, such that

the word w
(0)
1 ∈ B(0) starts with the letters 01. Then n ≥ 7, and all words

in B(0) start with the three letters 012 and end on 210.

Proof. As w
(1)
1 = τ(w

(0)
1 ) and w

(2)
1 = τ2(w

(0)
1 ), the words w

(1)
1 and w

(2)
1 start

with letters 12 and 20, respectively. If n = 2, then w
(0)
1 w

(1)
1 = 0112 contains

the square 11, so n ≥ 3. Square-freeness of the composed words w
(0)
j w

(1)
1

and w
(0)
j w

(2)
1 , 1 ≤ j ≤ k, implies that the words w

(0)
j have to end on 210,

because w = 210 is the only word in A(3) such that w12 and w20 are both

square-free. This in turn implies that all words in B(1) and B(2) end on 021

and 102, respectively. Now, square-freeness of the composed words w
(1)
j w

(0)
j′

and w
(2)
j w

(0)
j′ implies that the first three letter of w

(0)
j , for any 1 ≤ j ≤ k,

have to be w = 012, because this is the only word A(3) in such that 021w
and 102w are both square-free. For n = 3 and n = 4, no such words exist,
and the only possibility for n = 6 would be 012210 which is not square-free.
For n = 5, the square-free word 01210 starts with 012 and ends on 210, but

w
(0)
1 w

(2)
1 w

(0)
1 = 012102010201210 contains the square of 0201.

One can even say more about the “heads” and “tails” of the words in a
special Brinkhuis triple. There are two possible choices for the forth letter of

w
(0)
1 , and both possibilities fix further letters and cannot appear within the

same special Brinkhuis triple. Therefore, we can distinguish two different
types of special Brinkhuis triples.

Proposition 1. Consider a special n-Brinkhuis k-triple B, with n > 1, such

that the word w
(0)
1 ∈ B(0) starts with the letters 01. Then n ≥ 13 and either

all words in B(0) are of the form 012021 . . . 120210, or all words are of the
form 012102 . . . 201210.

Proof. From lemma 3, we know that n ≥ 7 and w
(0)
1 starts with 012 and

ends on 210. There are now two choices for the forth letter. Let us consider
the case that w

(0)
1 starts with 0120. Then w

(1)
1 starts with 1201. Now, from

lemma 3, w
(2)
1 ends on 102, and square-freeness of w

(2)
1 w

(0)
j implies that w

(0)
j

starts with 01202, and hence with 012021. Now w
(1)
1 starts with 120102

and w
(2)
1 with 201210. From square-freeness of w

(0)
j w

(1)
1 and w

(0)
j w

(2)
1 , we

can rule out w
(0)
j ends on 1210, because both possible extension 101210 and

201210 result in squares. Hence w
(0)
j ends on 0210 and, from square-freeness

of w
(0)
j w

(w)
1 , it has to end on 20210, and thus on 120210.
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Consider now the second possibility, i.e., w
(0)
1 starts with 0121. Neces-

sarily, it then starts with 01210. As w
(1)
1 ends on 021, square-freeness of

w
(1)
1 w

(0)
j implies that w

(0)
j starts with 012102. Then w

(1)
1 starts with 120210

and w
(2)
1 with 201021. Square-freeness of w

(0)
j w

(1)
1 and w

(0)
j w

(2)
1 rules out an

ending 0210 for w
(0)
j , as the only possible extension 20120 and 120210 both

result in squares. Hence w
(0)
j ends on 01210, and, from square-freeness of

w
(0)
j w

(1)
1 , actually has to end on 201210.

Now, in both cases it is obviously impossible to find square-free words of
length n = 8, 9, 10, 12 that satisfy these conditions. For the first case, the
one choice left for n = 11 is 01202120210, which contains the square of 1202.
In the second case, the only word for n = 11 that satisfies the conditions

is 01210201210. In this case, w
(0)
1 w

(1)
1 = 0121020121012021012021 contains

the square of 210120.

The proofs of lemmas 3 and 1 are very explicit, but you may simplify
the argument by realising that the conditions at both ends are essentially
equivalent, as they follow from reversing the order of letters in combined
words. The results restrict the number of words that have to be taken into
account when looking for a special n-Brinkhuis k-triple. In what follows,
we can restrict ourselves to the case n ≥ 13. We denote the set of such
square-free words by

A1(n) = {w ∈ A(n) | w = 012021 . . . 120210} ⊂ A(n), (25)

A2(n) = {w ∈ A(n) | w = 012102 . . . 201210} ⊂ A(n), (26)

and the number of such words by

a1(n) := |A1(n)|, (27)

a2(n) := |A2(n)|. (28)

We denote the number of palindromes by

a1p(n) := |{w ∈ A1(n) | w = w̄}|, (29)

a2p(n) := |{w ∈ A2(n) | w = w̄}|, (30)

and the number of non-palindromic pairs by

a1n(n) :=
1

2
(a1(n) − a1p(n)), (31)

a2n(n) :=
1

2
(a2(n) − a2p(n)). (32)

Clearly, there are no palindromic square-free words of even length, and thus
a1p(2n) = a2p(2n) = 0, a1n(2n) = a1(2n)/2 and a2n(2n) = a2(2n)/2.

Now, for a word w ∈ A1(n) or w ∈ A2(n) to be a member of a special
n-Brinkhuis triple, it must at least generate a triple by itself. This motivates
the following definition.
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Definition 6. A square-free palindrome w = w̄ ∈ A(n) is called admissible
if w generates a special n-Brinkhuis 1-triple. A non-palindromic square-free
word w of length n is admissible if w generates a special n-Brinkhuis 2-triple.

The hunt for optimal special n-Brinkhuis triples now proceeds in three
steps.

Step 1. The first step consists of selecting all admissible words in A1(n)
and A2(n). Let us denote the number of admissible palindromes in A1(n)
by b1p(n) and the number of admissible non-palindromes by 2b1n(n), such
that b1n is the number of admissible pairs (w, w̄) of non-palindromic words
in A1(n). Analogously, we define b2p(n) and b2n(n) for admissible words in
A2(n).

Step 2. The second step consists of finding all triples of admissible words
that generate a special n-Brinkhuis triple. Depending on the number of
palindromes kp in that triple, which can be kp = 0, 1, 2, 3, these are special
Brinkhuis k-triples with k = 6, 5, 4, 3, respectively. We denote the number
of such admissible triples by t1(n) and t2(n). Here, we need to check the
conditions of definition 2 for each triple. Using the structure of the special
Brinkhuis triple, the number of words that have to be checked is substantially
reduced from 12k3 to k(2k2 + kp).

Step 3. The third and final step is purely combinatorial in nature, and does
not involve any explicit checking of square-freeness of composed words. The
reason is the following. A set G, |G| ≥ 3, of words in A1(n) or A2(n), gener-
ates a special n-Brinkhuis triple if and only if all three-elemental subsets of G
generate special n-Brinkhuis triples. This is obvious, because the conditions
of definition 2 on three-letter words never involve more than three words
simultaneously, so checking the condition for all subsets of three generating
words is necessary and sufficient. Thus, the task is to find the largest sets of
generating words such that all three-elemental subsets are contained in our
list of admissible triples. In order to obtain an optimal special n-Brinkhuis
triple, one has to take into account that k = kp + 2kn, so solutions with
maximum number of generators are not necessarily optimal.

Even though this step is purely combinatorial and no further operations on
the words are required, it is by far the most expensive part of the algorithm
as the length n increases. Therefore, this is the part that limits the maximum
length n that we can consider. Using a computer, we found the optimal
Brinkhuis triples for n ≤ 41. The results for generating words from A1(n) are
given in table 2, those for generating words taken from A2(n) are displayed
in table 3. We included partial results for 42 ≤ n ≤ 45, in order to show
how the number of admissible words grows for larger n. Even though we
do not know the optimal n-Brinkhuis triples for these cases, it has to be
expected that the value of k that can be achieved continues to grow, and it
is certainly true for n = 42 where kopt ≥ 72.
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Table 2. Results of the algorithm to find optimal special
n-Brinkhuis triples with generating words in A1(n).

n a a1 a1p a1n b1p b1n t1 sign. kopt

13 342 0 0 0 0 0 0 (0,0) 0
14 456 0 0 0 0 0 0 (0,0) 0
15 618 1 1 0 0 0 0 (0,0) 0
16 798 0 0 0 0 0 0 (0,0) 0
17 1 044 1 1 0 1 0 0 (1,0) 1
18 1 392 4 0 2 0 1 0 (0,1) 2
19 1 830 5 1 2 1 0 0 (0,0) 0
20 2 388 4 0 2 0 0 0 (0,0) 0
21 3 180 1 1 0 0 0 0 (0,0) 0
22 4 146 2 0 1 0 0 0 (0,0) 0
23 5 418 3 1 1 0 1 0 (0,1) 2
24 7 032 4 0 2 0 1 0 (0,1) 2
25 9 198 13 3 5 2 1 1 (2,1) 4
26 11 892 16 0 8 0 1 0 (0,1) 2
27 15 486 18 2 8 2 0 0 (1,0) 1
28 20 220 10 0 5 0 1 0 (0,1) 2
29 26 424 27 3 12 2 3 4 (2,2) 6
30 34 422 52 0 26 0 4 0 (0,2) 4
31 44 862 64 4 30 2 7 8 (1,3) 7
32 58 446 64 0 32 0 6 5 (0,4) 8
33 76 122 60 6 27 3 7 30 (0,6) 12
34 99 276 70 0 35 0 7 13 (0,4) 8
35 129 516 109 9 50 4 13 328 (2,8) 18
36 168 546 174 0 87 0 27 1 304 (0,15) 30
37 219 516 291 9 141 6 27 2 533 (3,14) 31
38 285 750 376 0 188 0 30 973 (0,14) 28
39 372 204 386 12 187 3 35 2 478 (2,15) 32
40 484 446 428 0 214 0 55 10 767 (0,24) 48
41 630 666 593 15 289 4 76 28 971 (3,31) 65
42 821 154 926 0 463 0 114 74 080 ? ?
43 1 069 512 1 273 23 625 12 156 229 180 ? ?
44 1 392 270 1 518 0 759 0 170 235 539 ? ?
45 1 812 876 1 788 26 881 17 191 510 345 ? ?



BOUNDS ON TERNARY SQUARE-FREE WORDS 11

Table 3. Results of the algorithm to find optimal special
n-Brinkhuis triples with generating words in A2(n).

n a a2 a2p a2n b2p b2n t2 sign. kopt

13 342 1 1 0 1 0 0 (1,0) 1
14 456 0 0 0 0 0 0 (0,0) 0
15 618 0 0 0 0 0 0 (0,0) 0
16 798 0 0 0 0 0 0 (0,0) 0
17 1 044 2 0 1 0 0 0 (0,0) 0
18 1 392 2 0 1 0 0 0 (0,0) 0
19 1 830 1 1 0 0 0 0 (0,0) 0
20 2 388 0 0 0 0 0 0 (0,0) 0
21 3 180 1 1 0 0 0 0 (0,0) 0
22 4 146 6 0 3 0 0 0 (0,0) 0
23 5 418 6 2 2 2 1 0 (1,1) 3
24 7 032 10 0 5 0 2 0 (0,1) 2
25 9 198 11 1 5 1 2 1 (1,2) 5
26 11 892 8 0 4 0 1 0 (0,1) 2
27 15 486 8 2 3 1 1 0 (1,1) 3
28 20 220 10 0 5 0 3 0 (0,2) 4
29 26 424 30 4 13 1 3 2 (0,3) 6
30 34 422 40 0 20 0 6 5 (0,4) 8
31 44 862 37 5 16 2 3 2 (1,2) 5
32 58 446 32 0 16 0 4 0 (0,2) 4
33 76 122 49 5 22 2 3 7 (1,3) 7
34 99 276 76 0 38 0 10 39 (0,5) 10
35 129 516 142 6 68 3 20 483 (2,7) 16
36 168 546 188 0 94 0 29 1 602 (0,16) 32
37 219 516 205 9 98 3 32 2 707 (1,13) 27
38 285 750 198 0 99 0 27 1 112 (0,11) 22
39 372 204 231 13 109 6 36 5 117 (2,14) 30
40 484 446 396 0 198 0 56 12 002 (0,19) 38
41 630 666 615 15 300 8 81 54 340 (1,29) 59
42 821 154 820 0 410 0 120 123 610 ? ?
43 1 069 512 969 15 477 10 158 332 054 ? ?
44 1 392 270 1070 0 535 0 166 362 560 ? ?
45 1 812 876 1341 23 659 13 200 792 408 ? ?
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The optimal Brinkhuis triples are not necessarily unique, and the list also
contains a case, n = 29, where there exist optimal Brinkhuis triples of both
types. In general, several choices exist, which, however, cannot be combined
into an even larger triple. A list of optimal n-Brinkhuis triples which at the
same time are minimal-length Brinkhuis kopt triples is given below.

Proposition 2. The following sets of words generate optimal and minimal-
length Brinkhuis triples:

• n = 13, kp = 1, kn = 0, k = 1:

G13 = {0121021201210} (33)

• n = 18, kp = 0, kn = 1, k = 2:

G18 = {012021020102120210} (34)

• n = 23, kp = 1, kn = 1, k = 3:

G23 = {01210212021012021201210,
01210201021012021201210} (35)

• n = 25, kp = 1, kn = 2, k = 5:

G25 = {0121021202102012021201210,
0121020102101201021201210,
0121021201021012021201210} (36)

• n = 29, kp = 2, kn = 2, k = 6:

G
(1)
29 = {01202120102012021020102120210,

01202120121012021012102120210,
01202102012101202120102120210,
01202120102012021012102120210} (37)

• n = 29, kp = 0, kn = 3, k = 6:

G
(2)
29 = {01210201021201020121021201210,

01210201021202101201021201210,
01210201021202102012021201210} (38)

• n = 30, kp = 0, kn = 4, k = 8:

G30 = {012102010210120102012021201210,
012102010212012102012021201210,
012102010212021020121021201210,
012102120210120102012021201210} (39)

• n = 33, kp = 0, kn = 6, k = 12:

G33 = {012021020121012010212012102120210,
012021020121021201021012102120210,
012021020121021201210120102120210,
012021201020120210121020102120210,
012021201020121012021012102120210,
012021201021012010212012102120210} (40)
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• n = 35, kp = 2, kn = 8, k = 18:

G35 = {01202120102012102120121020102120210,
01202120102101210201210120102120210,
01202102010212010201202120102120210,
01202102010212010201210120102120210,
01202102012101201020121020102120210,
01202102012101202120121020102120210,
01202102012102120210121020102120210,
01202120102012101201021012102120210,
01202120102012102010210120102120210,
01202120102120210201021012102120210} (41)

• n = 36, kp = 0, kn = 16, k = 32:

G36 = {012102010210120212010210121021201210,
012102010210120212012101201021201210,
012102010210121021201020121021201210,
012102010210121021201021012021201210,
012102010210121021202101201021201210,
012102010212012101201020121021201210,
012102010212012101201021012021201210,
012102010212012102120210121021201210,
012102010212021012010210121021201210,
012102010212021020102101201021201210,
012102120102101202120102012021201210,
012102120102101210201021012021201210,
012102120102101210212021012021201210,
012102120121012010212021012021201210,
012102120121012021201021012021201210,
012102120121020102120102012021201210} (42)

• n = 40, kp = 0, kn = 24, k = 48:

G40 = {0120210201210120102120210121020102120210,
0120210201210120212010210121020102120210,
0120210201210212010210120212012102120210,
0120210201210212012101201021012102120210,
0120210201210212012101202120121020120210,
0120210201210212012102010210120102120210,
0120210201210212012102010212012102120210,
0120210201210212012102012021012102120210,
0120210201210212012102012021020102120210,
0120210201210212021020120212012102120210,
0120212010201202101210201021012102120210,
0120212010201210120102012021012102120210,
0120212010201210120102101202120102120210,
0120212010201210120102120121020102120210,
0120212010201210120210201021012102120210,
0120212010201210120210201202120102120210,
0120212010201210120212010210120102120210,
0120212010201210212010201202120102120210,
0120212010201210212012101202120102120210,
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0120212010210120102012101202120102120210,
0120212010212021012021201021012102120210,
0120212010212021012102010212012102120210,
0120212010212021012102120102012102120210,
0120212010212021020102120102012102120210} (43)

• n = 41, kp = 3, kn = 31, k = 65:

G41 = {01202102012102120210201202120121020120210,
01202120121012010201210201021012102120210,
01202120121021201021012010212012102120210,
01202102012101201021202101202120102120210,
01202102012101202120102012021012102120210,
01202102012101202120102012021020102120210,
01202102012102120102012101202120102120210,
01202102012102120121012010212012102120210,
01202102012102120121020120212012102120210,
01202120102012021012010210121020102120210,
01202120102012021012102010210120102120210,
01202120102012021012102010212012102120210,
01202120102012021012102012021020102120210,
01202120102012021012102120102012102120210,
01202120102012021012102120121020102120210,
01202120102012021020102120102012102120210,
01202120102012021020102120121020102120210,
01202120102012101201020120212012102120210,
01202120102012101202102010210120102120210,
01202120102012101202102010212012102120210,
01202120102012101202102012021012102120210,
01202120102012102120102012021012102120210,
01202120102012102120102101202120102120210,
01202120102012102120121012021012102120210,
01202120102012102120210201021012102120210,
01202120102012102120210201202120102120210,
01202120102101201020121012021012102120210,
01202120102101201021202101202120102120210,
01202120102120210121021201021012102120210,
01202120102120210201202120102012102120210,
01202120121012010201202120102012102120210,
01202120121012021012102010212012102120210,
01202120121012021012102120102012102120210,
01202120121012021020102120102012102120210} (44)

Proof. The proof that these are indeed special Brinkhuis triples consist
of checking the conditions of definition 2 explicitly. This has to be done
by computer, as the number of symmetry-inequivalent composed words of
length 3n that have to be checked for square-freeness is k(2k2 + kp), which
gives 549 445 words of length 123 for G41. A Mathematica [16] program
brinkhuistriples.m that performs these checks accompanies this paper.
This check is independent of the construction algorithm used to find the
optimal triples. In order to show that these triples are indeed optimal, one
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has to go through the algorithm outlined above. This has been done, giving
the results of tables 2 and 3.

The triple for n = 18 is equivalent to the triple (22) of [7]. The corre-
sponding lower bounds on s are

n = 13, k = 1 : s ≥ 11/12 = 1

n = 18, k = 2 : s ≥ 21/17 > 1.041616

n = 23, k = 3 : s ≥ 31/22 > 1.051204

n = 25, k = 5 : s ≥ 51/24 > 1.069359

n = 29, k = 6 : s ≥ 61/28 > 1.066083

n = 30, k = 8 : s ≥ 81/29 > 1.074338

n = 33, k = 12 : s ≥121/32 > 1.080747

n = 35, k = 18 : s ≥181/34 > 1.088728

n = 36, k = 32 : s ≥321/35 > 1.104089

n = 40, k = 48 : s ≥481/39 > 1.104355

n = 41, k = 65 : s ≥651/40 > 1.109999 (45)

Apparently, the largest value of n considered here yields the best lower
bound. This suggests that the bound can be systematically improved by
considering special Brinkhuis triples for longer words.

What about the restriction to spectial Brinkhuis triples? In general, it
is not clear what the answer is, but for the Brinkhuis triple pair of [7] it
can easily be checked by computer that one cannot find a shorter triple
by lifting these restriction. In fact, this follows from the following stronger
result which is easier to check.

Lemma 4. An n-Brinkhuis (2, 1, 1)-triple requires n > 17.

Proof. This can be checked by computer. The number of square-free words
of length n = 17 is 1044. However, we do not need to check all 10444

possibilities. Without loss of generality, we may restrict one of the four
words to start with the letters 01, leaving only 1044/6 = 174 choices for this
word. Furthermore, the two words in B(0) may be interchanged, as well as
the other two words; so it is sufficient to consider one order of words in both
cases. No n-Brinkhuis (2, 1, 1)-triple was found for n ≤ 17.

5. Concluding remarks

By enumerating square-free ternary words up to length 110 and by con-
structing generalised Brinkhuis triples, we improved both upper and lower
bounds for the number of ternary square-free words. The resulting bounds
for the exponential growth rate s (9) are

1.109999 < 651/40 ≤ s ≤ 8 416 550 317 984
1

108 < 1.317278. (46)

The main difficulty in improving the lower bound further is caused by the
combinatorial step in the algorithm to find optimal special Brinkhuis triples.
The data in tables 2 and 3 suggest that generators from the set A1(n)
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(25) are more likely to provide optimal n-Brinkhuis triples for large n than
generators from the set A2(n) (26). It would be interesting to know whether,
in principle, the lower bound obtained in this way eventually converges to
the actual value of s.
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[13] P. Séébold, Overlap-free sequences, in: Automata on Infinite Words, edited by M. Ni-
vat and D. Perrin, Lecture Notes in Computer Science 192, Springer, Berlin (1985),
207–215.

[14] R.O. Shelton, On the Structure and Extendability of Square-Free Words, in: Com-

binatorics on Words, edited by L. J. Cummings, Academic Press, Toronto (1983),
101–118.

[15] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic
Press, San Diego, 1995; see also the On-Line Encyclopedia of Integer Sequences,
URL: http://www.research.att.com/~njas/sequences/.

http://suriya.library.cornell.edu/abs/math-ph/9809010
http://suriya.library.cornell.edu/abs/math/9809135
http://www.mathsoft.com/asolve/constant/words/words.html
http://www.research.att.com/~njas/sequences/


BOUNDS ON TERNARY SQUARE-FREE WORDS 17

[16] S. Wolfram, Mathematica book (4th edition), Cambridge University Press, Cambridge
(1999).

[17] D. Zeilberger,
URL: http://www.math.temple.edu/~zeilberg/mamarim/mamarimhtml/jan.html.

Applied Mathematics Department, Faculty of Mathematics and Computing,

The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K.

E-mail address: u.g.grimm@open.ac.uk

URL: http://mcs.open.ac.uk/ugg2

http://www.math.temple.edu/~zeilberg/mamarim/mamarimhtml/jan.html

