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Dedication: In memory of Rodica Simion (1955-2000)

This article is dedicated to the memory of Rodica Simion, one of the greatest enumerators
of the 20th century. Both derangements ([SS2]) and resticted permutations ([SS]) were very
dear to her heart, and we are sure that she would have appreciated the present surprising
connections between these at-first-sight unrelated concepts.

Abstract

Define Sk
n
(α) to be the set of permutations of {1, 2, . . . , n} with exactly k fixed points which

avoid the pattern α ∈ Sm. Let sk
n
(α) be the size of Sk

n
(α). We investigate S0

n
(α) for all α ∈ S3

as well as show that sk
n(132) = sk

n(213) = sk
n(321) and sk

n(231) = sk
n(312) for all 0 ≤ k ≤ n.

1 Introduction

Let π ∈ Sn be a permutation of {1, 2, . . . , n} written in one-line notation. Let α ∈ Sm. We
say that π contains the pattern α if there exist indices i1, i2, . . . , im such that πi1πi2 . . . πim is
equivalent to α, where we define equivalence as follows. Define πij = |{x : πix ≤ πij , 1 ≤ x ≤
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m}|. If α = πi1πi2 . . . πim then we say that α and πi1πi2 . . . πim are equivalent. For example,
if τ = 124635 then τ contains the pattern 132 by noting that τ2τ4τ5 = 263 is equivalent to
132. We say that π is α-avoiding if π does not contain the pattern α. In our above example,
τ is 321-avoiding.

Define Sn(α), α ∈ Sm, to the the set of α-avoiding permutations in Sn. Let sn(α) be the size of
Sn(α). Knuth ([Knu]) showed that, regardless of the pattern α ∈ S3, sn(α) = Cn = 1

n+1

(
2n
n

)
,

the nth Catalan number. Bijective results are given in [Kra], [Ric], [SS], and [Wes].

We refine the investigation of Sn(α) in the following fashion. Let α ∈ Sm. Define Sk
n(α) to

be the set of α-avoiding permutations of {1, 2, . . . , n}, with exactly k fixed points. Let sk
n(α)

be the size of Sk
n(α). We may write Dn(α) and dn(α) for S0

n(α) and s0
n(α), respectively, since

we are dealing with derangements.

2 Similarity Relations, Catalan Sequences, and Fine’s Sequence

We begin our investigation with similarity relations. A similarity relation, R, is a binary
relation on an ordered set which is reflexive, symmetric, but not necessarily transitive, with
the condition that if iRk and i < j < k then iRj and jRk. Furthermore, we have the
following definition about the structure of a similarity relation.

Definition 2.1 A similarity relation, R, is said to have k isolated points if k is the number
of i ∈ {1, 2, . . . , n} such that there does not exists j 6= i with iRj. If k = 0, we say that the
similarity relation is nonsingular. We denote by SRn(k) the set of similarity relations on
{1, 2, . . . , n} with k isolated points.

There are two common structures which can be used to view similarity relations: graphs
and sequences. We will be using the sequence interpretation of a similarity relation as given
by Strehl in [Str]: Let R be a similarity relation on {1, 2, . . . , n}. Then R corresponds to an
integer sequence r1r2 . . . rn defined for any 1 ≤ i ≤ n by ri = i − j, where j is the smallest
element of {1, 2, . . . , n} such that iRj. Throughout this paper we assume that similarity
relations are defined on {1, 2, . . . , n}. To this end, we make the following definition.

Definition 2.2 The set of similarity relations (on {1, 2, . . . , n}) is given by

SRn = {r1r2 · · · rn : ri ∈ Z, r1 = 0 and 0 ≤ ri+1 ≤ ri + 1 for 1 ≤ i ≤ n− 1}.

For example SR3 = {000, 001, 010, 011, 012}.

It is known ([Rog], [Str]) that for n ≥ 1, |SRn(0)| = Fn, where Fn is the nth Fine number.
The first few values of Fine’s sequence are 0, 1, 2, 6, 18, 57, 186, 622, 2120, . . . , a sequence first
discovered in [Fin].
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Looking at SRn(0) a little more closely, we see that s ∈ SRn(0) if and only if s has no
occurrence of 00 and does not end with 0. Hence, we say that a nonsingular similarity
relation has no double zero, where we consider an ending 0 to be a double zero.

We now state some of the results concerning Fine’s sequence as given in [Rog], [Sha], and
[Str].

Theorem 2.1 Let Cn = 1
n+1

(
2n
n

)
and Fn be the nth Catalan number and Fine number,

respectively. We have the following for n ≥ 2.

1. |SRn(0)| = Fn

2. Cn = 2Fn + Fn−1

3. Fn =
∑

1≤k≤n/2

(
2n−2k−1

n−1

)
−
(
2n−2k−1

n

)

4. Fn = 1
2

∑n−2
i=0

(−1
2

)i
Cn−i

As we can see, the Catalan and Fine numbers are related. This becomes more evident in
light of the following definition.

Definition 2.3 The set of Catalan sequences of length n is given by

Cat(n) = {c1c2 · · · cn : ci ∈ Z, 1 ≤ c1 ≤ c2 ≤ · · · ≤ cn, and ci ≤ i for 1 ≤ i ≤ n}

For example: Cat(3) = {111, 112, 113, 122, 123}. It is well-known and easy to see that the
cardinality of Cat(n) is the nth Catalan number. It is also well-known and easy to see that
the generating function for the Catalan numbers, ψ(t) =

∑∞
n=0Cnt

n, satisfies the quadratic

equation ψ(t) = 1 + tψ2(t), and hence that ψ(t) = 1−
√

1−4t
2t

.

3 321-Avoiding Derangements and Dyck Paths

The aim of this section is to show that the 321-avoiding derangements are enumerated by
Fine’s sequence. We will investigate two bijections, the main one due to Krattenthaler [Kra].
First, we must introduce a few definitions.

Definition 3.1 We say that a permutation π ∈ Sn is a backward derangement if πn+1−i 6= i

for all 1 ≤ i ≤ n.

Consequently, a 123-avoiding backward derangement when read from right to left is a 321-
avoiding derangement.
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We will be using a bijection due to Krattenthaler [Kra] from Sn(123) to the set of Dyck
paths of length 2n, so for completeness we define a Dyck path.

Definition 3.2 A Dyck path is a path in R
2 from (0, 0) to (2n, 0) consisting of a sequence

of steps of length
√

2 and slope ±1. We denote these two types of steps by (1, 1) and (1,−1),
called up-steps and down-steps, respectively. We say that the length of such a Dyck path is
2n (its horizontal length) and denote the set of Dyck paths of length 2n by Dyck(2n).

We also have the following definition about certain Dyck paths.

Definition 3.3 We say that a Dyck path contains a hill if it has a peak at height 1. We say
that a Dyck path is hill-free is it contains no hill. We denote the set of hill-free Dyck paths
of length 2n by Dyckhf(2n).

We now describe a natural bijection from SRn to Dyck paths of length 2n. Let s =
s1s2 . . . sn ∈ SRn. This bijection is very similar to one given by Krattenthaler [Kra] from
Sn(132) to Dyck(2n).

Each si, 1 ≤ i ≤ n, corresponds to the starting height of an up-step. Proceeding from si

to si+1, if si+1 > si then we continue with up-steps. If si+1 ≤ si we append si − si+1 + 1
down-steps followed by a single up-step. This assures us that si+1 corresponds to a starting
height of si+1 for an up-step. After sn we use as many down-steps as necessary to end at
(2n, 0). The inverse bijection is obvious. An example is in order.

Let s = 0120121 ∈ SR7(0). This nonsingular similarity relation corresponds to the following
Dyck path, with the entries of s marked on the Dyck path.
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Dyck path corresponding to 0120121 ∈ SR7(0) and to 6573142 ∈ S7(123)

Using the above bijection and the fact that |Dyck(2n)| = Cn, we easily obtain |SRn| = Cn

(which was shown in [Rog] and [Str]). Furthermore, we get the following theorem (SRn(0) =
Fn was shown in [Rog] and [Str] while |Dyckhf(2n)| = Fn was shown in [Deu] ).
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Theorem 3.1 For n ≥ 1, |SRn(0)| = |Dyckhf(2n)| = Fn, where Fn is the nth Fine number

Proof. Clearly, a hill occurs in a Dyck path if and only if the corresponding similarity
relation contains a double zero. 2

We are now ready to use Krattenthaler’s bijection ([Kra]), described as follows. Let π =
π1π2 · · ·πn ∈ Sn(123). Determine the right-to-left maxima of π, i.e. m = πi is a right-to-left
maximum if m > πj for all j > i. For example, the right-to-left maxima of 6573142 are in
bold type.

Let π have right-to-left maxima m1 < m2 < · · · < ms, so that we may write

π = wsmsws−1ms−1 · · ·w1m1.

So, for example, in 6573142 we have w3 = 65, m3 = 7, w2 = 31, m2 = 4, w1 = ∅, m1 = 2.

We now generate a Dyck path from (2n, 0) to (0, 0) (generate it backwards) using backward
up-steps ((−1, 1)) and backward down-steps ((−1,−1)).

Read π from right to left. For each mi do mi −mi−1 up-steps (where we define m0 = 0).
For each wi do |wi| + 1 down-steps. So, for example, π = 6573142 generates the Dyck path
shown above.

We now state the main theorem of this section.

Theorem 3.2 Let π ∈ Sn(123) and let Dπ be the associated Dyck path provided by Kratten-
thaler’s bijection. Then π is a backward derangement if and only if Dπ is hill-free.

Proof. We first demonstrate the “only-if” direction. Assume, for a contradiction, that Dπ

has a hill. Notice that the hill cannot be at either end of the Dyck path for otherwise π1 = n

or πn = 1, both contradicting the fact that π is a backward derangement. Hence, any hill
must be an “interior” hill. Let π = π(1)π(2) and Dπ = Dπ(1)Dπ(2) where Dπ(1) contains a hill
on the right end and Dπ(2) contains no hill. Let Dπ(2) consist of 2y steps. By construction,
π(2) contains the elements 1, 2, . . . , y. Thus, in order for Dπ(1) to end with a hill, we must
have πn−y(1) = y + 1, i.e. πn+1−(y+1) = y + 1, contradicting the fact that π is a backward
derangement.

We now give the “if” direction; we prove the contrapositive. Assume, for a contradiction, that
Dπ has no hill. Let x be the smallest integer such that πn+1−x = x. Write π = π(1)xπ(2).
From the above argument, we see that π(2) cannot consist of the elements 1, 2, . . . , x − 1
only, for otherwise we would have a hill. Hence, there exists y ∈ π(2) such that y > x.
Consequently, there exists w ∈ π(1) such that w < x. But then wxy is a 123-pattern, a
contradiction. 2

Coupling this theorem with Theorem 3.1, we immediately obtain the following corollary.
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Corollary 3.3 For n ≥ 1, dn(321) = Fn, where Fn is the nth Fine number.

We can now investigate the relationship between Sk
n(321) and similarity relations. To this

end, we have the following theorem.

Theorem 3.4 For n ≥ 0, sk
n(321) = |SRn(k)|.

Proof. We prove this by induction on k. The case k = 0 is given by Corollary 3.3. Hence,
we assume that there exists a bijection γk

n : Sk
n(321) → SRn(k).

Let π ∈ Sk+1
n (321) and let f be the smallest fixed point. Write π = π(1)fπ(2) so that

π(2) contains k fixed points. Note that since π must be 321-avoiding we must have π(1) ∈
S0

f−1(321) on the elements 1, 2, . . . , f − 1 and π(2) ∈ Sk
n−k(321) on the elements f + 1, f +

2, . . . , n. Let γ0
f−1(π(1)) = t ∈ SRf (0) and γk

n−f(π(2)) = r ∈ SRn−f(k). Then define

γk+1
n (π) = t0r ∈ SRn(k + 1). To show this is a bijection, it is enough to give the inverse.

This is obtained by noting that the position of the first 0 in the first occurrence of a double
zero in an element of SRn(k + 1) corresponds to the minimal fixed point. 2

4 Weighted-Counting of 321-Avoiding Permutations

In order to achieve one of our goals we must enumerate Sk
n(321) via another approach. Before

delving into our approach, we make the following definition.

Definition 4.1 Let S be a finite set with each element s ∈ S having a unique characteristic
from C = {c1, c2, . . . , ck}, written as char(s). The weight-enumerator of S with respect to
weight(s) = xchar(s) is given by

k∑

i=1

six
ci,

where si = |{s ∈ S : char(s) = ci}|.

Applying this to our situation, let An = Sn(321) and let An(x) be its weight-enumerator
with respect to weight(π) = xf(π), where f(π) is the number of fixed points of π ∈ Sn(321).

Recall that Cat(n) is the set of Catalan sequences, defined in Section 2. We will define a
bijection T : A(n) → Cat(n) as follows. If n = 1, then T (1) = 1. For n ≥ 2 we define
c = T (π) recursively as follows.

Given a 321-avoiding permutation π of length n, let i be the place where n is (i.e. πi = n).
If πn = n − 1 then let π′ be π1, . . . , πi−1, n − 1, πi+1, . . . , πn−2, otherwise let π′ be π with n
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removed, i.e. π′ = π1, . . . , πi−1, πi+1, . . . , πn. Then c = T (π) is defined to be c′ = T (π′) with
i appended at the end.

The inverse bijection S : Cat(n) → A(n) is defined as follows. If n = 1 then S(1) = 1. If
n ≥ 2 and c = c1 · · · cn is a Catalan sequence then π = S(c) is defined recursively as follows.
Let cn = i, cn−1 = j, and let c′ = c1 · · · cn−2cn−1 be c with its last component removed. Let
π′ = S(c′). If i ≤ j then let π be the permutation obtained from π′ by changing the n − 1
into n and appending n−1 to the end, while if j < i then let π be the permutation obtained
from π′ by inserting n at the ith place i.e. π = π′

1, . . . , π
′
i−1, n, π

′
i, . . . , π

′
n−1.

It is easy to prove, by induction on n, that TS and ST are identity mappings, and hence
that T is indeed a bijection. It is also easy to see that if c1 · · · cn = T (π) then for 1 ≤ i < n,
πi = i if and only if ci = i and ci+1 = i+ 1, and πn = n if and only if cn = n. Hence An(x)
is equal to the weight-enumerator of Catalan sequences with respect to weight(c) = xg(c),
where g(c) is the number of i’s such that ci = i and ci+1 = i+ 1 (i < n) plus 1 if cn = n.

Given a Catalan sequence c, let

D(c) = {i : 1 ≤ i < n, ci = i, ci+1 = i+ 1 or i = n and cn = n}.

For example, D(11345558) = {3, 4, 8}, D(11111111) = ∅, and D(112346) = {6}. Note the
weight of a Catalan sequence c is x|D(c)|.

In order to weight-enumerate the set of Catalan sequences it would be easier to use the
inclusion-exclusion philosophy and consider the larger sets of marked Catalan sequences,
which are the sets of pairs (c, S) with S ⊂ D(c) and weight defined by weight(c, S) =
(x − 1)|S|. For example weight(11345558, {3, 8}) = (x − 1)2 and weight(11345558, {}) =
(x − 1)0 = 1. Since x|D(c)| = ((x − 1) + 1)|D(c)|=

∑
S⊂D(c)(x − 1)|S|, it follows that An(x) is

the weight-enumerator of marked Catalan sequences.

We now derive a recurrence. Given a marked Catalan sequence (c1 · · · cn, S), if 1 ∈ S (i.e. 1
is marked) then we can get a smaller marked word by deleting c1 = 1 and diminishing all
indices and elements of S by 1. The weight-enumerator of this case is (x− 1)An−1(x).

If 1 6∈ S (i.e. 1 is not marked), let i be the smallest i > 1 such that ci = i, if it exists. Then
c2 · · · ci−1 is a run-of-the-mill Catalan sequence of length i− 2, while

(ci − (i− 1) ci+1 − (i− 1) · · · cn − (i− 1), S − (i− 1))

(by S−(i−1) we mean the set S with all of its elements reduced by i−1) is a marked Catalan
sequence of length n− i+ 1. The weight-enumerator of this, for a given i, is Ci−2An−i+1(x)
(2 ≤ i ≤ n). Finally, if ci < i for all 2 ≤ i ≤ n then c2 · · · cn is a typical Catalan sequence of
length n− 1. Hence we get that

An(x) = (x− 1)An−1(x) +

(
n∑

i=2

Ci−2An−i+1(x)

)

+ Cn−1,

7



which can be rewritten as

An(x) = (x− 1)An−1(x) +

n∑

i=1

Ci−1An−i(x). (4.1)

Introducing the generating function

φ(x, t) =

∞∑

n=0

An(x)tn,

and recalling the generating function for the Catalan numbers ψ(t) = 1−
√

1−4t
2t

, (4.1) trans-
lates to

φ(x, t) = 1 + (x− 1)tφ(x, t) + tφ(x, t)ψ(t).

Solving for φ(x, t) yields the explicit expression

φ(x, t) =
2

1 − 2(x− 1)t+
√

1 − 4t

which, in turn, implies (by multiplying the top and the bottom by 1− 2(x− 1)t−
√

1 − 4t)
that

φ(x, t) =
1 − x+ ψ(t)

2 − x+ t(x− 1)2
.

To sum up we have the following theorem.

Theorem 4.1 Let an(x) be the coefficient of tn in the Maclaurin expansion with respect to
t of

1 − x+ ψ(t)

2 − x+ t(x− 1)2
.

Then An(x) = an(x).

We now investigate an interesting property of an(x) that will be used in the next section.
Expanding an(x) in powers of (x− 1) and using (4.1), we may write

an(x) = (x− 1)n +
n−1∑

i=0

n−i∑

j=1

Cj−1an−i−j(x) · (x− 1)i. (4.2)

Using (4.2) we prove the following crucial lemma.
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Lemma 4.2 Let an(x) =
∑n

k=0 b(n, k)(x − 1)k and define b(x, y) = 0 if y > x, x < 0, or
y < 0. Then, for n ≥ 1 and k 6= −1,

b(n, k) = b(n, k + 1) + b(n− 1, k − 1) (4.3)

where b(0, 0) = 1.

Proof. Note that to render (4.3) valid when n = k = 0, we would have to add a correction
term of 1 to the right side, and to render (4.3) valid when n ≥ 0 and k = −1 we would have
to add b(n, 0) = Cn to the left side.

We now prove (4.3) for n ≥ 1 and k 6= −1 by induction on n. Since a0(x) = 1 and a1(x) = x,
the case n = 1 is true. We now assume that b(n− i, k) = b(n− i, k+ 1) + b(n− i− 1, k− 1)
for all 1 ≤ i ≤ n− 1 and k 6= −1.

To establish (4.3) for n and all k 6= −1 we first note that this is clear if k < −1 or k > n. It
is also clear for k = n since b(n, n) = b(n−1, n−1) = 1 by (4.2). To deal with 0 ≤ k ≤ n−1
we use the fact that (4.2) yields

b(n, k) =
n−1∑

i=0

n−i∑

j=1

Cj−1b(n− i− j, k − i) (4.4)

for 0 ≤ k ≤ n− 1.

In particular, for k = n−1 this says that b(n, n−1) = n, so b(n, n−1) = b(n, n)+b(n−1, n−2)
and (4.3) holds for k = n− 1.

For 0 ≤ k ≤ n − 2 we take (4.4) and apply (4.3) to each term on the right side, adding
a correction term of Cn−k−1 when i = k and j = n − k (note that this case occurs since
k 6= −1), and correction term −∑n−k−1

i=1 Ci−1Cn−k−i−1 when i = k + 1 (note that this case
occurs since k 6= n− 1). Since the correction terms cancel, we have

b(n, k) =
n−1∑

i=0

n−i∑

j=1

Cj−1b(n− i− j, k − i+ 1) +
n−1∑

i=0

n−i∑

j=1

Cj−1b(n− i− j − 1, k − i− 1).

Since k + 1 ≤ n − 1, the first term on the right is b(n, k + 1) by (4.4). By (4.4) again, the
second term on the right is b(n − 1, k − 1) except for the terms in the double sum where
i = n− 1 or j = n− i. But these terms are all 0 because they involve values of b(x, y) with
x < 0. This concludes the proof. 2

In [Str], Strehl defines a(n, k), for n ≥ 1 and 1 ≤ k ≤ n, as the number of similarity relations
on {1, 2, . . . , n} that have k zeros. He proves that a(n, k) = a(n, k + 1) + a(n− 1, k − 1) for
n ≥ 2, with a(n, 1) = a(n, 2) = Cn−1. It follows from Lemma 4.2 that b(n, k) = a(n+1, k−1).
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Using Lemma 4.2 we see that the beginning of the b(n, k) table is as follows, where n =
0, 1, . . . corresponds to row n and k = 0, 1, 2, . . . is the kth term in from the left. This
generates the so-called Catalan Triangle ([Slo]).

1
1 1

2 2 1
5 5 3 1

14 14 9 4 1
42 42 28 14 5 1

132 132 90 48 20 6 1

Beginning of the Catalan triangle; values of b(n,k)

We also use Lemma 4.2 to prove the next lemma, which will be a crucial step in one of our
main proofs.

Lemma 4.3 Let an(x) =
∑n

k=0 b(n, k)(x− 1)k. Then, for all n, k ≥ 1,

b(n, k) =
n∑

i=1

Ci−1b(n− i, k − 1)

where b(n, 0) = Cn, and b(x, y) = 0 if y > x.

Proof. We use double induction; forward on n and backward on k. We start with induction
on n. From the table above, this clearly holds for n = 2 and 1 ≤ k ≤ 2. Hence, we assume
that it holds for n−1 and 1 ≤ k ≤ n−1 to show that it holds for n and 1 ≤ k ≤ n. We now
perform backward induction on k. The base case b(n, n) holds since b(n, n) = b(n−1, n−1) =
1. Hence, we assume that the case b(n, k + 1) holds to show that the case b(n, k) holds.

We must do the case k = 1 seperately. This holds by the identity Cn =
∑n

i=1Ci−1Cn−i and
the fact that b(n, 1) = b(n, 0) = Cn.

Now, from Lemma 4.2, we have b(n, k) = b(n, k+1)+ b(n−1, k−1) rendering the induction
straightforward for k ≥ 2. 2

5 Weighted-Counting of 132-Avoiding Permutations

Recall that An = Sn(321) and An(x) is its weight-enumerator with respect to weight(π) =
xf(π), where f(π) is the number of fixed points of π ∈ Sn(321). Let Bn = Sn(132) and let
Bn(x) be its weight-enumerator with respect to the same weight. Our goal is to show that
for n ≥ 0, An(x) = Bn(x).
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We have that Bn is the set of 132-avoiding bijections on {1, 2, . . . , n}. However, in order to
weight-enumerate them, we must consider, more generally, the set En,r of bijections

π : {1, 2, . . . , n} → {r + 1, r + 2, . . . , r + n}

that avoid 132. Let En,r(x) be the weight-enumerator of these bijections, with respect to the
same weight. It is easy to see that En,−r(x) = En,r(x), and that En,r(x) = Cn if r ≥ n, since
in this situation no fixed point can occur. Of course Bn(x) = En,0(x).

We will now establish a recurrence for the En,r(x). Consider π ∈ En,r. Let i be the location
of n+r, i.e. the index i for which πi = n+r. Now the set of entries before the ith place must
consist of the i − 1 largest elements of the range, and the entries after the ith place must
consist of the n−i smallest elements, since otherwise a delinquent 132 will be formed. Hence,
every member π ∈ En,r gives rise to a pair (π′, π′′) where π′ ∈ Ei−1,n−i+r and π′′ ∈ En−i,r−i .
Furthermore, the weight of π is the product of the weights of π′ and π′′, except when r = 0
and i = n in which case we removed a fixed point, and we have an extra factor of x. Let IS
be the characteristic function, i.e. IS = 1 if S is true, and 0 otherwise. The above argument
gives the following non-linear recurrence.

En,r(x) =

n∑

i=1

Ei−1,n−i+r(x)En−i,r−i(x) + (x− 1)En−1,0(x)I{r=0}.

Changing En−i,r−i(x) to En−i,i−r(x) when i > r and using the fact that Ei−1,n−i+r(x) = Ci−1

when n − i + r ≥ i − 1, i.e. i ≤ ⌊n+r+1
2

⌋, and En−i,i−r(x) = Cn−i when i − r ≥ n − i, i.e.
i ≥ ⌈n+r

2
⌉, we get a simplified recurrence, which is linear in En,r:

En,r(x) =

r∑

i=1

Ci−1En−i,r−i(x) +

⌊n+r+1

2
⌋∑

i=r+1

Ci−1En−i,i−r(x)

+

n∑

i=⌊n+r+1

2
⌋+1

Ei−1,n−i+r(x)Cn−i + (x− 1)En−1,0(x)I{r=0}.

We are now able to prove the following theorem.

Theorem 5.1 Let an(x) be the weight-enumerator of 321-avoiding permutations with respect
to weight(π) = xf(π), where f(π) is the number of fixed points in π ∈ Sn(321). Let En,r(x) be
the weight-enumerator of 132-avoiding bijections from {1, 2, . . . , n} to {r+1, r+2, . . . , r+n}
with respect to the same weight.
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Then, for r ≥ 0,

En,r(x) = an(x) + (1 − x)

r∑

i=1

Ci−1an−i(x), (5.1)

where we define aj(x) = 0 for j < 0.

Proof. Denote by en,r(x) the right side of (5.1). We must show for all n (keeping r as a
parameter) that

en,r(x) =
r∑

i=1

Ci−1en−i,r−i(x) +

⌊n+r+1

2
⌋∑

i=r+1

Ci−1en−i,i−r(x)

+

n∑

i=⌊n+r+1

2
⌋+1

ei−1,n−i+r(x)Cn−i + (x− 1)en−1,0(x)I{r=0}.

In other words, we have to prove

an(x) + (1 − x)

r∑

i=1

Ci−1an−i(x) =

r∑

i=1

Ci−1

(
an−i(x) + (1 − x)

r−i∑

j=1

Cj−1an−i−j(x)

)

+

⌊n+r+1

2
⌋∑

i=r+1

Ci−1

(
an−i(x) + (1 − x)

i−r∑

j=1

Cj−1an−i−j(x)

)

+

n∑

i=⌊n+r+1

2
⌋+1

Cn−i

(
ai−1(x) + (1 − x)

n−i+r∑

j=1

Cj−1ai−j−1(x)

)

+ (x− 1)an−1(x)I{r=0},

(5.2)

which has been checked by the Maple package AARON for n ≤ 50. AARON was written by the
third author (with additions by the first author) and is available at each of these author’s
website (given on the first page).

Let the left side of (5.2) be ln(x) and the right side be rn(x). Write

ln(x) =

n∑

k=0

s(n, k)(x− 1)k and rn(x) =

n∑

k=0

t(n, k)(x− 1)k.

If we can show that for any n, s(n, k) = t(n, k) for all 0 ≤ k ≤ n, then we will be done.

We must take care of the case k = 0 seperately. This case holds since b(n, 0) = Cn and
Cn =

∑n
i=1Ci−1Cn−i.

12



We now use double induction on n ≥ 2 and k ≥ 0; forward induction on n and backward
induction on k.

We start by inducting on n. Since Maple has given us the base case, i.e. s(2, k) = t(2, k) for
0 ≤ k ≤ 2, we may assume that s(n − 1, k) = t(n − 1, k) for all 0 ≤ k ≤ n − 1. We must
show that s(n, k) = t(n, k) for all 0 ≤ k ≤ n.

We proceed via backward induction on k. For our base case we must show that s(n, n) =
t(n, n). Gathering the (x− 1)n terms in (5.2) we have (x − 1)n − (x− 1)nI{r 6=0} on the left
side of (5.2), and (x− 1)nI{r=0} on the right side of (5.2). Since (x− 1)n = (x− 1)nI{r 6=0} +
(x− 1)nI{r=0}, we have s(n, n) = t(n, n)

We now assume that s(n, k+1) = t(n, k+1) to show that s(n, k) = t(n, k) for k ≥ 1. Letting
an(x) =

∑n
k=0 b(n, k)(x− 1)k, with b(0, 0) = 1 and b(x, y) = 0 if y > x, x < 0, or y < 0, we

must show that

b(n, k) −
r∑

i=1

Ci−1b(n− i, k − 1) =
r∑

i=1

Ci−1

(
b(n− i, k) −

r−i∑

j=1

Cj−1b(n− i− j, k − 1)

)

+

⌊n+r+1

2
⌋∑

i=r+1

Ci−1

(

b(n− i, k) −
i−r∑

j=1

Cj−1b(n− i− j, k − 1)

)

+
n∑

i=⌊n+r+1

2
⌋+1

Cn−i

(
b(i− 1, k) −

n−i+r∑

j=1

Cj−1b(i− j − 1, k − 1)

)

+ b(n− 1, k − 1)I{r=0}.

(5.3)

The cases r ≥ n are straightforward and are left to the reader. Below, we assume that r < n.
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Using Lemma 4.2, and the inductive hypothesis for b(n, k + 1) we must show that

b(n− 1, k − 1) −
r∑

i=1

Ci−1b(n− i− 1, k − 2) =

r∑

i=1

Ci−1b(n− i− 1, k − 1)

−
r∑

i=1

r−i∑

j=1

Ci−1Cj−1b(n− i− j − 1, k − 2)

+

⌊n+r+1

2
⌋∑

i=r+1

Ci−1b(n− i− 1, k − 1)

−
⌊n+r+1

2
⌋∑

i=r+1

i−r∑

j=1

Ci−1Cj−1b(n− i− j − 1, k − 2)

+
n∑

i=⌊n+r+1

2
⌋+1

Cn−ib(i− 2, k − 1)

−
n∑

i=⌊n+r+1

2
⌋+1

n−i+r∑

j=1

Cn−iCj−1b(i− j − 2, k − 2)

− C⌊n+r+1

2
⌋−1Cn−⌊n+r+1

2
⌋−1I{k=1}

+ b(n− 2, k − 2)I{r=0},

where the second to last term occurs for i = ⌊n+r+1
2

⌋ and j = n − i in the second double
sum of (5.3) (as this gives b(0, 0) which is equal to 1 and not 0 as would be given by the
recurrence in Lemma 4.2).

We must consider two cases: n+ r even and n+ r odd. Assume that n+ r is even; the case
where n+ r is odd is similiar. For n+ r even we have ⌊n+r+1

2
⌋ = ⌊n+r

2
⌋. Using the inductive

hypothesis for b(n− 1, k − 1) we are reduced to showing that

Cn−⌊n+r
2

⌋−1b(⌊
n + r

2
⌋ − 1, k − 1) = C⌊n+r

2
⌋−1Cn−⌊n+r

2
⌋−1

if k = 1, which holds since b(n, 0) = Cn, or

Cn−⌊n+r
2

⌋−1b(⌊
n + r

2
⌋ − 1, k − 1) = Cn−⌊n+r

2
⌋−1

⌊n+r
2

⌋−1∑

i=1

Ci−1b(⌊
n + r

2
⌋ − i− 1, k − 2),

if k ≥ 2, which holds by Lemma 4.3, thereby completing the proof. 2
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6 D-Wilf Classes and h-Wilf Classes

No discussion of restricted permutations is complete without the discussion of Wilf classes,
defined below, where Sn(T ), T ⊆ Sm, is the set of π ∈ Sn which avoid all patterns in T and
where sn(T ) = |Sn(T )|.

Definition 6.1 Let S1, S2 ⊆ Sm. If sn(S1) = sn(S2) for all n ≥ m then we say that S1 and
S2 are in the same Wilf class, or are Wilf equivalent.

Since we have refined the investigation of restricted permutations, we refine the notion of
Wilf class with the following definition, where Sk

n(T ), T ⊆ Sm, is the set of π ∈ Sn with
exactly k fixed points which avoid all patterns in T and where sk

n(T ) = |Sk
n(T )|. We use

Dn(T ) and dn(T ) to represent S0
n(T ) and s0

n(T ), respectively.

Definition 6.2 Let S1, S2 ⊆ Sm. If dn(S1) = dn(S2) for all n ≥ m we say that S1 and S2

are in the same D-Wilf class, or are D-Wilf equivalent. If sh
n(S1) = sh

n(S2) for h > 0, for all
n ≥ m, h we say that S1 and S2 are in the same h-Wilf class, or are h-Wilf equivalent.

We will have need of the following lemma in the proofs below.

Lemma 6.1 Let γ ∈ Sn be given by γi = n+1−i for 1 ≤ i ≤ n. For π ∈ Sn, let π⋆ = γπγ−1.
Then, for all π, π and π⋆ have the same number of fixed points. Furthermore, the number
of occurrences of the pattern 213 (respectively 312) in π equals the number of occurrences of
the pattern 132 (respectively 231) in π⋆.

Proof. Since π⋆ is obtained from π by conjugation, π and π⋆ have the same number of
fixed points. If i < j < k are such that πiπjπk is an occurrence of 213 (resp. 312), then
γk < γj < γi are such that π⋆

γk
π⋆

γj
π⋆

γi
is an occurrence of 132 (resp. 231). 2

We now state some results about refined Wilf classes.

Theorem 6.2 There are exactly three D-Wilf classes of patterns of length 3.

Proof. Applying Theorem 5.1 with r = 0 we see that, in particular, dn(321) = dn(132).
Lemma 6.1 gives us dn(132) = dn(213) and dn(231) = dn(312).

Lastly, we note that d4(123) = 7, d4(132) = 6, and d4(231) = 4, thereby giving three D-Wilf
classes. 2

Theorem 6.3 For any h > 0, there are exactly three h-Wilf classes of patterns of length 3.
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Proof. We already have sh
n(132) = sh

n(213) = sh
n(321) and sh

n(231) = sh
n(312) for all 1 ≤ h ≤

n. We now show that for h > 0, {sh
n(132)}n≥3, {sh

n(231)}n≥3, and {sh
n(123)}n≥3 are different

sequences, thereby showing that there are three h-Wilf classes for h > 0.

First, since s1
5(123) = 20, s1

5(231) = 16, s1
5(132) = 13, s2

5(123) = 2, s2
5(231) = 8, and

s2
5(132) = 6 we have exactly three h-Wilf classes for h = 1, 2. Next, note that for h ≥ 3,
sh

n(123) = 0 since with three fixed points we have a 123 pattern. We conclude by showing
that sh

h+2(132) = h + 1 and sh
h+2(312) ≥ 2h + 1, thereby giving exactly three h-Wilf classes

for all h ≥ 3.

Let π ∈ Sh
h+2(132). To show that sh

h+2(132) = h+ 1, note that we can only have two entries
of π which are not fixed points. Furthermore, 1 cannot be a fixed point, for otherwise all
other entries must be fixed in order to avoid the 132 pattern. Hence, we have the freedom
to pick exactly one of 2, 3 . . . , h+ 2 to be a non-fixed point. This gives h + 1 choices.

Next, we show that sh
h+2(312) ≥ sh−1

h+1(312)+2, which gives sh
h+2(312) ≥ 2h+1 since s1

3(312) =

3. Consider the following procedure. Let π ∈ Sh−1
h+1(312). Let π̂i = πi + 1 for 1 ≤ i ≤ h+ 1.

Construct X = {1π̂1π̂2 · · · π̂h+1}∪{π1π2 · · ·πh+1(h+2) : π1 6= 1}. It is clear that these sets are
disjoint and thatX ⊆ Sh

h+2(312). All that remains to be shown is that | {π1π2 · · ·πh+1(h+2) :
π1 6= 1} |= 2. To see this, note that S1

3(312) = {132, 321, 213} contains two elements with
π1 6= 1. By construction of the above procedure, these two elements beget two elements in
S2

4(312) such that π1 6= 1. This concludes the proof. 2

We may further show, using Lemma 6.1, another result concerning Wilf classes. First, we
remind the reader of the following definition from [Rob].

Definition 6.3 Let S ⊆ Sm and let T be a multiset of Sm. Define Sn(S;T ) to be the set
of π ∈ Sn which avoid all patterns in S and contain each element, including multiplicities,
in T exactly once. Let sn(S;T ) = |Sn(S;T )|. Let S1, S2 ⊂ Sm and let T1, T2 be multisets of
Sm. If sn(S1;T1) = sn(S2;T2) for all n ≥ m we say that (S1;T1) and (S2;T2) are in the same
almost-Wilf class, or are almost-Wilf equivalent. We drop the set notation for a singleton
set.

Next, we refine this definition.

Definition 6.4 Define Sk
n(S;T ) to be those permutations in Sn(S;T ) with exactly k fixed

points. Let sk
n(S;T ) = |Sk

n(S;T )|. When k = 0 we write Dn(S;T ), and dn(S;T ), respectively.
If dn(S1;T1) = dn(S2;T2) for all n ≥ m we say that (S1;T1) and (S2;T2) are in the same
almost-D-Wilf class, or are almost-D-Wilf equivalent. If sh

n(S1;T1) = sh
n(S2;T2) for h > 0

for all n ≥ m, h we say that (S1;T1) and (S2;T2) are in the same almost-h-Wilf class, or are
almost-h-Wilf equivalent.

Theorem 6.4 Consider Dn(∅, α), α ∈ S3. For these permutations there are exactly four
almost-D-Wilf classes.
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Proof. We first prove that dn(∅; 321) = 0 for all n ≥ 3. Let cba be a 321 pattern in π ∈ Sn.
Write π = WcXbY aZ. In order to avoid another 321 pattern we see that for w ∈ W and
x ∈ X we must have w, x < b. Furthurmore, for y ∈ Y and z ∈ Z we must have y, z > b.
Hence, b is a fixed point. Thus, the restriction of having exactly one 321 pattern implies a
fixed point must be present.

Next, using Lemma 6.1, we see that dn(∅; 132) = dn(∅; 213) and dn(∅; 231) = dn(∅; 312).
Lastly, since d5(∅; 123) = 14, d5(∅; 132) = 8, and d5(∅; 231) = 6, we have exactly four almost-
D-Wilf classes. 2

7 Enumeration and Other Results

We start this section by tabulating sk
n(α) for n ≤ 8 and 0 ≤ k ≤ 8 for all α ∈ S3 using the

fact that there are only three D-Wilf classes.

In the following tables let n = 0, 1, . . . correspond to row n and k = 0, 1, 2, . . . correspond
to the kth term in from the left.

1
0 1

1 0 1
2 2 0 1

6 4 3 0 1
18 13 6 4 0 1

57 40 21 8 5 0 1
186 130 66 30 10 6 0 1

622 432 220 96 40 12 7 0 1

Values of skn(132) = skn(321) = skn(213)

1
0 1

1 0 1
1 3 0 1

4 4 5 0 1
10 16 8 7 0 1

31 44 35 12 9 0 1
94 146 102 59 16 11 0 1

303 464 362 180 87 20 13 0 1

Values of skn(231) = skn(312)
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1
0 1

1 0 1
2 3 0 0

7 4 3 0 0
20 20 2 0 0 0

66 48 18 0 0 0 0
218 183 28 0 0 0 0 0

725 552 153 0 0 0 0 0 0

Values of skn(123)

From Corollary 3.3, Theorem 5.1, and Lemma 6.1 we have dn(132) = dn(321) = dn(213) = Fn

for n ≥ 1, where Fn is the nth Fine number.

From the above triangles it appears that dn(231) < Fn and dn(123) > Fn for n ≥ 3.
Unfortunately, we were unable to prove the latter assertion. However, we can prove the
former via a bijection similar to one found in [Kra].

Theorem 7.1 Let Fn be the nth Fine number. For all n ≥ 3, dn(231) < Fn.

Proof. We first consider the following bijection γ : Sn(132) → SRn. Let π ∈ Sn(132), π =
π1π2 · · ·πn. Let s = snsn−1 · · · s1 = γ(π) where si is the number of entries in πi+1πi+2 · · ·πn

which are larger than πi. For example, γ(456312) = 010012.

The fact that π is 132-avoiding guarantees that si−1 ≤ si + 1. Hence, s ∈ SRn. The inverse
bijection is obvious.

We now prove that if s 6∈ SRn(0) then γ−1(s) is not a backward derangement. By observing
that if π ∈ Sn(132) is a backward derangement then when π is read from right to left it
becomes a member of Dn(231), we can conclude that Dn(231) ≤ |SRn(0)| = Fn.

We must first take care of the case where γ(π) produces s1 = 0. In this case, it is obvious
that π1 = n and hence π is not a backward derangement. We now assume that the first
case of a double zero starts with si+1, i 6= 0, so that si+1 = si = 0. The bijection implies
that πi > πi+1 If there exists πk, k < i, with πk < πi+1 then πkπi+1πi is an occurrence of the
pattern 132, and hence is not allowed. Thus, all elements less than πi+1 are to the right of
πi+1. This implies that πn+1−πi+1

= πi+1.

We must now prove that the inequality is strict. We do this by giving π ∈ Sn(132) which
is not a backward derangement for which γ(π) is nonsingular. For n odd γ(123 · · ·n) =
012 · · ·n − 1 and for n even γ(234 · · · (n − 1)1n) = 01123 · · ·n − 2. Noting that both of
the similarity relations produced by γ are nonsingular and correspond to permutations of
Sn(132) which are not backward derangements completes the proof. 2
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We now turn our attention to the patterns 132, 321, and 213 (all of which are in the same D-
Wilf class). Using Theorem 5.1, we are able to derive some formulas (recursive and “closed”
form) for sk

n(α), α ∈ {132, 321, 213}. First, we rederive items 2 and 4 of Theorem 2.1.

Let r = n in Theorem 5.1. Since En,n = Cn we have, using (4.1),

Cn = 2an(x) − xan(x) + (1 − x)2an−1(x) (7.1)

Equating the constant terms gives us Cn = 2dn(α)+dn−1(α) for α ∈ {132, 321, 213}. Hence,
Cn = 2Fn +Fn−1 is rederived. From here the derivation of item 4 in Theorem 2.1 uses either
a straightforward induction or telescoping sum.

We can, of course, use (7.1) to derive recurrences for sk
n(α), α ∈ {132, 321, 213}, for k 6= 0.

To this end, we have the following.

Theorem 7.2 For 0 ≤ k ≤ n, let F k
n = sk

n(α), α ∈ {132, 321, 213}. Define F−1
n = 0. For

n ≥ 2, we have for 0 ≤ k ≤ n,

2F k
n + F k

n−1 = F k−1
n + 2F k−1

n−1 − F k−2
n−1 .

Proof. Equate the coefficients of xk in (7.1). 2

We can now use a telescoping sum to show the following.

Theorem 7.3 Let Cn and Fn be the nth Catalan and Fine number, respectively. Let α ∈
{132, 321, 213}. For n ≥ 1,

s1
n(α) =

1

4

n−1∑

i=0

(−1

2

)i

(Cn−i + 3Fn−i−1).

Proof. Routine. 2

Other formulas for sk
n(α), α ∈ {132, 321, 213}, k ≥ 2, similar to the one in Theorem 7.3

(which are based on Catalan and Fine numbers) can be derived using Theorem 7.2. However,
these formulas are rather cumbersome. Instead, we present some nicer formulas. First, we
have the following lemma, which introduces a generalization of the Catalan numbers.

Lemma 7.4 Let n ≥ 1. Write an(x) =
∑n

k=0 b(n, k)(x− 1)k. Then

b(n, k) =
k + 1

n + 1

(
2n− k

n

)
.

Proof. Using Lemma 4.2 it is routine to verify the stated formula. 2
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Since Lemma 7.4 gives us a natural generalization of the Catalan numbers, we define

C(k)
n =

k + 1

n+ 1

(
2n− k

n

)
. (7.2)

Using Lemma 7.4 it is easy to prove the following formulas.

Theorem 7.5 Let α ∈ {132, 321, 213}. For n ≥ 1, 0 ≤ k ≤ n, we have

sk
n(α) =

n−k∑

j=0

(−1)j

(
j + k

k

)
C(k+j)

n ,

i.e.

sk
n(α) =

n−k∑

j=0

(−1)j

(
j + k + 1

n + 1

)(
2n− k − j

n

)(
j + k

k

)
.

Proof. We have an(x) =
∑n

j=0C
(j)
n (x− 1)j. Expanding (x− 1)j we get

an(x) =

n∑

j=0

j∑

i=0

(−1)j−iC(j)
n

(
j

i

)
xi.

Equating the coefficients of xk, we get

sk
n(α) =

n∑

j=k

(−1)j−kC(j)
n

(
j

k

)
,

which, after a change of variable, gives the desired result. 2

We now harvest some other interesting results.

From Theorem 7.5 we have the following corollary which relates C
(k)
n and Cn.

Corollary 7.6 Let Cn be the nth Catalan number and let C
(k)
n be as defined in (7.2). Then,

for n ≥ 0,

Cn =
n∑

k=0

n−k∑

j=0

(−1)j

(
j + k

k

)
C(k+j)

n

Proof. Since
∑n

k=0 s
k
n(α) = Cn for any α ∈ S3, the result is immediate. 2

We can also use Theorem 7.5 to rederive a formula for the Fine numbers given in [Deu].
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Corollary 7.7 Let Fn be the nth Fine number. For n ≥ 1,

Fn =
n∑

j=0

(−1)jC(j)
n .

As a consequence of Cn = 2Fn + Fn−1 and the fact that Fn = dn(α) for α ∈ {132, 213, 321}
we get the following theorem.

Theorem 7.8 Let α ∈ {132, 213, 321} and let F (π) be the set of fixed points of π ∈ Sn(α).
Define

Tn(α) = {π ∈ Sn(α) : F (π) ∩ {1, 2, . . . , n− 1} 6= ∅}.
Then |Tn(α)| = Fn, where Fn is the nth Fine number.

Proof. We have Cn = sn(α) and Fn = dn(α). If Un(α) = {π1 · · ·πn−1n : π ∈ Dn−1(α)} then
Sn(α) is the disjoint union Sn(α) = Dn(α) ∪ Tn(α) ∪ Un(α). Since Cn = 2Fn + Fn−1, the
result follows. 2
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