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Prime number logarithmic geometry on the plane

Lubomir Alexandrov

JINR, LTP, Dubna 141980, Moscow Region, Russia

Abstract We found a regularity of the behavior of primes that

allows to represent both prime and natural numbers as in�nite
matrices with a common formation rule of their rows. This regu-
larity determines a new class of in�nite cyclic groups that permit

the proposition a plane{spiral geometric concept of the arithmetic.

1 Introduction

Counting arithmetic functions for di�erent prime sets can be assigned to
the archaic mathematical reality.

Nevertheless, the generated by them prime sequences, named Eratos-
thenes progressions, became known only in recent years (e.g.,[1],[2],[3] and

sequences A007097, A063502, A064110 in [4]).
The Eratosthenes progression possesses a common formation law of its

elements (an inner prime number distribution law) the realization of which
is based on a multiple use of the Eratosthenes sieve [1] (Figure 1).

The derivation of Eratosthenes progressions and their systematic inves-

tigation is directed to a learning the nonasymptotic behaviour of primes,
i.e., of the function’s behaviour

d(n) = p(n + 1) � p(n); n = 1; 2; : : : ; n;

where p(n) is the nth prime and n is a su�ciently large natural number.

The inner prime number distribution law can be applied mostly in math-
ematics itself, for example, when constructing new geometric concepts in

arithmetic.
Following Alain Connes ([5] pp. 208{209), it can be supposed that the

speci�c behaviour of primes will re
ect itself in the new geometry sought
for understanding quantum gravity.

In biochemistry, the speci�c behaviour of primes can manifest itself in
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the laws of formation and functioning of large molecules, from 103{atomic

insulin and hemoglobin up to 3 � 105{atomic proteins and enzymes.
In this paper, the general statement of the problem for derivation of

Eratosthenes progressions is given and their basic properties are presented.
The general results are applied to the sequence of primes itself

P = f2; 3; 5; 7; 11; : : :g = fp(n)gn=1;2;:::;

as well as to the following related to P sequences:

M = NnP = f4; 6; 8; 9; : : :g = fm(n)gn=1;2;::: the set of composite numbers;

T = ft(�) = (p(�); p(� + 1)) : � 2 �g the set of twin pairs, where

� = fn : p(n + 1) � p(n) = 2; n 2 Ng = f2; 3; 5; 7; 10; 13; 17; : : :g;

T1 = fp(�) : (p(�); p(� + 1)) 2 T; � 2 �g = ft1(�)g�2� the set

of �rst elements of twins;

T2 = fp(� + 1) : (p(�); p(� + 1)) 2 T; � 2 �g = ft2(n)g�2� the
set of second elements of twins;

T3 = T1 [ T2 = f3; 5; 7; 11; 13; 17; 19; : : :g the set of twin elements;

S = P n T3 = f2; 23; 37; 47; 53; : : :g the set of isolated primes[4], A007510;

D6n�1 = f6n � 1 2 P : n = 1; 2; : : : ; g = f5; 11; 17; : : :g the set of primes of
the kind 6n � 1;

D6n+1 = f6n + 1 2 P : n = 1; 2; : : : ; g = f7; 13; 19; : : :g the set of primes of

the kind 6n + 1, and

T4 = ft(n) : (t1(n) + t2(n))=2 = 6 � q; q 2 Pg the set of twins with

minimal average ([2], p. 15).

The sets T; T1 � T4 and S below will be supposed to be in�nite.
In this paper some properties of Eratosthenes progression such as dis-

tribution laws of the progression elements, �{functions for the progressions
and their connection with the Riemann �{function are only mentioned.
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The main result of this paper consists in the proposed plane{spiral geo-

metric concept of arithmetic, compatible with the linear Cartesian concept.
The real semiaxis R

1
+ in the new geometric model is isometrically mapped

as a logarithmic spline-spiral on the plane R
2 in such a way that the Er-

atosthenes rays, not intersecting each other, cross the spiral only at the

primes.
The spiral arithmetic allows one to interpret in a new way the basic

counting function �(x), the Littlwood’s 
{theorem and also gives an arith-
metic interpretation of the distribution in natural series of all kinds of
clusters of primes (see [6], for example) and twin pairs, in particular.

The basic object in the spiral geometry is a spider{web Wn composed
of spiral and Eratosthenes rays intersecting it, in which the number of

rotations n in�nitely increases.
The web Wn consists of embedded concave{convex trapezoids of primes

with a characteristic formation law. This law is a direct consequence of
the inner prime number distribution law.

The plane R
2 is considered as a mosaic composed of elementary

concave{convex trapezoids.
The web Wn geometrically select (personalyzes) primes, and also all

kinds of linear and plane con�gurations of primes.

2 Splitting theorem for in�nite sequences of primes

2.1 Basic de�nitions

Let sets A � N and B � N with the properties

A \ B = ?; (1)

A [ B = N; (2)

where B = f1g [ B are given.

Let the arithmetic function

g(n) : N ! A

generate (denote) the nth element a(n) 2 A.

Then the counting recurrent law

"+
a(0) : a(n + 1) = g(a(n)); n = 0; 1; 2; : : : ; a(0) 2 N (3)
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determines an A{counting progression "+
a(0) and an A{counting ray

ra(0) = fa(n) : a(n + 1) = g(a(n)); n = 0; 1; 2; : : : ; a(0) 2 Ng:

Together with the function g(n), its inverse function, the nth number

of element a(n) 2 A, is also uniquely determined (in a purely arithmetical
sense it is a counting function)

g�1(a) : A ! N:

The functions g(n) and g�1(a) are strictly monotonic and satisfy the

equalities
g(g�1(a)) = a; g�1(g(n)) = n:

By means of g(n) and g�1(a) the compositions

gn(a(0)) = g(: : : g| {z }
n

(a(0)) : : :) = a(n);

g�n(a(n1)) = g�1(: : : g�1| {z }
n

(a(n1)) : : :); with n � n1:

are introduced.

These compositions satisfy the equalities

gn1(gn2(a(0))) = gn1+n2(a(0)); n1; n2 � 1;

g�n1
(gn2

(a(0))) = gn2�n1
(a(0)); 1 � n1 � n2:

An extension of the A{counting progression "+
a(0) with negative numbers

"�
a(0) = �"+

a(0) leads to an in�nite cyclic group

"a(0) = "�
a(0) [ fa(0)g [ "+

a(0); g�n(a(0)) = �gn(a(0)); n > 0 (4)

under composition gn(a(0)); with a depth n 2 Z and a generator a(0) 2 B.

Two elements from "a(0) interact under the composition rule

gn1
(a(0)) � gn2

(a(0)) = gn1
(gn2

(a(0))) = gn1+n2
(a(0)); n1; n2 2 Z: (5)
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2.2 Basic assertion and its consequences

The following assertion about the splitting of the set A in a denumerable

number of denumerable subsets with a common law(3) of formation of its
elements is given:

Theorem 1. For any sets A and B with properties (1) and (2) the
following equalities hold

T
a(0)2B

ra(0) = ?;
S

a(0)2B

ra(0) = A :

Theorem 1 leads to a matrix representation of the sequences A and N

with peculiar properties of their elements.

Corollary 1. There exists an one-to-one mapping

’(a(0)) : B ! 2A = fra(0)ga(0)2B � fa��g�;�=1;2;::: (6)

( 2A denotes the matrix representation of the elements of A).

From (6) a matrix representation to the natural series

2
N = kB 2Ak; (7)

where B = Columnfa�0g�=1;2;::: also follows.

The matrices 2A and 2
N shall be called mesm{matrices.

In the case when A = P and B = M an example of the left upper corner

of the matrix 2
N ([2], pp. 18{22) is given in Appendix 1.

Corollary 2. The rows of matrices 2
N are isomorphic to the row r1

with respect to the mapping

	(gn(1)) : gn(1) ! g�n(gn(1)) ! a(0) ! gn(a(0)); a(0) 2 B; a(0) > 1:

The columns of the matrix 2A are isomorphic to the column B with respect

to the mapping

’(a(0)) : a(0) ! gn(a(0)); a(0) 2 B:

6



In the case A = P and B = M Figure 2 illustrates mentioned isomor-

phisms. In Figure 2, an one-to-one correspondence between rooted trees
and elements of N, proposed by F. G�obel [7] is used (see the 1th row of

Figure 2).
Theorem 1 leads also to an important consequence, which reveals the

arithmetic nature of the �ne structure of the set A elements’ distribution
among the natural numbers.

Let g�1(n
0; n00); n0; n00 2 N denote the number of elements A in the

interval (n0; n00).
Corollary 3. For the matrix [B 2A] elements the following equalities

hold:
g�1(a�0; 0) = a�1

� 1; � = 1; 2; : : : ;

g�1(a�1�1
; a�2�2

) = ja�1(�1�1) � a�2(�2�1)j � 1;

�i; �i � 1; i = 1; 2:

9
>>>>=
>>>>;

(8)

3 The Theorem 1 application to special cases of sets

A and B

3.1 About new A{counting progressions

In the case when A and B take usual values the law (3) generates known

A{counting progressions. So, for example, at A = feveng and B = foddg
a generating function is of kind g(a(n)) = 2a(n) � 1 and in this case

"+
2 = f2; 3; 5; 9; 17; 33; 65; 129 : : :g is a Pisot sequence ([4], A000051).

New A{progressions one occur when the behaviour of A elements among

natural numbers is unknown and it cannot be considered as a probabilistic.
Besides the sequences of primes P , all subsequences of P , in the formation

of which the Eratosthenes sieve combines with an additional deterministic
�lter f(n) (this is the formation rule of the considered subsequence), should
also be considered belonging to this class. The set of these subsequences

shall be denoted by Ef .
The Dirichlet theorem about the existence of in�nite primes of the kind

�n + � (an additional �lter) for arbitrary coprimes � and � shows that Ef

is in�nite.

In particular, we have inclusions T1; T2; T3; S 2 Ef and D�n�1 2
Ef at � = 4; 6.
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For all elements Ef there exists a mesmf{process, which is analogous to

the process represented in Figure 1. From the A{split theorem it follows
that for every Af 2 Ef and Bf = N n Af there exists a mesmf{matrix

[Bf
2Af ]:

As a result of a mesm{transition Af ! 2Af , the elements of the rows
2P; 2T1;

2T2;
2T3;

2S and 2D�n�1(� = 4; 6) already will be distributed ac-
cording to the inner law (3), which now should be understood as a speci�c

self-smoothing (only with respect to the rows 2Af) of the irregularities in
the appearance of the elements Af in the natural series.

3.2 The basic case: A = P and B = M.

The upper left corner of the matrix 2P and its extension to the matrix 2
N

are represented in Appendix 1. The Theorem 1 has been proved inductively
in [2], pp. 4{8.

The �rst elements of the �rst rows of the matrix 2P were primarily
determined by hand by means of MESM (Figure 1). In such a way the law

(3) with g(n) = p(n) (Eratosthenes progressions) was discovered [1].
The extension of the matrix 2P rows on negative primes according to

the rules (4), (5) leads to in�nite cyclic groups under composition pn(a(0));

n 2 Z with a generators a(0) 2 M . An example of such a group is the set

"4 = f: : : ; �pn(4); : : : ; �59; �17; �7; 4; 7; 17; 59; : : : ; pn(4); : : :g:

A part of 2P represented in Appendix 1 has been computed by means
of Mathematica function NestList[Prime, a(0), n].

The row elements of the matrix [M 2P ] determine new subsets of nat-
ural numbers

Nm = fp�1
n1

(m) : : : p�k

nk
(m) : 8 ni; �i 2 N; i = 1; 2; : : : ; k; 8 k 2 Ng; m 2 M :

N1 = f2; 3; 22; 5; 2 � 3; 23; 32; 2 � 5; 11; 22 � 3; 3 � 5; 24; : : :g;

N4 = f7; 17; 72; 59; 7 � 17; 277; 172; 73; 7 � 59; 72 � 17; 1787; 74; : : :g;

N6 = f13; 41; 132; 179; 13 � 41; 1063; 412; 133; 132 � 41; : : :g;

and so on.
According to Corollary 2, the behaviour of composite numbers re
ects

on the behaviour of the elements of the columns of the matrix 2P .
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Figure 2: "MESM & F. G�obel" forest of rooted trees
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On the other hand, the structure of the set M depends on the structure

of the set of primes because M can be represented as a chain of ��{element
segments ( where �� = d(�) � 1) from consequent composite numbers

m�(��) = fp(�) + 1; p(�) + 2; : : : ; p(� + 1) � 1g; � = 2; 3; : : :

(m2(1) = f4g; m3(1) = f6g; m4(3) = f8; 9; 10g; : : :):

The segments are connected in a whole set M by means of ghost primes
!� = hp(�)i (!2 = h3i; !3 = h5i; !4 = h7i; : : :).

The Eratosthenes progressions f"+
mgm2M (i.e., rows of the matrix 2P )

conform to the inner prime number distribution law

a(n + 1) = p(a(n)) = pn+1(a(0)); n = 0; 1; 2; : : : ; a(0) � m 2 M; (9)

but the deviation of the rows 2P between each other (i.e., the distribution

of primes in the columns of 2P ) again persists dependent of the oddish
behaviour of primes.

The main information left out of the inner law (9) is re
ected in the
structure of the �rst matrix 2P column

P1 = column[p11; p21; : : : ; p�1; : : :]:

The following assertion about the P1 structure is valid.

Theorem 2. Mapping ’ : a(0) ! p�1 de�nes a correspondence be-

tween segments of composite numbers m�(��) and clusters of ��{successive
primes

c�(��) = fp1(p(�) + 1); p1(p(�) + 2); : : : ; p1(p(� + 1) � 1)g � P

in the cases �� � 3, and separate primes p1(p(�) + 1) in the cases �� = 1.

At their ends the clusters are complemented by the ghost images up to prime
number segments

c�(��) = fp1(hp(�)i); c�(��); p1(hp(� + 1)i)g

and the equality P =
1S

�=1

c�(��) is ful�lled.

The next theorem about twin pairs t(�) = (t1(�); t2(�)) 2 T; � =
3; 5; 7; : : : is also justi�ed.
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Theorem 3. For each pair t(�)(after the pair (3,5)) at least one of the
elements t1(�) or t2(�) belongs to the �rst column P1 .

The mapping ’�1 : p�1 ! m� de�nes a correspondence between pairs
with both elements on P1 (u{twin) and pairs of subsequent elements of some

segment m�(��) � M with �� � 3.
For a pair with one element t1(�) (or t2(�)) on P1 (b{twin) the mapping

’�1 : p�1 ! m(�) associates t1(�) (or t2(�)) with the element p(n) + 1, or
the element p(n + 1) � 1 of some segment m�(��) � M at �� � 3, or with
the element of some one-element segment m�(1) � M .

The mapping ’�1 : p�1�1
! p�1(�1�1); �1 � 2 relates the second element

t2(�) (or t1(�)) to one of the ghosts hp(�)i � p�1(�1�1) or hp(� + 1)i �
p�1(�1�1).

The following properties of the matrix 2P rows and columns are brie
y
veiwed:

q1) The di�erence dm(n) = p(n+1)(m) � pn(m); n = 1; 2; : : : ; m 2 M
monotonically increase under the estimate

dm(n) > pn(m)(ln pn(m) � 1)

unlike the di�erence d(n) whose behaviour only on the face of it may

seems to be a chaotical one [8];

q2) The sequence �(s; m) =
1P

n=1

1
ps

n(m)
converge for all m 2 M and

s � 1:

Note especially the convergence of the sum �(1; m) ([2], p. 10) when

the sum
1P

n=1

1
p(n)

diverges;

q3) An analogue of the Euler identity exists

�(s; m)) � 1 +
X

n2Nm

1

ns
=

1Y

n=1

�
1 � 1

ps
n(m)

��1

; m 2 M; s � 1;

11



q4) The Riemann function �(s) =
1P

n=1

1
ns ; s 2 6C can be represented by

the functions �(s; m)

�(s) =
Y

m2M

�(s; m);

q5) The asymptotic law for the primes and the simpli�ed Riemann for-
mula for �(x) give an opportunity to �nd approximately pn+1(m),

m 2 M by solving the equations with respect to x

L(x) = pn(m); (10)

R(x) = pn(m); (11)

where L(x) =

xZ

0

ds

ln(s)
; R(x) =

1X

k=1

�(k)

k
L(x1=k)

and �(k) is a M�obius function;

q6) There exists an approximate formula

n =

pn(�)Z

�

ds

s ln ln s
+ "(n; �); (12)

where � = 11; � = 1; n > 4 for r1; � = 7; � = 4 for r4 and � = � =

m for the other rays rm:

The absolute error j"j for the part of the matrix [M 2P ] in Appendix
1 is not greater than 0:2 when n is small and 0:06 when n is large.

Formula (12) is a prime number distribution law of the rays 2P .

On Figure 3, the behaviour of the function (12) is presented for the
ray r9;

q7) It is obvious that for the number � of the element p�n in the matrix
2P column

Pn = colomn[p1n; p2n; : : : ; p�n; : : :]

there exists an asymptotic formula

� � m �
mZ

2

ds

ln s
: (13)
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This is the column 2P prime number distribution law.

In order to use (12) and (13) it is necessary to know the composite
number m.

3.3 About other A{counting progressions

Applying the A{split theorem in the cases

A = T1 and B1 = T2 [ M;

A = S and B2 = M [ T3;

A = D6n�1 and B3 = M [ D6n+1 [ f2; 3g;
and

A = D6n+1; B4 = M [ D6n�1 [ f2; 3g;

we can obtain the next mesm-matrices of kind (7):

[B1
2T1] =

2
666666664

1 3 11 137 5639 641129 152921807 : : :
2 5 29 641 44381 7212059 : : :
4 17 239 12161 1583927 : : :
6 41 1151 93251 16989317 : : :
7 59 1931 176021 35263691 : : :
8 71 2339 221201 45749309 : : :
� � � � � : : :

3
777777775

;

[B2
2S] =

2
66666666664

1 2 23 263 2917 38639 603311 11093633 : : :
3 37 397 4751 64403 1038629 19661749 : : :
4 47 491 5897 81131 1328167 25467419 : : :
5 53 557 6709 93287 1541191 29778547 : : :
� � � � � � � : : :
22 257 2861 37799 589181 10821757 230452837 : : :
24 277 3079 40823 640121 11807167 252480587 : : :
� � � � � � � : : :

3
77777777775

;

[B3
2D6n�1] =

2
6666664

1 5 29 263 3767 76253 2049263 69633521 : : :
2 11 83 953 16223 381221 11579489 : : :
3 17 137 1721 31883 795803 25434641 : : :
4 23 197 2663 51803 1348961 44635001 : : :
6 41 419 6329 135347 3808109 134441441 : : :
� � � � � � � : : :

3
7777775

;
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[B4
2D6n+1] =

2
6666664

1 7 61 727 12343 284083 8457367 312953941 : : :
2 13 109 1429 26113 642937 20262883 787318099 : : :
3 19 181 2539 49669 1291471 42627997 : : :
4 31 331 5011 105277 2908753 10144807 : : :
5 37 397 6211 133633 3761239 132710947 : : :
� � � � � � � : : :

3
7777775

:

The matrices [B1
2T1], [B2

2S] and [P 2M ] were published in [4] as A063502, A064110
and A025003{A025006, respectively. Matrices [B3

2D6n�1] and [B4
2D6n+1] are the new

ones.
New mesm{matrices can be obtained also for the Euler primes of the kind

n2 + n + 41 (r1 = f41; 1847; 1573316; : : :g), and for the Hardy-Littlwood primes of the
kind H

n
2+1 = fn2 + 1 2 P : n = 1; 2; : : :g where at B5 = N n H

n
2+1 we have

[B5
2H

n
2+1] =

2
6666664

1 2 5 101 746497 286961228404901 : : :
3 17 7057 11424189457 : : :
4 37 44101 637723627777 : : :
6 197 3496901 : : :
7 257 6421157 : : :
� � � � : : :

3
7777775

:

All pointed out mesmf{matrices are not studied. In particular, an ana-

logue of the distribution laws (12) and (13) has not been found for them
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with the exception of the matrix [P 2M ] for which an analogue of the law

(13) is known. However, the common Corollaries 2 and 3 of the A{split
theorem remain valid for them.

4 Logarithmic geometry of primes on the plane.

4.1 The Prime Number Spider Web (PNSW) Hypothesis

One of the main application of the prime number distribution law (9) con-
sists in constructing the plane spiral geometric concept of arithmetic.

Let

Lf = f�(�) = (f(�))� : f(�) 2 C1[0; 1); f(�) � 1; 0 � � < 1g

denote a class of logarithmic spirals with an arc length

�(0; �) =

�Z

0

(f(x))x
 �

ln f(x) +
xf 0(x)

f(x)

�2

+ 1

!1=2

dx:

The plane spiral geometric concept is based on the following PNSW{

hypothesis [1].

Conjecture 1. On the plane R
2 there exists a unique spiral �(�) 2 Lf

and the corresponding to it sets of angles

f�mngm2M ; n = 1; 2; : : : ; �mn0 < �mn00 at n0 < n00

such that the following conditions are ful�lled:

(i) �(0; �mn) = pn(m); n = 1; 2; : : : ; m 2 M ;

(ii) the primes pn(m); n = 1; 2; : : : lie on the same ray ‘m � R2 with a
positive direction corresponding to increasing n;

(iii) two arbitrary rays ‘m1
and ‘m2

; m1; m2 2 M do not intersect each

other and are non{parallel.
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4.2 Logarithmic spline{spiral

Under the substitution f(�) = ecot ’; Lf turns in a one{parametric family

of logarithmic spirals

L’ =
n

�’ = e(cot ’)� : 0 < ’ <
�

2
; 0 � � < 1

o

with an arc length

�(0; �) =
1

cos ’

�
e(cot ’)� � 1

�
: (14)

Now the required by the PNSW{hypothesis sets of angles with respect to
m and n, according to the condition (i), are given by the formula

�mn = tan ’ ln(pn(m) cos ’ + 1)):

For simple logarithmic spirals the conditions (ii) and (iii) of the PNSW{
hypothesis are not ful�lled because the equation [1]

Sn1n2
(x) + Sn2n3

(x) + Sn3n1
(x) = 0; (15)

where

S��(x) = (p�(m)x + 1)(p�(m)x + 1) sin

 r
1

x2
� 1 ln

(p�(m)x + 1)

(p�(m)x + 1)

!

cannot be satis�ed with the same value x = cos ’ for any triplets
(pn1

(m); pn2
(m); pn3

(m)) from any ray rm; m 2 M .

Nevertheless, the solution (15) for all the denoted prime triplets from
all rays of the matrix in Appendix 1 shows that x remains in a su�ciently

narrow interval Ix = (0:202; 0:326) with an average x � 0:264 to which
there corresponds a value ’ � 74:69�. On Figure 4 a pure{logarithmic web
is presented where only the condition (i) is ful�lled.

This result stimulates us to search for a veri�cation of the PNSW{
hypothesis in the class of logarithmic spline{spirals (LSS):

�s1
(�) = es1(�);

s1(�) =

�
�i+1� + �i+1; �i � � � �i+1 0 � i � k � 1;

�i�1�i�1 + �i�1 = �i�i�1 + �i; 2 � i � k;

16



Figure 4
 Pure logarithmic Prime Number Spider-Web
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Figure 4: Pure logarithmic prime number spider web

where the �rst degree spline s1(�) is de�ned on an irregular set

�k : 0 = �0 < �1 < �2 < : : : < �k�1 < �k;

with a number k � 3 of subintervals [�i; �i+1]; 0 � i � k � 1, which
increases with the number of rotations n of the web Wn(P ).

The unknowns in the spiral �s1(�) are both the knots of the set �k and

the spline{spiral coe�cients of the elements e�i� + �i

f�i; �i; �igi=1;2;:::;k:

They are determined from the conditions of the PNSW{hypothesis with
regard for the initial condition

e�1�0 + �1 = 1 =) �1 = 0: (16)

For arbitrary x 2 R
1
+ there exists an unique p(kx) 2 P such that

p(kx � 1) � x < p(kx) and the isometric transformation x 2 R
1
+ on R

2, de-

termined by the condition (i) of the PNSW{hypothesis, acquires the explicit
form

h�s1
(x) : R

1
+ ! �(0; �x) = p(kx�1)+

s
1 +

1

�2
kx

e�kx

�
e�kx

�x � e�kx
�kx�1

�
;

(17)
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where

0 � x < 1; �x = 1
�kx

ln E(x);

E(x) =
�kxr

1 + �2
kx

e��kx (x � p(kx � 1)) + e�kx
�kx�1; p(0) = 0:

The points (ux; vx) 2 �s1
(�) � R

2, which correspond to the numbers
x 2 R

1
+, have the Euler and Cartesian coordinates respectively:

�(�x) = e�kx
�x + �kx = e�kx ln E(x); �x =

1

�kx

ln E(x) (18)

and

ux = �(�x) cos(�x); vx = �(�x) sin(�x): (19)

The �rst plane spiral isometric to the semi{axis R
1
+ was constructed in

[9].

4.3 About constructing the webs Wn

Attempts to construct the spiral �s1
(�) under the PNSW-hypothesis for a

given n lead to a denial of some number k0 of starting primes because of the

di�culty in ful�lling the condition (ii) around the origin of R
2 (condition

(i) remains valid for the missed primes). In this paper the case k0 = 11

is considered, i.e., instead of the rays r1; r4; r6; r8; r9 and r10, the truncated
rays r1; r4; r8; r9 and r10 obey the condition (ii), and these rays start with
the numbers 127; 59; 41; 87; 83 and 109 respectively.

According to (16), to the �rst element e�1� (0 � � � �1) of the spiral

�s1
there corresponds the real segment [0; p(k0 + 1)].
The rotations Wn are taken in account from the ray

r12 = f37; 157; 919; 7193; : : :g

in the direction counter{clockwise.

At �rst, �
(3)
s1 and W3 are constructed on the basis of the �rst 3 elements

of the �rst 25 rays r1; r4; : : : ; r36 plus the fourth element of the ray r12.
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