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ABSTRACT

A generalization of the Seidel-Entringer-Arnold method for calculating the alternating per-

mutation numbers (or secant-tangent numbers) leads to a new operation on sequences, the

boustrophedon transform.
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1. Introduction

Let En,k (n ≥ k ≥ 0) denote the number of permutations of {1, 2, . . . , n + 1} which alter-

nately fall and rise (always starting with a fall), and start with k + 1. These numbers have a

long history (see the references), but we follow Poupard [Pou82] and call them the Entringer

numbers. They satisfy the recurrence [Ent66, first lemma]

E0,0 = 1, En,0 = 0 (n ≥ 1), En+1,k+1 = En+1,k + En,n−k (n ≥ k ≥ 0) . (1.1)

If these numbers are displayed in a triangular array with rows written alternately right to left

and left to right, in boustrophedon (or “ox-plowing”) manner (sequence A8280 in [OEIS]):

E00

E10 → E11

E22 ← E21 ← E20

E30 → E31 → E32 → E33

E44 ← E43 ← E42 ← E41 ← E40

· · ·

=

1
0 → 1

1 ← 1 ← 0
0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0
· · ·

(1.2)

then the entries are filled in by the rule that each row (after the zero-th) begins with a 0 and

every subsequent entry is the sum of the previous entry in the same row and the entry above

it in the previous row.

The earliest reference we have seen for this elegant observation is Arnold [Arn91], who

refers to (1.2) as the Euler-Bernoulli triangle, but it may well be of much older origin. Dumont

[Dum95] refers to (1.2) as the Seidel-Entringer-Arnold triangle, referring to Seidel [Sei77].

The numbers En := En,n (sequence A111) appearing at the ends of the rows in (1.2) give

the total number of permutations of {1, 2, . . . , n} that alternately fall and rise, i.e. the number

of “down-up permutations” of n things. The history of these numbers goes back to André

[And79], [And81], [Com74], [Sch61]. They have exponential generating function (e.g.f.)

E(x) =

∞
∑

n=0

En
xn

n!
= sec x + tan x . (1.3)

Conway and Guy [CG96] call (1.2) the zig-zag triangle and the En the zig-zag permutation

numbers. The Entringer numbers have also been shown to enumerate several classes of rooted

planar trees as well as other mathematical objects [Arn91], [Arn92], [Kem33], [KPP94], [Pou82].

Guy [Guy95] observed that if the entries at the beginnings of the rows in (1.2) are changed

from 1, 0, 0, 0, . . . to say 1, 1, 1, 1, 1, . . ., or 1, 2, 4, 8, 16, . . ., etc., then the numbers at the ends
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of the rows form interesting-looking sequences not to be found in [SP95]. (Of course now they

are in [OEIS].) Using 1, 1, 1, . . . for example the triangle becomes

1
1 2

4 3 1
1 5 8 9

24 23 18 10 1
1 25 48 66 76 77

· · ·

(1.4)

yielding the sequence (A667)

1, 2, 4, 9, 24, 77, 294, 1309, . . . . (1.5)

Guy asked if anything could be said about generating functions or combinatorial interpretations

for these sequences. The purpose of this note is to answer his question.

2. The Boustrophedon transform

Given a sequence¶ a = (a1, a1, a2, . . .) we define its boustrophedon transform to be the

sequence b = (b0, b1, b2, . . .) produced by the triangle

a0 = b0

a1 → b1 = a0 + a1

b2 = a1 + a2 + b1 ← a2 + b1 ← a2

a3 → a3 + b2 → a2 + a3 + b1 + b2 → b3 = 2a2 + a3 + b1 + b2

· · ·
(2.1)

when it is filled in using the rule described in Section 1. Formally, the entries Tn,k (n ≥ k ≥ 0)

in the triangle are defined by

Tn,0 = an (n ≥ 0) ,

Tn+1,k+1 = Tn+1,k + Tn,n−k (n ≥ k ≥ 0) ,
(2.2)

and then

bn = Tn,n (n ≥ 0) .

Although many operations on sequences have been studied in the past (see [BS95] and the

references therein), this transformation appears to have been overlooked.
¶In this paper we consider only integer-valued sequences, although the transformation can be applied to

sequences over any ring.
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Theorem 1. The boustrophedon transform b of a sequence a is given by

bn =
n

∑

k=0

(

n

k

)

akEn−k, (n ≥ 0) , (2.3)

an =

n
∑

k=0

(−1)n−k

(

n

k

)

bkEn−k, (n ≥ 0) , (2.4)

and the e.g.f.’s of b and a are related by

B(x) = (sec x + tan x) A(x) . (2.5)

Proof. We redraw (2.1) as a directed graph Γ whose nodes are labeled by the numbers Tn,k

(see Fig. 1). Let π(n, k, i) denote the number of paths in Γ from the node labeled Ti,0 to the

T33T31 T32

T11

T44 T40

T20T22

T10

T00

T21

T30

T41T43 T42

(2.6)

Figure 1: Directed graph Γ underlying the boustrophedon transform.

node labeled Tn,k. It follows from the rule for constructing the triangle that the numbers Tn,k

are given by

Tn,k =
n

∑

i=0

π(n, k, i)ai . (2.7)

From Section 1 we know that the boustrophedon transform of the sequence 1, 0, 0, 0, . . . is

E0, E1, E2, E3, . . ., and so (from (2.7))

En = π(n, n, 0) (n ≥ 0) . (2.8)

We will give a direct proof of this (although of course it is known result, cf. [Arn92]), in order

to establish a bijection between paths in Γ and up-down permutations.

Proposition 1. π(n, n, 0) is equal to En, (A1111), the number of down-up permutations of

{1, 2, . . . , n}.
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Proof. Let P be a path in Γ from the top node to the node labeled Tn,n. (Fig. 2 shows an

example for n = 5.) Let Ti,f(i) be the label of the node where P arrives at level i (1 ≤ f(i) ≤

T00

T55

Figure 2: A path from T0,0 to T5,5.

i ≤ n). We construct a box diagram to represent P by the following procedure (see Fig. 3).

The bottom row contains n boxes labeled 1, . . . , n from left to right (if n is even) or from right

to left (if n is odd). The box labeled f(n) is starred. We now repeatedly place a row of boxes

above the empty boxes, putting a star in the f(i)-th box, always counting from the left if i is

even or from the right if i is odd, for i = n− 1, n − 2, . . . , 1.

*

*

*

3

*

1245

*

Figure 3: Box diagram corresponding to path P in Fig. 2.

We convert the box diagram into a permutation of {1, . . . , n} by reading the rows from

the bottom up and recording the number at the foot of the column containing the star. (The

permutation corresponding to the above example is (3, 1, 4, 2, 5).) We omit the easy verification

that this process defines a bijection between paths and down-up permutations.
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Proposition 2.

π(n, n, k) =

(

n

k

)

En−k, for 0 ≤ k ≤ n .

Sketch of proof. Consider a path from the node labeled Tk,0 to the node labeled Tn,n, such

as the path from T4,0 to T9,9 shown in Fig. 4. The procedure used in the proof of Proposition 1

T20

T30

T50

T70

T90

T10

T40

T00

T99

T80

T60

Figure 4: A path from T4,0 to T9,9.

converts this into a box diagram, which for this example is shown in Fig. 5. The columns that

do not contain stars identify one of the
(n
k

)

k-subsets of {1, . . . , n}, while the starred columns

themselves form a box diagram (in this case it is that shown in Fig. 3) that identifies a down-up

permutation of {1, . . . , n− k}.

From Proposition 2 and (2.7) we obtain

bn = Tn,n =
n

∑

k=0

(

n

k

)

En−kak ,
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5

*

*

*

*

4 3 2 16

*

9 8 7

Figure 5: Box diagram for path shown in Fig. 4.

which establishes (2.3). Equations (2.5) and (2.4) now follow immediately. This completes the

proof of the theorem.

Remark. With only a little more effort we can determine all the “boustrophedon numbers”

π(n, k, i). Note that π(n, 0, i) = 0 for n ≥ 1, 0 ≤ i ≤ n− 1, and π(n, 0, n) = 1.

Proposition 3. For n ≥ 1, 0 ≤ k ≤ n− 1,

π(n, k, 0) = En,k =

[(k−1)/2]
∑

r=0

(−1)r
(

k

2r + 1

)

En−2r−1 .

Proof. π(n, k, 0) = En,k follows from (2.7) and the definition of En,k (see (1.2)), and the

formula for En,k is given in [Ent66].

Remark. If the path is extended to reach the node labeled Tn+1,n+1, the corresponding box

diagram has the same format as those arising in Proposition 1, except that the star in the last

row is constrained to appear in the box labeled k + 1.

Proposition 4. For n ≥ 2, 0 < k < n, 0 < i ≤ n,

π(n, k, i) =

min{k,n−i}
∑

s=0

(

k

s

)(

n− k

n− i− s

)

π(n− i, s, 0) . (2.9)

Sketch of proof. Consider a path P from Ti,0 to Tn,k, and complete it to a path Q from Ti,0

to Tn+1,n+1 by extending P by a downward sloping edge and a series of horizontal edges, as

illustrated in Fig. 6. We form the box diagram for Q, as in Proposition 2 (see Fig. 7a). After

deleting all the unstarred columns we obtain the box diagram for a path of type π(n− i, s, 0),

for some s (Fig. 7b).

In the box diagram for Q itself, the star in the last row divides the remaining stars into

two sets of sizes s (to the right) and n − i − s (to the left), and the binomial coefficients in

(2.9) count the ways in which the corresponding columns can be selected.
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T77

T60

T20

T00

T66

T70

Figure 6: Path from T2,0 to T6,4 (solid line) and its continuation to T7,7 (broken line).

Propositions 1–4 together express all the boustrophedon numbers in terms of the En’s, and

via (2.7) give an explicit formula for every entry in the triangle (2.1).

3. Combinatorial interpretations and examples

Equation (2.3) yields many possible combinatorial interpretations for the numbers bn. For

example, if an is the number of arrangements of n labeled objects so that they have some

property Q, then bn is the number of ways of dividing n objects into two groups so that the

first group has property Q and the second forms a down-up sequence. Since En is also the

number of ordered binary trees on n nodes (cf. [Pou82], [KPP94]), other interpretations for

the bn can be given in terms of graphs.

Example 1. We can see now that (1.5) has e.g.f. ex(sec x + tan x), and that the n-th term of

this sequence gives the number of ways that we can form a down-up sequence of some length

ℓ ≥ 0 from {1, . . . , n}. E.g. for n = 3 there are 9 possibilities: φ, 1, 2, 3, 21, 31, 32, 213, 312.

Example 2. The boustrophedon transform of the Bell numbers (cf. [SP95], Fig. M4981;

sequence A110); produces the sequence 1, 2, 5, 16, 60, 258, . . ., (A764) whose n-th term gives
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the number of ways to take blocks labeled 1, . . . , n and to partition some of them into heaps

and to arrange the rest so they form a down-up sequence.

Example 3. The boustrophedon transform of the En sequence shifted one place to the left is

the same sequence shifted two places to the left:

1
1 → 2

5 ← 4 ← 2
5 → 10 → 14 → 16

61 ← 56 ← 46 ← 32 ← 16
· · ·

In view of Theorem 1, this means the e.g.f. E(x) satisfies

E(x)E ′(x) = E ′′(x) .

The initial conditions E0 = E1 = 1 then give E(x) = secx + tan x as the solution.

Example 4. The sequence 1, 0, 1, 1, 2, 6, 17, 62, 259, 1230, . . . (A661) is the lexicographically

earliest sequence that begins with 1 and shifts two places left under the boustrophedon trans-

form. (Examples 3 and 4 are both eigen-sequences for this transform, in the notation of [BS95].)

We do not know of any combinatorial interpretation for these numbers.

Example 5. The double-ox transform. Generalizing some examples of Arnold ([Arn92],

see also [Dum95]), we consider two oxen plowing separate fields with a messenger that takes

the output at the end of one row and rushes it to be used by the other ox as input to the next

row. For example, if the initial sequence (shown in italics in Fig. 8) is 1, 1, 1, . . ., this produces

the output sequence (shown in bold) 1, 3, 9, 35, 177, 1123, . . . (A834).

Less colorfully, let a = a0, a1, . . . be the initial sequence, m = m0,m1, . . . the middle (or

messenger) sequence, and b = b0, b1, . . . the transformed sequence. We define two triangles of

numbers {Ln,k} and {Rn,k}, with 0 ≤ k ≤ n, by

L2i,0 = a2i, R2i+1,0 = a2i+1,

L2i,2i = R2i,0 = m2i, L2i+1,0 = R2i+1,2i+1 = m2i+1

L2i+1,2i+1 = b2i+1, R2i,2i = b2i,

and
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Ln+1,k+1 = Ln+1,k + Ln,n−k, Rn+1,k+1 = Rn+1,k + Rn,n−k .

We were happy to find that Theorem 1 leads to an equally simple description of this

transformation. The proof is left to the reader.

Theorem 2. The e.g.f.’s of a, m and b are related by

M(x) =
1

cos x− sinx
A(x) ,

B(x) =
cos x + sinx

cos x− sinx
A(x) .
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Postscript added June 10 2002

(1) David Callan points out that the proof of Proposition 1 is not quite right. He says:

The bijection from paths to down-up permutations is not quite right. (It is possible

for f(n) to equal 1 and then the box diagram procedure as described would give

a permutation beginning with 1—definitely not down-up.) One way to correct it

would be the following. Label the n boxes in the bottom row 1, 2, 3, . . . , n from left

to right in all cases (whether n is even or odd). Then place stars as described in

the present proof, except counting from the right for the first (bottom-most) star,

then alternately left and right for subsequent stars.

We agree with this comment, and thank him for the correction.

(2) Mike Atkinson drew our attention to two earlier references that we could have cited:

M.D. Atkinson: Zigzag permutations and comparisons of adjacent elements, Information

Processing Letters, 21 (1985), 187–189.

M.D. Atkinson: Partial orders and comparison problems, in Sixteenth Southeastern Con-

ference on Combinatorics, Graph Theory and Computing, (Boca Raton, February 1985), Con-

gressus Numerantium 47, 77–88.
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7 6 5 3 2 1

(b)

*

4

(a)

*

*

*

*

2345 1

*

*

*

*

*

Figure 7: (a) Box diagram corresponding to path shown in Fig. 6. (b) Reduced box diagram,
representing path of type π(4, 3, 0).

1
3 2

1 4 6
35 34 30 24

1 36 70 100 124
· · ·

1

2 1
6 8 9

24 18 10 1
124 148 166 176 177

· · ·

Figure 8: The double-ox transform of 1, 1, 1, . . . is 1, 3, 9, 35, 177, . . ..
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