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Abstract

An asymmetric covering D(n,R) is a collection of special subsets S of an n-set such that every
subset T of the n-set is contained in at least one special S with |S| − |T | ≤ R. In this paper
we compute the smallest size of any D(n, 1) for n ≤ 8. We also investigate “continuous” and
“banded” versions of the problem. The latter involves the classical covering numbers C(n, k, k−1),
and we determine the following new values: C(10, 5, 4) = 51, C(11, 7, 6, ) = 84, C(12, 8, 7) = 126,
C(13, 9, 8) = 185 and C(14, 10, 9) = 259. We also find the number of nonisomorphic minimal
covering designs in several cases.

1. Introduction

Let D(n,R) denote the smallest size of any asymmetric covering2 D(n,R). Prompted by applica-
tions to the manufacture of semiconductor wafers, Cooper, Ellis and Kahng [7] have investigated
the asymptotic behavior of D(n,R) for fixed R as n → ∞. In Section 2 of the present paper we
show that the values of D(n, 1) for n ≤ 8 are as shown in Table 1.3

Our method of attack is to formulate D(n, 1) as the solution to a {0, 1}-integer programming
problem. If instead we allow the variables to take any real values in the range [0, 1] then the linear
program can be solved exactly (Section 3). Of course this provides a lower bound E(n) to D(n, 1).

An upper bound can be obtained by restricting to asymmetric coverings with a certain banded
structure defined in Section 4. Corollary 2 shows that the solution C(n) to the banded version of
the problem is given by

C(n) =

[n/2]
∑

i=0

C(n + 1, n + 1 − 2i, n − 2i) , (1)

where as usual C(v, k, t) denotes the smallest size of any covering design C(v, k, t); that is, any
collection of special k-subsets S of a v-set such that any t-subset T is contained in at least one S.

Although there have been a large number of papers written about covering designs (for recent
work see [5], [10], [11], [15], [16], [17], [19]), not many exact values are known. In Section 5 we
determine several new values of C(n, k, k−1). Call a covering design C(n, k, t) optimal if it contains
the smallest number C(n, k, t) of subsets, and minimal if it is no longer a covering if any subset
is omitted. In Section 5 we also determine the number of nonisomorphic optimal covering designs
C(n, k, k − 1) for n up through 10, as well as the number of minimal covering designs for n up
through 7. See Tables 4, 5 in Section 5.

1Present address: Center for Communications Research, Princeton, NJ 08540
2These are called directed coverings in [7]. However, that term has already been used in the literature with a

different meaning (cf. [15]).
3This is sequence A66000 in [18]. If any further values are computed they will be recorded there.
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Using these results we obtain the values of C(n) for n ≤ 11 shown in Table 1.
Some of the literature on covering designs works with the complements of the special sets, in

which case this is called the Turán design problem (cf. [6]), and the Turán number T (v, k, t) is
equal to C(v, v− t, v−k). Of course our results also provide new values for certain Turán numbers.

Table 1: Size D(n, 1) of smallest asymmetric 1-covering of an n-set, together with values of the
continuous and banded solutions E(n) and C(n).

n E(n) D(n, 1) C(n)

1 1 1 1
2 2 2 2
3 3 3 3
4 5 6 6

5 81
2 10 10

6 145
6 18 18

7 263
8 31 31

8 4723
40 58 60

9 86553
720 ? 106

10 159353
560 ? 196

11 2953337
4480 ? 352

Notation

Let F
n
2 denote the set of binary vectors of length n. We represent subsets of an n-set by their

indicator vectors in F
n
2 , and then an asymmetric covering D(n,R) can be thought of as a binary

code called an “asymmetric covering code”. As usual weight (denoted wt) and distance (dist) refer
to Hamming weight and Hamming distance. The co-weight of u ∈ F

n
2 is n − wt(u). Two codes,

coverings or designs are isomorphic if they differ just by a permutation of the coordinates.

2. Values of D(n, 1) for n ≤ 8.

Let xu, u ∈ F
n
2 , be real {0, 1}-valued variables. Then D(n, 1) is equal to the minimal value of

∑

u∈F
n

2

xu (2)

subject to the constraints
∑

u∈Fn

2
u⊃v

xu + xv ≥ 1, for all v ∈ F
n
2 , (3)

where u ⊃ v indicates that u covers v and dist(u, v) = 1. If u = 11 . . . 1 then necessarily xu = 1.
The corresponding asymmetric covering code consists of the vectors u ∈ F

n
2 for which xu = 1. For

example D(3, 1) = 3, and the code (which is unique up to permutation of the coordinates) is

{111, 110, 001} . (4)
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Every binary vector of length 3 is either in this code or is contained in a codeword at distance 1
below it.

We call the above minimization problem the exact integer programming (or IP) problem. If we
relax the constraints and allow the xu to take any real values in the range [0, 1] we get a continuous
linear programming (or LP) problem, whose solution we denote by E(n).

Theorem 1. The values of D(n, 1) for n ≤ 8 are as shown in Table 1.

Proof. We attacked the IP problem using CPLEX [8] with AMPL [9] as a convenient interface.
CPLEX uses a branch and bound strategy for such problems. We regard solutions obtained in
this way as perfectly rigorous, since the computations could in principle be replaced by extremely
tedious hand calculations.

For n ≤ 7 CPLEX was able to find solutions directly, without any additional assumptions being
added. Explicit solutions are described in Section 4.

For n = 8 we must show that D(8, 1) = 58. A solution of size 58 found by CPLEX is given in
Table 2. (Each vector is represented by two hexadecimal characters. This covering has no apparent
structure–in particular it has trivial automorphism group) To show that 57 is impossible we argue
as follows. If we add the extra assumption that there are at most eight codewords of weight 5
to the continuous LP problem, the solution is at least 63. Therefore there must be at least nine
codewords of weight 5. From the tables of constant weight codes [4] it follows that there must
be two codewords of weight 5 and distance exactly two apart. Without loss of generality we can
assume that u1 = 11111000 and u2 = 11110100 are in the code.

Suppose the code contains a vector u3 of weight 3 with dist(u1, u3) = 6 and dist(u2, u3) = 4,
say u3 = 00010101. Then CPLEX finds that the minimal solution to the IP problem is 58. On the
other hand if no such vector u3 is present (this rules out 16 vectors of weight 3) no feasible solution
to the IP problem of size ≤ 57 exists. Hence D(8, 1) = 58.

The total computing time for these calculations was less than 48 hours.

Table 2: A minimal asymmetric covering D(8, 1) of length 8 containing 58 sets (represented in
hexadecimal).

01 07 0A 11 1E 28 2D 33 34 37 3B 4B 4C 52 55 57 5D 61 66 6E
6F 73 75 78 7E 7F 84 89 8F 96 98 99 9F A2 A5 AA B3 BB BC BD
C0 C3 CC D5 DA DB DD E6 E7 E9 EE EF F0 F6 F7 F9 FE FF

3. Solution to the continuous linear programming problem

Theorem 2. The optimal solution to the continuous LP problem of choosing 0 ≤ xu ≤ 1 for u ∈ F
n
2

so as to minimize (2) subject to (3) is given by

E(n) = (−1)nn!{Rn(2) − Rn(1)Rn−1(1)} (5)

where

Rn(x) =
n

∑

k=0

(−x)k

k!
(6)

is the degree n partial sum of e−x.
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Proof. We may assume that xu depends only on the weight of u. (For let yu denote the average
value of xv over all v with wt(v) = wt(u). Then by averaging (3) we see that the yu satisfy the
same constraints as the xu, and

∑

u∈F
n

2

yu =
∑

u∈F
n

2

xu .

So a symmetrized solution is just as good as a general solution.)
The “weight enumerator” of a symmetrized solution xu is defined by Aw =

∑

wt(u)=w xu for
w = 0, . . . , n. The quotes are needed because the xu are in general not integers. Let A(z) =
∑n

w=0 Awzw.
The covering condition (3) reads

wAw + Aw−1 ≥

(

n
w − 1

)

, w = 1, . . . , n ,

or in other words
A(z) + A′(z) ≥ (z + 1)n . (7)

We wish to choose A0, . . . , An ≥ 0 so as to minimize A(1) subject to (7). The dual problem
(compare [14, Chapt. 17]) is to choose B0, . . . , Bn ≥ 0 so as to maximize B(1) subject to

B(z) + B′(z) ≤ (z + 1)n (8)

where B(z) =
∑n

w=0 Bwzw. We claim that

B(z) = (−1)nn!{Rn(z + 1) − Rn−1(1)Rn(z)} (9)

is a feasible solution to the dual problem. In fact it is straightforward to verify that Bw ≥ 0 for all
w and

B(z) + B′(z) = (z + 1)n − Rn−1(1)z
n .

Since Rn−1(1) ≥ 0, (8) holds.
Therefore

B(1) = (−1)nn!{Rn(2) − Rn(1)Rn−1(1)}

is an upper bound to the optimal solution to the primal problem.
On the other hand

A(z) = (−1)nn!{Rn(z + 1) − Rn(1)Rn−1(z)}

satisfies
A(z) + A′(z) = (z + 1)n + Rn(1)nzn−1

and is easily checked to be a feasible solution to the primal problem. Since A(1) = B(1), this must
be the optimal solution to both problems.

Corollary 1. As n → ∞,

E(n) ∼ 2n+1

(

1

n
−

3

n2
+ O

(

1

n3

))

. (10)

We omit the routine derivation of this from (5).
The first few values of E(n) are shown in Table 1.

4



4. Banded solutions

Let D be an asymmetric covering D(n, 1). We call D banded if every vector v ∈ F
n
2 with odd

co-weight is covered by a vector u ∈ D of weight one higher.
For example (4) is banded, since the vector 000 is covered by 001 and the vectors 011, 101, 110

are all covered by 111.

Theorem 3. If a code C ⊆ F
n+1
2 is a union of covering designs,

C =

[n/2]
⋃

i=0

C(n + 1, n + 1 − 2i, n − 2i) , (11)

then deleting4 any one coordinate from all the vectors of C yields a banded asymmetric covering
D(n, 1). Conversely, let D be a banded asymmetric covering D(n, 1). If we append a 0 or 1 to every
vector of D in such a way that all co-weights become even, the result is a union of covering designs
of the form (11).

Proof. Suppose C has the structure shown in (11) and let D be obtained by deleting one coordi-
nate, which for concreteness we suppose is the last coordinate. We must show that D is a banded
asymmetric covering. Let v ∈ F

n
2 have weight w. If the co-weight n−w is even, say 2i, then v∗ = v0

must be covered by some vector u∗ = uδ, δ = 0 or 1, in the covering design C(n+1, n+1−2i, n−2i),
and then u ∈ D covers v. On the other hand if n − w is odd, say 2i − 1, then v∗ = v1 must be
covered by some u∗ = u1 ∈ C(n + 1, n + 1 − 2i, n − 2i), and again u covers v. The converse is
established by similar arguments.

Since the covering number C(n, k, v) is by definition the size of the smallest C(n, k, v), we have:

Corollary 2. The size of the smallest banded asymmetric covering D(n, 1) is given by

C(n) =

[n/2]
∑

i=0

C(n + 1, n + 1 − 2i, n − 2i) .

Using the known values of C(n, k, t) and the new values to be established in the next section
(see Table 3) we can determine C(n) exactly for n ≤ 11. These values are given in Table 1 and
show that for n ≤ 7, banded asymmetric coverings are as good as any asymmetric coverings.

A more detailed investigation provides further information:

Theorem 4. For lengths n = 1, 2, 3, 5, 6 and 7 an optimal asymmetric covering is necessarily
banded, and the corresponding covering designs of length 1 higher are unique. At length 4 there
are four nonisomorphic minimal asymmetric covers, as shown in Table 3, two banded and two
non-banded.

Proof. By direct enumeration. The details are omitted.
At length 7 the unique optimal (and banded) asymmetric covering can be found by deleting

any coordinate from the following set of 31 vectors of length 8: 18; {0212}14 (6); 14{0212}(6); the
14 vectors of the Steiner system S(3, 4, 8); 1206, 021204, 041202, 0612.

4Or puncturing, cf. [14], p.28.

5



Table 3: The four nonisomorphic minimal asymmetric coverings D(4, 1), of size D(4, 1) = 6. (a)
and (b) are banded, (c) and (d) are not.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1
0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0

(a) (b) (c) (d)

Remark. The continuous linear programming problem for the banded case is easily solved, and
has size exactly 2n+1/(n + 2), which is asymptotically

2n+1

(

1

n
−

2

n2
+ O

(

1

n3

))

, (12)

just slightly worse than (10).

5. New values for covering numbers

Let N(n, k, k − 1,M) denote the number of nonisomorphic minimal covering designs C(n, k, k − 1)
of size M , where of course M ≥ C(n, k, k−1). The main results of this section are shown in Tables
4 and 5.

Table 4: Covering numbers C(n, k, k − 1) for n ≤ 12. Starred entries are new; see text for missing
entries.

n/k 2 3 4 5 6 7 8 9 10 11

2 1
3 2 1
4 2 3 1
5 3 4 4 1
6 3 6 6 5 1
7 4 7 12 9 6 1
8 4 11 14 20 12 7 1
9 5 12 25 30 30 16 8 1
10 5 17 30 51∗ 50 45 20 9 1
11 6 19 47 66 α 84∗ 63 25 10 1
12 6 24 57 113 132 β 126∗ 84 30 11
13 7 26 78 γ 245 δ ǫ 185∗ 112 36

Table 4 gives the values of C(n, k, k − 1) for n ≤ 12. Starred entries are new, and we have also
shown that

C(14, 10, 9) = 259 .

In every case the coverings achieving these bounds were already known, see [11] for references. Our
contribution has been to show that no smaller covering exist. The five remaining gaps in Table 4
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are at C(11, 6, 5) (where 96 ≤ α ≤ 100), C(12, 7, 6) (165 ≤ β ≤ 176), C(13, 5, 4) (149 ≤ γ ≤ 157),
C(13, 7, 6) (257 ≤ δ ≤ 264), C(13, 8, 7) (269 ≤ ǫ ≤ 297), the lower bounds being new, except for γ.

Table 5 gives values of N(n, k, k−1,M) together with a brief indication of how they were found.
An entry such as

11, 8, 7 : 63(40); 64(1193)(based on [10, 7, 6, 46])

indicates that there are 40 nonisomorphic minimal coverings C(11, 8, 7) of size 63, 1193 of size
64, and that the latter enumeration was based on examining all possible ways to extend minimal
covering designs C(10, 7, 6) of size ≤ 46. (For any C(11, 8, 7) of size 63 must puncture to a covering
C(10, 7, 6) which contains a minimal C(10, 7, 6) of size ≤ 46.) The symbol at the end of a line in
the tables indicates that the enumeration of minimal covering designs C(n, k, k−1) for these values
of n and k is complete.

It is worth drawing attention to the gaps that occur just above the parameters corresponding
to the Steiner coverings C(8, 4, 3), C(10, 4, 3), C(11, 5, 4), C(12, 6, 5). For example a C(12, 6, 5) that
does not contain the 132-block Witt design must contain at least 137 elements.

We know of no earlier table of this type, although isolated values have been published. For
example de Caen et al. [5] showed that N(9, 5, 4, 30) = 3 and N(10, 6, 5, 50) = 1. The Steiner
triple systems S(2, 3, n) have been enumerated for n ≤ 19 [13]: this gives the number of optimal
C(n, 3, 2)’s for n ≡ 1 or 3 ( mod 6). Also Steiner quadruple systems S(3, 4, n) have been enumerated
for n ≤ 15 (see the survey article [12]); this gives the number of optimal C(n, 4, 3) for n ≡ 2 or
4 (mod 6).

To test isomorphism we generally used the isomorphism subroutines in the Magma computer
algebra system [1], [2], [3].

To compute the entries N(n, k, k − 1,M) in Table 5 and to establish the new lower bounds
implicit in Table 4 we made use of two different branch-and-bound procedures.

The first procedure branched by selecting one of the uncovered (k − 1)-subsets which had the
fewest remaining k-subsets which could cover it. Let {x1, x2, . . . , xl} denote the k-subsets which
could cover it. The procedure recursively considered the l alternatives {{xi in the covering, xj

not in the covering, for 1 ≤ j ≤ i − 1}, 1 ≤ i ≤ l}. This branching continued until either every
(k − 1)-subset was covered, or until the lower bound

⌈

∑

v′∈T

1

maxv:v′⊂v(|{v′′ ∈ T : v′′ ⊂ v}|)

⌉

(13)

on the number of available k-subsets needed to cover the set T of uncovered (k−1)-subsets showed
that no covering of size M could be obtained from the current branch.

The second procedure used solutions of the continuous LP problem (see Section 3) to guide
it. It branched on the k-subset x whose corresponding variable was closest to 1

2 , considering the
alternatives “x in the covering” and “x not in the covering”. This branching continued until one
of the following obtained:

(a) every k-subset had been placed in or excluded from the covering,
(b) some (k − 1)-subset could no longer be covered, or
(c) applying the following lemma, where U is the set of available k-subsets and T is the set of

uncovered (k − 1)-subsets, showed that no covering of size M could be obtained from the current
branch. The optimal choice of w in this bound is given by the solution to the dual of the linear
programming relaxation; the program used a discrete, exact approximation to these dual variables
for its bound.

7



Lemma 1. Let T and U be finite sets equipped with a relation x ⊂ y for x ∈ T , y ∈ U , and let

w : T → R

be a function satisfying
∑

x∈T :x⊂y

w(x) ≤ 1 for all y ∈ U . (14)

Then any C ⊆ U covering T satisfies the lower bound

|C| ≥

⌈

∑

x∈T

w(x)

⌉

.

Proof. Let C ⊆ U cover T . Then

|C| =
∑

y∈C

1

≥
∑

y∈C

∑

x∈T :x⊂y

w(x)

≥
∑

x∈T

w(x)

where the first inequality is from (14), and the second is because C covers T . Since |C| is an integer,
the result follows.

Remark. The bound (13) is the special case of the Lemma in which U is the set of all available
k-subsets, T is the set of uncovered (k − 1)-subsets, and

w(v) =
1

maxv:v′⊂v(|{v′′ ∈ T : v′′ ⊂ v}|)
.

Because the second program uses a stronger bound, it searched smaller branch-and-bound trees,
but since it solved the linear programming relaxation at each node, it took more time per node.
As a result, the first program was more efficient for “easy” problems, and the second program for
“difficult” problems (roughly, those in Table 4 in the region bounded by n ≥ 9 and 4 ≤ k ≤ n− 4).
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Table 5: Values of N(n, k, k − 1,M), the number of nonisomorphic minimal covering designs
C(n, k, k − 1) of size M . See text for further details.

4, 2, 1 : 2(1), 3(1)
5, 3, 2 : 4(1), 5(1), 6(1)
6, 4, 3 : 6(1), 7(1), 8(1), 10(1)
7, 5, 4 : 9(1), 11(2), 12(2), 15(1)
8, 6, 5 : 12(1), 13(1), 15(2), 16(3), 17(2), 21(1)
9, 7, 6 : 16(1), 18(1), 19(2), 20(3), 21(2), 22(3), 23(3), 28(1)
10, 8, 7 : 20(1), 21(1), 24(4), 25(2), 26(7), 27(5), 28(4), 29(2),

30(4), 36(1)
11, 9, 8 : 25(1), 27(1), 29(2)(based on 10,8,7,21)
12, 10, 9 : 30(1), 31(1), 34(1), 35(4)(based on 11,9,8,29)
13, 11, 10 : 36(1), 38(1), 40(0)(based on 12,10,9,31)

5, 2, 1 : 3(1), 4(1)
6, 3, 2 : 6(1), 7(5), 8(2), 10(1)
7, 4, 3 : 12(4), 13(57), 14(139), 15(24), 16(6), 17(1), 20(1)
8, 5, 4 : 20(6), 21(263), 22(7340)(based on 7,4,3,13)
9, 6, 5 : 30(2), 31(16), 32(863)(based on 8,5,4,21)
10, 7, 6 : 45(20), 46(609)(based on 9,6,5,32)
11, 8, 7 : 63(40), 64(1193)(based on 10,7,6,46)
12, 9, 8 : 84(4), 85(46), 86(1423)(based on 11,8,7,64)
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Table 5: (continued)

6, 2, 1 : 3(1), 4(2), 5(1)
7, 3, 2; 7(1), 9(14), 10(40), 11(60), 12(7), 13(1), 15(1)
8, 4, 3 : 14(1), 17(13)
9, 5, 4 : 30(3), 31(18), 32(459)(based on 8,4,3,17)
10, 6, 5 : 50(1), 52(4), 53(56), 54(880)(based on 9,5,4,32)
11, 7, 6 : 84(3), 85(0)(based on 10,6,5,54)
12, 8, 7 : 126(3), 127(2), 128(0)(based on 11,7,6,84)
13, 9, 8 : 185(1), 186(0)(based on 12,8,7,127)
14, 10, 9 : 259(1)(based on 13,9,8,185)

7, 2, 1 : 4(1), 5(2), 6(1)
8, 3, 2 : 11(5), 12(145)(based on 7,2,1,4)
9, 4, 3 : 25(77), 26(5562), 27(538969)(based on 8,3,2,12)
10, 5, 4 : 51(40), 52(3354)(based on 9,4,3,26)

8, 2, 1 : 4(1), 5(2), 6(3), 7(1)
9, 3, 2 : 12(1), 13(1), 14(64)(based on 8,2,1,4)
10, 4, 3 : 30(1), 33(43)(based on 9,3,2,13)
11, 5, 4 : 66(1), 70(78)(based on 10,4,3,30)
12, 6, 5 : 132(1), 137(87)(based on 11,5,4,66)

9, 2, 1 : 5(1), 6(3), 7(3), 8(1)
10, 3, 2 : 17(58)(based on 9,2,1,5)
11, 4, 3 : 47(≥ 95970)(based on 10,3,2,17)
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