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Abstract

This paper gives a brief survey of binary single-deletion-correcting
codes. The Varshamov-Tenengolts codes appear to be optimal, but
many interesting unsolved problems remain. The connections with
shift-register sequences also remain somewhat mysterious.

1 Introduction

The possibility of packet loss on internet transmissions has renewed interest
in deletion-correcting codes. (Of course there are many other applications
of such codes, including magnetic recording, although in that case there are
usually additional conditions that must be satisfied.) This paper considers
the very simplest family of such codes, binary block codes capable of correct-
ing single deletions. Even for these codes there remain several apparently
unsolved problems.

It is surprising, but these codes do not appear to be surveyed in any of
the usual references ([MS77], [PH98], etc.). This paper is a first attempt at
such a survey.

Proofs are given of a number of results, either because the new proofs
are simpler or because the original sources are hard to locate1.

Definition 1.1. For a vector u ∈ F
n
q , let De(u) denote the set of e-th or-

der descendants, i.e. the set of vectors v ∈ F
n−e
q that are obtained if e

components are deleted from u. A subset C ⊆ F
n
q is said to be an e-deletion-

correcting code if De(u)∩De(v) = ∅ for all u, v ∈ C, u 6= v. Our problem is
to find the largest such code. In this paper we mostly consider the simplest
case, q = 2 and e = 1.

1and when located are sometimes poorly translated or badly photocopied!
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The deletion distance dd(u, v) between vectors u, v ∈ F
n
q is defined to be

one-half of the smallest number of deletions and insertions needed to change
u to v. Then C is e-deletion-correcting if and only if dd(u, v) ≥ e + 1 for
u, v ∈ C, u 6= v. (For dd(u, v) ≤ e if and only if there is a vector x that
can be reached from u by at most e deletions and also from v by at most e
deletions, and then C cannot correct e deletions.)

Consider the graph Gn having a node for every vector u ∈ F
n
q , with an

edge joining the nodes corresponding to u, v ∈ F
n
q , u 6= v, if and only if v

can be obtained from u by a single deletion and insertion, i.e. if and only
if D1(u) ∩ D1(v) 6= ∅. The deletion distance dd(u, v) is the length of the
shortest path from u to v (this shows that dd is indeed a metric).

In particular, a single-deletion-correcting code corresponds to an inde-
pendent set in Gn. One can now attempt to calculate the sizes of the largest
independent sets by computer. In the binary case we find that the largest
single-deletion-correction codes of lengths 1, 2, . . . , 8 have sizes

1, 2, 2, 4, 6, 10, 16,≥ 30 . (1)

The last entry in (1) was kindly computed by my colleague David Johnson.
Unfortunately G8 is too large for present computers and 30 is at present
only a lower bound on the size of a maximal independent set.2

However, (1) turns out to be a useful hint. When one looks up this
sequence in [EIS], one finds a unique matching sequence, number A16, whose
initial terms N1, N2, N3, . . . are

1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586, . . . (2)

and whose nth term is given by

Nn =
1

2n

∑

odd d|n
φ(d)2n/d, n ≥ 1 , (3)

where the sum is over all odd divisors d of n and φ is the Euler totient
function (sequence A10). The references cited for sequence A16 indicate
that it has arisen in connection with the enumeration of shift-register se-
quences [Go67] and tournaments [Br80]. However there was (at that time)
no reference to indicate that this sequence has any connection with codes,
nor was there any apparent connection between the shift-register sequences
and deletion-correction codes.

2Postscript: David Applegate has since used CPLEX’s integer programming subrou-
tines (which combine ordinary linear programming with branch-and-bound) to confirm
that the largest single-deletion-correcting code of length 8 does indeed have size 30.
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More conventional search methods, in particular, consulting some well-
known papers of Levenshtein [Lev65], [Lev65a] on codes for correcting dele-
tions, turned up many other relevant references. Some of these will be
discussed further in Section 6. The most interesting codes are those of Var-
shamov and Tenengolts [VT65]. In [VT65] they present a family of codes
depending on a certain parameter a. When a is taken to be 0, these codes
have size Nn−1 (see (3)) and thus match (1). These codes are the subject of
Section 2.

Sections 3 and 4 will discuss the connection with shift-registers and tour-
naments, and Section 5 contains some general remarks about the number of
descendants of a vector. The final section, Section 6, gives a brief discussion
of other papers on deletion-correcting and related codes.

2 The Varshamov-Tenengolts codes

Definition 2.1. For 0 ≤ a ≤ n, the Varshamov-Tenengolts code V Ta(n)
consists of all binary vectors (x1, . . . , xn) satisfying

n
∑

i=1

ixi ≡ a (mod n + 1) , (4)

where the sum is evaluated as an ordinary rational integer.

As will appear, the codes with a = 0 contain the most codewords. The
first few such codes are

V T0(1) = {0}
V T0(2) = {00, 11}
V T0(3) = {000, 101}
V T0(4) = {0000, 1001, 0110, 1111}
V T0(5) = {00000, 10001, 01010, 110011, 11100, 00111} , (5)

of sizes 1,2,2,4,6, matching (1) and (2). These codes were introduced in
[VT65] for correcting errors on a Z-channel (or asymmetric channel). Similar
constructions have been used in [BR82] and also in [GS80] and [Kl81] to
construct constant weight codes.

Levenshtein [Lev65], [Lev65a] observed that the Varshamov-Tenengolts
codes could be used for correcting single deletions, proving this by giving
the following elegant decoding algorithm.
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Decoding algorithm

• Suppose a codeword x = (x1, . . . , xn) ∈ V Ta(n) is transmitted, the
symbol s in position p is deleted, and x′ = (x′

1, . . . , x′
n−1) is received.

Let there be L0 0’s and L1 1’s to the left of s, and R0 0’s and R1 1’s
to the right of s (with p = 1 + L0 + L1).

• We compute the weight w = L1 + R1 of x′ and the new checksum
∑n−1

i=1 ix′
i. If s = 0 the new checksum is R1 (≤ w) less than it was

before, and if s = 1 it is p+R1 = 1+L0 +L1 +R1 = 1+w+L0 (> w)
less than it was before. (These numbers are less than n + 1 so there is
no ambiguity.)

• So if the deficiency in the checksum is less than or equal to w we know
that a 0 was deleted, and we restore it just to the left of the rightmost
R1 1’s. Otherwise a 1 was deleted and we restore it just to the right
of the leftmost L0 0’s.

Table 1: Number of codewords in Varshamov-Tenengolts code V Ta(n).

n \ a 0 1 2 3 4 5 6 7 8

1 1 1
2 2 1 1
3 2 2 2 2
4 4 3 3 3 3
5 6 5 5 6 5 5
6 10 9 9 9 9 9 9
7 16 16 16 16 16 16 16 16
8 30 28 28 29 28 28 29 28 28

The sizes |V Ta(n)| of the first few codes are shown in Table 1. (This
array forms sequence A53633 in [EIS].) These numbers were studied by
Varshamov [Var65] and Ginzburg [Gi67], but the following simple formula
appears to be new.

Theorem 2.2.

|V Ta(n)| =
1

2(n + 1)

∑

d|n+1
d odd

φ(d)
µ

(

d
(d,a)

)

φ
(

d
(d,a)

)2(n+1)/d , (6)

where µ(n) is the Möbius function (A8683), and (d, a) = gcd(d, a).
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Proof. Write wa(n) = |V Ta(n)|. We will calculate wa(n − 1), assuming
throughout that n ≥ 1. It follows from the definition of these codes that the
generating function

f(z) =
n−1
∑

a=0

wa(n − 1)za

is equal to
n−1
∏

k=1

(1 + zk) mod zn − 1 .

Let ξ = e2πi/n. Then

f(ξj) =

n−1
∑

a=0

wa(n − 1)ξja =

n−1
∏

k=1

(1 + ξjk), j = 0, . . . , n − 1 .

We solve this by taking an inverse discrete Fourier transform (cf. [Ko88],
Chap. 97) to obtain

wa(n − 1) =
1

n

n−1
∑

j=0

f(ξj)ξ−ja .

Since
n−1
∏

k=0

(z − ξk) = zn − 1 ,

we can calculate f(ξj) explicitly. An elementary calculation gives

f(ξj) =

{

2g−1 if d = n/g is odd,

0 if d = n/g is even,

where g = gcd(n, j). Therefore

wa(n − 1) =
1

2n

∑

d|n
d odd

2n/d
n

∑

j=1
gcd(n,j)=n/d

ξ−ja

which becomes, writing j = kn/d,

=
1

2n

∑

d|n
d odd

2n/d
d

∑

k=1
(k,d)=1

e−2πika/d .
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The innermost sum is a Ramanujan sum cd(a) ([Ap76], p. 160), which
simplifies to

cd(a) = φ(d)
µ

(

d
(d,a)

)

φ
(

d
(d,a)

)

([Ap76], p. 164).

Corollary 2.3.

(i) |V T0(n)| =
1

2(n + 1)

∑

d|n+1
d odd

φ(d)2(n+1)/d , (7)

(ii) |V T1(n)| =
1

2(n + 1)

∑

d|n+1
d odd

µ(d)2(n+1)/d , (8)

(iii) For any a,

|V T0(n)| ≥ |V Ta(n)| ≥ |V T1(a)| . (9)

Remark 2.4. (i) and the left-hand inequality in (iii) are due to Varshamov
[Var65], and (ii) and the right-hand inequality in (iii) to Ginzburg [Gi67].

Proof. (i) and (ii) follow immediately from Theorem 2.2, as does the left-
hand side of (iii) using µ(k) ≤ φ(k) for all k. To establish the right-hand
side of (iii), let p be the smallest odd prime dividing both n + 1 and a (if no
such prime exists then |V Ta(n)| = |V T1(n)|). The terms in the expressions
for |V Ta(n)| and |V T1(n)| agree for d < p, and at d = p the term in |V Ta(n)|
exceeds that in |V T1(n)| by p2n/p. It is easy to check that the remaining
terms can never make the sum in |V T1(n)| catch up with the sum in |V Ta(n)|.

Optimality

It is more difficult to obtain upper bounds for deletion-correcting codes
than for conventional error-correcting codes, since the disjoint balls De(u)
associated with the codewords (see Section 1) do not all have the same size.
Furthermore the metric space (Fn

2 , dd) is not an association scheme and so
there is no obvious linear programming bound.
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The size of D1(u) is easily seen to be equal to r(u), the number of runs
in u. Furthermore the number of vectors in F

n
2 with r runs is 2

(n−1
r−1

)

. (We
will discuss |De(u)| further in Section 5.)

Let A(n, e) denote the size of the largest e-deletion-correcting binary
code of length n, and call a code C optimal if |C| = A(n, e). The values of
A(n, 1) for n ≤ 9 were given in Section 1, and show that V T0(n) is optimal
for n ≤ 9.

For large n, the codes V T0(n) are certainly close to being optimal, since
on the one hand we have

|V T0(n)| ≥ 2n

n + 1
, (10)

from (9), and on the other hand we have the following result of Levenshtein
[Lev65]:

Theorem 2.5 ([Lev65]).

A(n, 1) ∼ 2n

n
, as n → ∞ .

Proof. (10) gives a lower bound. Let C be an optimal code. Following
Levenshtein, let C0 denote the subset of C consisting of the vectors u ∈ C
with

n

2
−

√

n log n ≤ r(u) ≤ n

2
+

√

n log n

and let C1 = C \ C0. Since the sets D1(u), u ∈ C, must be disjoint,

|C0| ≤
2n−1

n
2 −√

n log n
.

2n

n
.

Furthermore,

|C1| ≤ 2

n
2
−
√

n log n
∑

r=1

2

(

n − 1

r − 1

)

,

which is much smaller than 2n/n.

In a later paper, Levenshtein [Lev92] defines a code C to be perfect if
the balls De(u), u ∈ C, partition the set F

n−e
2 . In [Lev92] he proves the

remarkable fact that all the codes V T0(n), V T1(n), V T2(n), . . . are perfect
single-deletion-correcting codes. The argument, not reproduced here, is es-
sentially just a refinement of the decoding algorithm for these codes given
above.
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It is initially surprising that perfect codes of the same length can have
different numbers of codewords, but this is explained by the fact that the
balls D1(u) have different sizes.

In view of this and the result in (9), it is tempting to make the following
conjecture.

Conjecture 2.6. The codes V T0(n) are optimal for all n.

This is true for n ≤ 8, as already mentioned, but for larger n it is possible
that other, smaller, perfect codes may exist, or even that smaller, optimal
but non-perfect codes may exist.

Indeed, consider the code {000, 111}. For this code,
∑

u∈C |D1(u)| = 1+
1 = 2 < 4, so this is optimal but not perfect. For length 4, {0000, 0011, 1100, 1111}
contains as many codewords as V T0(4) (compare (5)), and again is optimal
but not perfect.

At length 6 it is possible to replace two codewords of V T0(6) by two
other vectors without affecting its ability to correct single deletions: 110100
and 001011 can be replaced by 111000 and 000111. The former pair cover
eight vectors of length 5, but the latter only cover four vectors of length 5,
leaving four vectors uncovered. This suggests the possibility that in some
larger code V T0(n) it may be possible to replace k vectors by k + 1 vectors,
which would prove that these codes are not optimal.

In view of these remarks, Conjecture 2.6 does not seem especially com-
pelling!

Linearity

As can be seen from (5), the codes V T0(n) are linear for n ≤ 4. They are
never again linear, since, for n ≥ 5, V T0(n) contains the vectors 1 0 0 0 . . . 0 0 1
and 1 1 0 0 . . . 1 0 0 but not their sum.

In particular, even though |V T0(7)| = 16, this code is not linear. One
might wonder if it is possible to find a linear code that will do as well, but
a computer search has shown that no such code exists.

On the other hand, by adapting a construction of Tenengolts [Ten76], one
can modify the Varshamov-Tenengolts construction to obtain linear codes,
with only a small increase in the length of the code.

Definition 2.7. Given k ≥ 1, let

n = k +
⌈

√

2k + 9/4 + 1/2
⌉

.
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The linear single-deletion-correcting code V T ′
0(n) has dimension k and con-

sists of all vectors (x1, . . . , xn) ∈ F
n
2 , where x1, . . . , xk are information

symbols and the c = n − k check symbols xk+1, . . . , xn are chosen so that
∑n

i=1 ixi ≡ 0 (mod n + 1).

The construction works because c is just large enough so that
(c+1

2

)

≥
n + 1, and so the sums

∑n
i=k+1 ixi cover n + 1 consecutive values modulo

n + 1. We omit the details.
The number of check symbols in these codes is of the order of

√
2n,

compared with O(log n) for the V T0(n) codes. So we end this section with a
final question: What are the optimal linear single-deletion-correcting codes?

3 Shift register sequences

As mentioned in Section 1, the entry for sequence A16 in [EIS] indicates
that these numbers also arise in the enumeration of shift register sequences
[Go67]. We will show here that indeed this is the same sequence. But
whether this is anything more than a coincidence remains an open question.
Of course there are well-known connections between shift-register sequences
and conventional error-correcting codes (cf. [MS77], Chapter 7), so there
should be a deeper explanation.

The context in which sequence A16 appears in Golomb’s book [Go67]
is the enumeration of the (infinite) output sequences from certain types of
n-stage binary shift registers. We consider four kinds of shift registers: the
pure cycling register (or PCR), as illustrated in Fig. 1, the complemented
cycling register (or CCR), the pure summing register (or PSR) and the com-
plemented summing register (or CSR). If the shift register has n cells, initially
containing x1, x2, . . . , xn (xi = 0 or 1), then x1 is appended to the output
stream, symbols x2, . . . , xn move to the left, and the symbol

(PCR) x1

(CCR) 1 + x1

(PCR) x1 + x2 + · · · + xn or
(CSR) 1 + x1 + x2 + · · · + xn

is fed back to the right-most cell.
The problem is to determine the numbers of different possible output

sequences from these registers, which we denote by Z(n), Z∗(n), S(n) and

9
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xnx3x2
. . .

x1

Figure 1: An n-stage pure cycling register.

S∗(n), respectively. For example S∗(5) = 6, corresponding to the sequences

. . . 0 0 0 0 0 1 0 0 0 0 0 1 . . .

. . . 0 0 0 1 1 1 0 0 0 1 1 1 . . .

. . . 0 0 1 0 1 1 0 0 1 0 1 1 . . .

. . . 0 1 0 0 1 1 0 1 0 0 1 1 . . .

. . . 0 1 0 1 0 1 0 1 0 1 0 1 . . .

. . . 0 1 1 1 1 1 0 1 1 1 1 1 . . . ,

all having period 6 (or a divisor of 6).
Table 2, based on [Go67, page 172], shows the first few values of these

functions, together with the corresponding sequence numbers from [EIS].
Explicit formulas for these functions are given in the next theorem.

Theorem 3.1. For n ≥ 1,

Z(n) =
1

n

∑

d|n
φ(d)2n/d , (11)

Z∗(n) = S∗(n − 1) =
1

2n

∑

d|n
d odd

φ(d)2n/d , (12)

S(n) =
1

2(n + 1)

∑

d|n+1

φ(2d)2(n+1)/d . (13)

Remark 3.2. Golomb proves (11) and sketches proofs of the other results.
Actually (13) is due to Michael Somos (personal communication), Golomb’s
version (given in (15) below) being slightly more complicated. The numbers
Z(n) (sequence A31) in the first column are also familiar as the number
of binary irreducible polynomials of degree dividing n, and the number of
n-bead necklaces formed with beads of two colors, when the necklaces may

10
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Table 2: Number of ouput sequences from n-stage shift registers of types
PCR, CCR, PSR, CSR.

PCR CCR PSR CSR

n Z(n) Z∗(n) S(n) S∗(n)

1 2 1 2 1
2 3 1 2 2
3 4 2 4 2
4 6 2 4 4
5 8 4 8 6
6 14 6 10 10
7 20 10 20 16
8 36 16 30 30
9 60 30 56 52
10 108 52 94 94
· · · · · · · · · · · · · · ·

Sequence: A31 A16 A13 A16

not be turned over (cf. [Be68, Chap. 4], [GR61], [MS77, Chap. 4], [St99,
Problem 7.112]). Fredricksen [Fr70] shows that Z(n) − 1 is the number of
1’s in the truth table defining the lexicographically least de Bruijn cycle.

Proof. Note that sequence A16 appears in two places in the table, for CCR
registers of length n and CSR registers of length n − 1. We begin by ex-
plaining this, and thus proving that

Z∗(n) = S∗(n − 1) . (14)

Suppose for concreteness that n = 4. The output sequences from the four
types of register are (omitting plus signs, and writing 1a rather than 1 + a,
etc.):

(i) a b c d a b c d a · · ·
(ii) a b c d 1a 1b 1c 1d a b c d · · ·
(iii) a b c d abcd a b c d abcd a b c d · · ·
(iv) a b c d 1abcd a b c d 1abcd a b c d · · ·

In general these sequences have periods n, 2n, n + 1 and n + 1, respectively.
If we replace (ii) by the sums of adjacent pairs we get

ab bc cd 1ad ab bc cd 1ad . . . ,
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a CSR(3) sequence. Conversely, given a CSR(3) sequence, say

A B C 1ABC A B C 1ABC . . . ,

of period 4, there is a unique CCR(4) sequence of period 8 corresponding to
it, namely

0 A AB ABC 1 1A 1AB 1ABC 0 A . . . .

Applying this argument in the general case establishes (14).
In the rest of the proof we make use of Burnside’s lemma (cf. [St99]),

which states that the number of orbits of a finite permutation group G is
equal to the average number of points that are fixed by the elements of G.

Let us first prove (11). (This is Golomb’s proof [Go67, p. 121].) We take
G to be the cyclic group of order n generated by π = (1, 2, . . . , n), acting
on F

n
2 . The permutation πi (1 ≤ i ≤ n) contains gcd(n, i) cycles, each of

length n/gcd(n, i), and has order n/gcd(n, i). There are precisely 2gcd(n,i)

vectors fixed by πi, since each cycle must consist of all 0’s or all 1’s. Hence,
by Burnside’s lemma,

Z(n) =
1

n

n
∑

i=1

2gcd(n,i)

=
1

n

∑

k|n

n
∑

i=1
gcd(n,i)=k

2k

=
1

n

∑

k|n
2k

∑

gcd(n
k

,i)=1

1

=
1

n

∑

k|n
φ

(n

k

)

2k

=
1

n

∑

d|n
φ(d)2n/d .

To establish (12), we note from (iv) that S∗(n−1) is equal to the number
of orbits of the same group, but now acting on binary vectors of length n
and odd weight. The number of odd weight vectors fixed by πi is 2gcd(n,i)−1

12



if the cycle lengths n/gcd(n, i) are odd, and zero otherwise. Hence

S∗(n − 1) =
1

n

n
∑

i=1
n/gcd(n,i) odd

2gcd(n,i)−1

=
1

n

∑

k|n
n/k odd

φ
(n

k

)

2k−1

=
1

2n

∑

d|n
d odd

φ(d)2d .

Finally, we prove (13), by determining S(n− 1). The group is the same,
but now (see (iii)) acting on even weight vectors. If d = n/gcd(n, i) is even
there are 2d fixed vectors, but if d is odd only 2d−1 fixed vectors. Hence

S(n − 1) =
1

n

∑

d|n
d odd

φ(d)2d−1 +
1

n

∑

d|n
d even

φ(d)2d (15)

=
1

2n

∑

d|n
φ(2d)2n/d ,

since φ(2d) = φ(d) if d odd, φ(d) = 2φ(d) if d even.

But a mystery still remains: is the fact that the number of codewords in
V T0(n) equals Z(n) just a numerical coincidence, or is there a one-to-one cor-
respondence between the codewords and the CCR shift register sequences?
(This is essentially equivalent to a research problem stated by Stanley in
[St86], Chapter 1, Problem 27(c).)

Furthermore, why is |V T1(n)| (sequence A48 in [EIS]), equal to the num-
ber of (n + 1)-bead necklaces with beads of two colors and primitive period
n + 1, when the two colors may be interchanged but the necklaces may not
be turned over (cf. [Fi58], [GR61])? This is also the number of irreducible
polynomials over F2 of degree n+1 in which the coefficient of xn is 1 [Car52],
[CMRSS].

4 Locally transitive tournaments

The entry for A16 in [EIS] also indicates that this sequence arose in Brouwer’s
enumeration [Br80] of locally transitive tournaments. A tournament is a di-
rected graph with one directed edge between any two nodes. It is transitive
if there are no directed cycles.

13

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000048
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000016


A locally transitive tournament is a tournament such that the subgraphs
on the predecessors of a point and the successors of a point are both tran-
sitive.

Brouwer, answering a question raised by P. J. Cameron, determined the
number of locally transitive tournaments on n nodes. He began by calcu-
lating the first few values by computer. Then he looked up this sequence
in [HIS], and found the reference to Golomb’s book [Go67]. With this hint
alone, and without having access to the book, he established a one-to-one
correspondence between these tournaments and output sequences from shift
registers of CCR type. From this he obtained the formula

∑

d|n
odd

(n

d

) 2d−1

d

∑

e|n
d

µ(e)

e
, (16)

where odd(i) is 0 or 1 according to whether i is even or odd, and µ is the
Möbius function (A8683). Using the identity

φ(n) =
∑

d|n
µ(d)

n

d

([Ap76], p. 26), (16) immediately reduces to (12).
Again we can ask, is there a connection between locally transitive tour-

naments and the V T0(n) codes?

5 The number of descendants of a vector

It was already mentioned in Section 2 that |D1(u)| = r(u), the number of
runs in u.

The next theorem was discovered by E. M. Rains and the author. Al-
though this must be well-known, we have not found it in the literature.

The derivative u′ ∈ F
n−1
2 of u = (u1, . . . , un) ∈ F

n
2 is given by

u′ = (u1 + u2, u2 + u3, . . . , un−1 + un) .

Note that wt(u′) = r(u) − 1.

Theorem 5.1.

|D2(u)| =

(

r(u) + 1

2

)

− δ , (17)

where δ = 2wt(u′) − wt(u′′) is the deficiency of u.
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Sketch of proof. First, suppose u is a “normal” vector, meaning that all runs
have length ≥ 2, for example

u = 0 0 0 0 1 1 1 0 0 0
u′ = 0 0 0 1 0 0 1 0 0
u′′ = 0 0 1 1 0 1 1 0

(18)

Then |D2(u)| =

(

r(u) + 1
2

)

is the number of ways of choosing two things

out of r(u) with repetitions allowed. If the runs in u have lengths i, j, k, l, . . . ,
the runs in the shortened vector have lengths

i − 2, j, k, l, . . .
i, j − 2, k, l, . . .
i, j, k − 2, l, . . .

· · · · · ·
i − 1, j − 1, k, l, . . .
i − 1, j, k − 1, l, . . .

· · · · · ·

(19)

For a normal vector wt(u′′) = 2wt(u′) (cf. (18)), δ = 0 and (17) holds.
Next suppose that all runs in u have length ≥ 2 except for a single

internal run of length 1, as in

u = 0 0 0 0 1 0 0 0
u′ = 0 0 0 1 1 0 0
u′′ = 0 0 1 0 1 0

Then δ = 2, and indeed |D2(u)| is 2 less than it would be for a normal vector,
since one of the possibilities in (19) vanishes and two others coalesce.

The remaining cases, when there are several runs of length 1, possibly
including beginning or ending runs, are left to the reader.

It is not clear how to generalize Theorem 5.1 to k-th order descendants.
Certainly D3(u) is not simply a function of the weights of u, u′, u′′ and u′′′.

Theorem 5.2. Let
µk(n) = max

u∈Fn
2

|Dk(u)|

be the maximal number of k-th order descendants of any binary vector of
length n. Then

µk(n) =
k

∑

i=0

(

n − k

i

)

, (20)
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for n ≥ k + 1. Equality is achieved just by the vectors

010101 . . . and 101010 . . . . (21)

According to Calabi and Hartnett [CH69], (20) is proved in an unpub-
lished 1967 report3 of Calabi [Cal67]. The first published proof seems to
have been given by Levenshtein [Lev96]. It was generalized to the nonbi-
nary case by Hirschberg [Hir99] (see also Levenshtein [Lev01] and Hirschberg
and Regnier [HR01]).

It is not difficult to show that the vectors (21) achieve the bound in (20).

Theorem 5.3. For the two vectors 010101 . . . and 101010 . . . we have

|Dk(u)| =

k
∑

i=0

(

n − k

i

)

. (22)

Proof. Let u = 010101 . . . ∈ F
n
2 , let Mn,k be the set of k-th order descendants

of u, and let mn,k = |Mn,k|. Then

Mn,k = 0|M̄n−1,k ∪ Mn−1,k−1

= 0|M̄n−1,k ∪ 1|Mn−2,k−1 ∪ Mn−2,k−2 , (23)

where the bars denote binary complementation. However, the last term in
(23) can be dropped because it is contained in the union of the other two
terms. Since these two terms are disjoint, we have

Mn,k = Mn−1,k + Mn−2,k−1 .

This is a disguised version of the recurrence for binomial coefficients, whose
solution is given by (22).

The case k = 2 of (20) is a corollary of Theorem 5.1:

Corollary 5.4. For n ≥ 3,

µ2(n) =
2

∑

i=0

(

n − 2

i

)

=
1

2
(n2 − 3n + 4) . (24)

Proof. Let u achieve µ2(n). The result is easily verified if r(u) is 1 or 2, so
we assume r(u) ≥ 3.

3I have been unable to locate a copy of this report.
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Suppose u begins with a string of k ≥ 0 runs of length 1, followed by a run
of length ≥ 2 from position k + 1. We will show that the vector u∗ obtained
by complementing u from position k+2 onwards satisfies |D2(u

∗)| ≥ |D2(u)|.
By repeating this operation we eventually arrive at one of the vectors (21).

Since |Dk(u)| = |Dk(ū)|, we may assume that the run following the initial
k runs of length 1 in u begins 11x . . . . In u∗ this is replaced by 10x̄ . . . .
Then we find that u∗ has r(u)+1 runs, and wt(u∗′′) = wt(u′′)−2+2x, from
which it follows using (17) that |D2(u

∗)| − |D2(u)| = r(u) + 2x − 3 ≥ 0, as
required.

6 Related work

The history of deletion-correcting codes is closely tied up with studies of
codes for correcting other classes of errors such as:

• erasures, when bits whose positions are known are deleted

• insertions of bits (rather than deletions)

• asymmetric errors, when the only errors that occur are that 1’s may
be changed to 0’s (this is also known as a Z-channel)

• unidirectional errors: 0’s may be changed to 1’s or 1’s to 0’s, but only
one type of error occurs in any particular transmission

• bit reversals: 0’s may be changed to 1’s or vice versa — this is the
subject of classical coding theory

• transpositions: adjacent bits may be swapped

• any meaningful combination of the above.

Furthermore the alphabet may be changed from F2 to Fq. This produces
an extensive list of families of codes, and of course in each case one can ask
for the largest codes.

In this section we give a brief overview of some other relevant papers.
First, Levenshtein’s papers [Lev65], [Lev65a], [Lev92], [Lev01] should be
considered essential reading.

Hartnett [Ha74] (see especially Calabi and Hartnett [CH69]) contains
some general investigations of all the above-mentioned codes (both block
codes and variable length codes) from a fairly abstract mathematical point
of view.
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One of the earliest papers to study deletion-correcting codes is Sellers
[Se62], which combines a special separating string between blocks with a
burst-error correcting code inside the blocks.

Ullman [Ull66] uses a construction similar to that of Varshamov and
Tenegolts, but his codes are not as efficient and also use a separating string
between blocks. In [Ull67] he gives bounds on the size of codes for correcting
synchronization errors.

Tenengolts [Ten84] generalizes the V Ta(n) codes to larger alphabets.
Nonbinary codes are also discussed in [Bo94], [Bo95], [Do85], [Ma98].

Other constructions for deletion-correcting and related codes are given
by Calabi and Hartnett [CH69a], Iizuka, Kasahara and Namekawa [IKN],
Kløve [Kl95] and Tanaka and Kasai [TK76].

The most recent paper on this subject is by Schulman and Zuckerman
[SZ99], who present what they describe as “simple, polynomial-time en-
codable and decodable codes which are asymptotically good for channels
allowing insertions, deletions and transpositions”. The number of errors
that can be corrected is some constant fraction of the block-length n. The
constructions are not explicit.

We conclude this section by mentioning some papers on peripherally
related codes. Codes for correcting asymmetric and unidirectional errors
are discussed in [BR82], [Et91], [EO98], [WVB88] and [WVB89]. Erasure
correcting codes are discussed by Alon and Luby [AL96] and Barg [Ba98].
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