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LATTICE PATH MATROIDS: ENUMERATIVE ASPECTS AND

TUTTE POLYNOMIALS

JOSEPH E. BONIN, ANNA DE MIER, AND MARC NOY

Abstract. Fix two lattice paths P and Q from (0, 0) to (m, r) that use East
and North steps with P never going above Q. We show that the lattice paths

that go from (0, 0) to (m, r) and that remain in the region bounded by P and
Q can be identified with the bases of a particular type of transversal matroid,
which we call a lattice path matroid. We consider a variety of enumerative
aspects of these matroids and we study three important matroid invariants,
namely the Tutte polynomial and, for special types of lattice path matroids,
the characteristic polynomial and the β invariant. In particular, we show
that the Tutte polynomial is the generating function for two basic lattice path
statistics and we show that certain sequences of lattice path matroids give
rise to sequences of Tutte polynomials for which there are relatively simple
generating functions. We show that Tutte polynomials of lattice path matroids
can be computed in polynomial time. Also, we obtain a new result about lattice
paths from an analysis of the β invariant of certain lattice path matroids.

1. Introduction

This paper develops a new connection between matroid theory and enumera-
tive combinatorics: with every pair of lattice paths P and Q that have common
endpoints we associate a matroid in such a way that the bases of the matroid
correspond to the paths that remain in the region bounded by P and Q. These ma-
troids, which we call lattice path matroids, appear to have a wealth of interesting
and striking properties. In this paper we focus on the enumerative aspects of lattice
path matroids, including the study of important matroid invariants like the Tutte
and the characteristic polynomials. Structural aspects of lattice path matroids and
their relation with other families of matroids will be the subject of a forthcoming
paper [3].

Lattice path matroids provide a bridge between matroid theory and the theory
of lattice paths that, as we demonstrate here and in [3], can lead to a mutually
enriching relationship between the two subjects. One example starts with the path
interpretation we give for each coefficient of the Tutte polynomial of a lattice path
matroid. Computing the Tutte polynomial of an arbitrary matroid is known to
be #P-complete; the same is true even within special classes such as graphic or
transversal matroids. However, by using the path interpretation of the coefficients
in the case of lattice path matroids, we show that the Tutte polynomial of such a
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matroid can be computed in polynomial time. On the lattice path side, as we illus-
trate in Section 8, this interpretation of the coefficients along with easily computed
examples of the Tutte polynomial can suggest new theorems about lattice paths.

Relatively little matroid theory is required to understand this paper and what
is needed is sketched in the first part of Section 2. We follow the conventional
notation for matroid theory as found in [11]. A few topics of matroid theory of
a more specialized nature (the Tutte polynomial, the broken circuit complex, the
characteristic polynomial, and the β invariant) are presented in the sections in
which they play a role. The last part of Section 2 outlines the basic facts on lattice
path enumeration that we use.

Lattice path matroids, the main topic of this paper, are defined in Section 3,
where we also identify their bases with lattice paths (Theorem 3.3). We introduce
special classes of lattice path matroids, among which are the Catalan matroids
and, more generally, the k-Catalan matroids, for which the numbers of bases are the
Catalan numbers and the k-Catalan numbers. We also treat some basic enumerative
results for lattice path matroids and prove several structural properties of these
matroids that play a role in enumerative problems that are addressed later in the
paper. Counting connected lattice path matroids on a given number of elements is
the topic of Section 4.

The next four sections consider matroid invariants in the case of lattice path ma-
troids. Section 5 gives a lattice path interpretation of each coefficient of the Tutte
polynomial of a lattice path matroid (Theorem 5.4) as well as generating functions
for the Tutte polynomials of the sequence of k-Catalan matroids (Theorem 5.6)
and, from that, a formula for each coefficient of each of these Tutte polynomials
(Theorem 5.7). In Section 6 we give an algorithm for computing the Tutte polyno-
mial of any lattice path matroid in polynomial time; we provide a second method
of computation that applies for certain classes of lattice path matroid and which,
although limited in scope, is particularly simple to implement on a computer. In
Section 7 we show that the broken circuit complex of a lattice path matroid is the
independence complex of another lattice path matroid and we develop formulas for
the coefficients of the characteristic polynomial for special classes of lattice path
matroids. Section 8 shows that k times the Catalan number Ckn−1 counts lattice
paths of a special type (Theorem 8.3); the key to discovering this result was look-
ing at a particular coefficient (the β invariant) of the Tutte polynomials of certain
lattice path matroids.

The final section connects lattice path matroids with a problem of current interest
in enumerative combinatorics, namely, the (k + l, l)-tennis ball problem.

We use the following common notation: [n] denotes the set {1, 2, . . . , n} and
[m, n] denotes the set {m, n + 1, . . . , n}. We follow the convention in matroid
theory of writing X ∪ e and X − e in place of X ∪ {e} and X − {e}.

2. Background

In this section we introduce the concepts of matroid theory that are needed in this
paper. For a thorough introduction to the subject we refer the reader to Oxley [11];
the proofs we omit in this section can be found there, mostly in Chapters 1 and 2.
We conclude this section with the necessary background on the enumerative theory
of lattice paths.
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Definition 2.1. A matroid is a pair
(
E(M),B(M)

)
consisting of a finite set E(M)

and a collection B(M) of subsets of E(M) that satisfy the following conditions:

(B1) B(M) 6= ∅,
(B2) B(M) is an antichain, that is, no set in B(M) properly contains another

set in B(M), and
(B3) for each pair of distinct sets B, B′ in B(M) and for each element x ∈ B−B′,

there is an element y ∈ B′ − B such that (B − x) ∪ y is in B(M).

The set E(M) is the ground set of M and the sets in B(M) are the bases of M .
Subsets of bases are independent sets; the collection of independent sets of M is
denoted I(M). Sets that are not independent are dependent. A circuit is a minimal
dependent set. If {x} is a circuit, then x is a loop. Thus, no basis of M can contain
a loop. An element that is contained in every basis is an isthmus.

It is easy to show that all bases of M have the same cardinality. More generally,
for any subset A of E(M) all maximal independent subsets of A have the same
cardinality; r(A), the rank of A, denotes this common cardinality. If several ma-
troids are under consideration, we may use rM (A) to avoid ambiguity. In place of
r(E(M)), we write r(M).

The closure of a set A ⊆ E(M) is defined as

cl(A) = {x ∈ E(M) : r(A ∪ x) = r(A)}.

A set F is a flat if cl(F ) = F . The flats of a matroid, ordered by inclusion, form a
geometric lattice.

It is well-known that matroids can be characterized in terms of each of the
following objects: the independent sets, the dependent sets, the circuits, the rank
function, the closure operator, and the flats (see Sections 1.1–1.4 of [11]).

Example. A matroid of rank r is a uniform matroid if all r-element subsets of the
ground set are bases. There is, up to isomorphism, exactly one uniform matroid of
rank r on an m-element set; this matroid is denoted Ur,m.

One fundamental concept in matroid theory is duality. Given a matroid M , its
dual matroid M∗ is the matroid on E(M) whose set of bases is given by

B(M∗) = {E(M) − B : B ∈ B(M)}.

A matroid is self-dual if it is isomorphic to its dual; a matroid is identically self-
dual if it is equal to its dual. For example, the dual of the uniform matroid Ur,m

is the uniform matroid Um−r,m. The matroid Ur,2r is identically self-dual. For any
matroid M , the element x is a loop of M if and only if x is an isthmus of the dual
M∗.

This paper investigates a special class of transversal matroids. Let A = (Aj : j ∈
J) be a set system, that is, a multiset of subsets of a finite set S. A transversal (or
system of distinct representatives) of A is a set {xj : j ∈ J} of |J | distinct elements
such that xj ∈ Aj for all j in J . A partial transversal of A is a transversal of a set
system of the form (Ak : k ∈ K) with K a subset of J . The following theorem is a
fundamental result due to Edmonds and Fulkerson.

Theorem 2.2. The partial transversals of a set system A = (Aj : j ∈ J) are the
independent sets of a matroid on S.

A transversal matroid is a matroid whose independent sets are the partial transver-
sals of some set system A = (Aj : j ∈ J); we say that A is a presentation of the
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transversal matroid. The bases of a transversal matroids are the maximal partial
transversals of A. For more on transversal matroids see [11, Section 1.6].

Given two matroids M1, M2 on disjoint ground sets, their direct sum is the
matroid M1 ⊕ M2 with ground set E(M1) ∪ E(M2) whose collection of bases is

B(M1 ⊕ M2) = {B1 ∪ B2 : B1 ∈ B(M1) and B2 ∈ B(M2)}.

It is easy to check that the lattice of flats of M1 ⊕ M2 is isomorphic to the direct
product (or cartesian product) of the lattice of flats of M1 and that of M2. A ma-
troid M is connected if it is not a direct sum of two nonempty matroids. Note that
connected matroids with at least two elements have neither loops nor isthmuses.

We say that the matroid M ⊕U1,1 is formed by adding an isthmus to M . In the
case that the ground set of the uniform matroid U1,1 is e, we shorten this notation
to M ⊕ e if there is no danger of ambiguity. Of course, e is an isthmus of M ⊕ e.

There is a well developed theory of extending matroids by single elements [11,
Section 7.2]. The case that is relevant to this paper is that of free extension, which
consists of adding an element to the matroid as independently as possible without
increasing the rank. Precisely, the free extension M + e of M is the matroid on
E(M) ∪ e whose collection of independent sets is given as follows:

I(M + e) = I(M) ∪ {I ∪ e : I ∈ I(M) and |I| < r(M)}.

The bases of M + e, where M has rank r, are the bases of M together with the sets
of the form I ∪e, where I is an (r−1)-element independent set of M . Equivalently,
the rank function of M + e is given by the following equations: for X a subset of
E(M),

rM+e(X) = rM (X)

and

rM+e(X ∪ e) =

{
rM (X) + 1, if rM (X) < r(M);
r(M), otherwise.

The particular matroids of interest in this paper arise from lattice paths, to
which we now turn. We consider two kinds of lattice paths, both of which are in
the plane. Most of the lattice paths we consider use steps E = (1, 0) and N = (0, 1);
in several cases it is more convenient to use lattice paths with steps U = (1, 1) and
D = (1,−1). The letters are abbreviations of East, North, Up, and Down. We will
often treat lattice paths as words in the alphabets {E, N} or {U, D}, and we will
use the notation αn to denote the concatenation of n letters, or strings of letters, α.
If P = s1s2 . . . sn is a lattice path, then its reversal is defined as P ρ = snsn−1 . . . s1.
The length of a lattice path P = s1s2 . . . sn is n, the number of steps in P .

Here we recall the facts we need about the enumeration of lattice paths; the
proofs of the following lemmas can be found in Sections 3 to 5 of the first chapter
of [10]. The most basic enumerative results about lattice paths are those in the
following lemma.

Lemma 2.3. For a fixed positive integer k, the number of lattice paths from (0, 0)
to (kn, n) that use steps E and N and that never pass above the line y = x/k is the
n-th k-Catalan number

Ck
n =

1

kn + 1

(
(k + 1)n

n

)
.
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In particular, the number of paths from (0, 0) to (n, n) that never pass above the
line y = x is the n-th Catalan number

Cn =
1

n + 1

(
2n

n

)
.

We also use the following result, which generalizes Lemma 2.3. For k = 1 the
numbers displayed in Lemma 2.4 are called the ballot numbers.

Lemma 2.4. For m ≥ kn ≥ 0, the number of lattice paths from (0, 0) to (m, n)
with steps E and N that never go above the line y = x/k is

m − kn + 1

m + n + 1

(
m + n + 1

n

)
.

The next lemma treats paths in the alphabet {U, D}; the first assertion, which
concerns what are usually called Dyck paths, is equivalent to the second part of
Lemma 2.3 by the obvious identification of the alphabets.

Lemma 2.5. (i) The number of paths from (0, 0) to (2n, 0) with steps U and D
that never pass below the x-axis is the n-th Catalan number Cn.
(ii) The number of paths of n steps in the alphabet {U, D} that start at (0, 0) and
never pass below the x-axis (not necessarily ending on the x-axis) is

(
n

⌈n/2⌉

)
.

The following result will be used to count certain types of lattice paths.

Lemma 2.6. Let

C(z) =
∑

n≥0

1

kn + 1

(
(k + 1)n

n

)
zn

be the generating function for the k-Catalan numbers. The coefficient of zt in C(z)j

is
j

t

(
(k + 1)t + j − 1

t − 1

)
.

3. Lattice path matroids

In this section we define lattice path matroids as well as several important sub-
classes. Later sections of this paper develop much of the enumerative theory for
lattice path matroids in general and this theory is pushed much further for certain
special families of lattice path matroids.

Definition 3.1. Let P = p1p2 . . . pm+r and Q = q1q2 . . . qm+r be two lattice paths
from (0, 0) to (m, r) with P never going above Q. Let {pu1

, . . . , pur
} be the set of

North steps of P with u1 < u2 < · · · < ur; similarly, let {ql1 , . . . , qlr} be the set of
North steps of Q with l1 < l2 < · · · < lr. Let Ni be the interval [li, ui] of integers.
Let M [P, Q] be the transversal matroid that has ground set [m+r] and presentation
(Ni : i ∈ [r]); the pair (P, Q) is a presentation of M [P, Q]. A lattice path matroid
is a matroid M that is isomorphic to M [P, Q] for some such pair of lattice paths P
and Q.

Several examples of lattice path matroids are given after Theorem 3.3, which
identifies the bases of these matroids in terms of lattice paths. To avoid needless
repetition, throughout the rest of the paper we assume that the lattice paths P and
Q are as in Definition 3.1.
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We think of 1, 2, . . . , m + r as the first step, the second step, etc. Observe that
the set Ni contains the steps that can be the i-th North step in a lattice path from
(0, 0) to (m, r) that remains in the region bounded by P and Q. When thought
of as arising from the particular presentation using bounding paths P and Q, the
elements of the matroid are ordered in their natural order, i.e., 1 < 2 < · · · < m+r;
we will frequently use this order throughout the paper. However, this order is not
inherent in the matroid structure; the elements of a lattice path matroid typically
can be linearly ordered in many ways so as to correspond to steps in lattice paths.
(This point will be addressed in greater detail in [3].)

We associate a lattice path P (X) with each subset X of the ground set of a
lattice path matroid as specified in the next definition.

Definition 3.2. Let X be a subset of the ground set [m + r] of the lattice path
matroid M [P, Q]. The lattice path P (X) is the word

s1s2 . . . sm+r

in the alphabet {E, N} where

si =

{
N, if i ∈ X;
E, otherwise.

Thus, the path P (X) is formed by taking the elements of M [P, Q] in the natural
linear order and replacing each by a North step if the element is in X and by an
East step if the element is not in X .

The fundamental connection between the transversal matroid M [P, Q] and the
lattice paths that stay in the region bounded by P and Q is the following theorem
which says that the bases of M [P, Q] can be identified with such lattice paths.

Theorem 3.3. A subset B of [m + r] with |B| = r is a basis of M [P, Q] if and
only if the associated lattice path P (B) stays in the region bounded by P and Q.

Proof. Let B be {b1, . . . , br} with b1 < b2 < · · · < br in the natural order. Suppose
first that B is a basis of M [P, Q], that is, a transversal of (Ni : i ∈ [r]). The
conclusion will follow if we prove that bi is in Ni. Assume, to the contrary, bi 6∈ Ni.
Since either bi < li or bi > ui, we obtain the following contradictions: in the
first case, the set {b1, b2 . . . , bi} must be a transversal of (N1, N2, . . . , Ni−1); in the
second, {bi, bi+1, . . . , br} must be a transversal of (Ni+1, Ni+2, . . . , Nr).

Conversely, if the lattice path P (B) goes neither below P nor above Q, then for
every i we have that bi, the i-th North step of P (B), satisfies li ≤ bi ≤ ui, and
hence that B is a transversal of (Ni : i ∈ [r]). �

Corollary 3.4. The number of basis of M [P, Q] is the number of lattice paths from
(0, 0) to (m, r) that go neither below P nor above Q.

Figure 1 illustrates Theorem 3.3. In this example we have N1 = {2, 3, 4}, N2 =
{4, 5}, and N3 = {6}. There are five bases of this transversal matroid. Note that 1
is a loop and 6 is an isthmus.

Example. For the lattice paths P = EmN r and Q = N rEm, every r-subset of
[m + r] is a basis of M [P, Q]. Thus, the uniform matroid Ur,m+r is a lattice path
matroid.

Recall that the bases of the dual M∗ of a matroid M are the set complements
of the bases of M with respect to the ground set E(M). Thus, for a lattice path
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 1  2   3  4   5  6  1  2   3  4   5  6  1  2   3  4   5  6  1  2   3  4   5  6  1  2   3  4   5  6 

Figure 1. The bases {4, 5, 6}, {3, 5, 6}, {3, 4, 6}, {2, 5, 6}, and
{2, 4, 6} of a lattice path matroid represented as the North steps
of lattice paths.

x

x

Figure 2. Presentations of a lattice path matroid and its dual.

matroid M , the bases of the dual matroid correspond to the East steps in lattice
paths. Reflecting a lattice path presentation of M about the line y = x shows
that the dual M∗ is also a lattice path matroid. (See Figure 2.) This justifies the
following theorem.

Theorem 3.5. The class of lattice path matroids is closed under matroid duality.

Note that a 180◦ rotation of the region bounded by P and Q, translated to start
at (0, 0), yields the same matroid although the labels on the elements are reversed.
Thus the lattice path matroids M [P, Q] and M [Qρ, P ρ] are isomorphic. It follows,
for example, that the lattice path matroid in Figure 1 is self-dual; note that this
matroid is not identically self-dual since the loop 1 and the isthmus 6 in the matroid
are, respectively, an isthmus and a loop in the dual.

Figure 3 illustrates the next result. The proof is immediate from Theorem 3.3
and the definition of direct sums.

Theorem 3.6. The class of lattice path matroids is closed under direct sums. Fur-
thermore, the lattice path matroid M [P, Q] is connected if and only if the bounding
lattice paths P and Q meet only at (0, 0) and (m, r).

We now turn to a special class of lattice path matroids, the generalized Catalan
matroids, as well as to various subclasses that exhibit a structure that is simpler
than that of typical lattice path matroids. Later sections of this paper will give
special attention to these classes since the simpler structure allows us to obtain
more detailed enumerative results.

Definition 3.7. A lattice path matroid M is a generalized Catalan matroid if
there is a presentation (P, Q) of M with P = EmN r. In this case we simplify the
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Figure 3. Presentations of two lattice path matroids and their
direct sum.

Figure 4. Presentations of the rank nine matroid M2,3
3 , the 3-

Catalan matroid M3
4 of rank four, and the rank six Catalan matroid

M6.

notation M [P, Q] to M [Q]. If in addition the upper path Q is (EkN l)n for some
positive integers k, l, and n, we say that M is the (k, l)-Catalan matroid Mk,l

n . In
place of Mk,1

n we write Mk
n ; such matroids are called k-Catalan matroids. In turn,

we simplify the notation M1
n to Mn; such matroids are called Catalan matroids.

Figure 4 gives presentations of a (2, 3)-Catalan matroid, a 3-Catalan matroid,
and a Catalan matroid. These matroids have, respectively, two loops and three
isthmuses, three loops and one isthmus, and a single loop and isthmus.

Note that (k, l)-Catalan matroids have isthmuses and loops; specifically, the
elements 1, . . . , k are the loops and (k + l)n − l + 1, (k + l)n − l + 2, . . . , (k + l)n
are the isthmuses of Mk,l

n . Also, observe that for the k-Catalan matroid Mk
n ,

Theorem 3.3 can be restated by saying that an n-element subset B of [(k + 1)n] is
a basis of Mk

n if and only if its associated lattice path P (B) does not go above the
line y = x/k.

We next note an immediate consequence of Corollary 3.4 and Lemma 2.3. As
we will see in Section 9, there is no known formula that leads to a similar result for
(k, l)-Catalan matroids.

Corollary 3.8. The number of bases of the k-Catalan matroid Mk
n is the k-Catalan

number Ck
n. In particular, the number of bases of the Catalan matroid Mn is the

Catalan number Cn.

The comments before and after Theorem 3.5, including that about 180◦ rotations
of presentations, give the following result.
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Theorem 3.9. The dual of the (k, l)-Catalan matroid Mk,l
n is the (l, k)-Catalan

matroid M l,k
n . Thus, the matroid Mk,k

n , and in particular the Catalan matroid Mn,
is self-dual but not identically self-dual.

We turn to lattice path descriptions of circuits and independent sets in general-
ized Catalan matroids. Recall from Definition 3.2 that we associate a lattice path
P (X) with each subset X of the ground set [m + r] of the lattice path matroid
M [P, Q]. Of course, only sets of r elements give paths that end at (m, r).

Theorem 3.10. A subset C of [m + r] is a circuit of the generalized Catalan
matroid M [Q] if and only if for the largest element i of C, the i-th step of P (C) is
the only North step of P (C) above Q.

Proof. First assume that for the largest element i of C, the i-th step of P (C) is
the only North step of P (C) above Q. It is clear that for any superset X of C,
the i-th step of P (X) is also above Q. Thus, C is not contained in any basis and
so is dependent. Note that for any element c in C, the lattice path P (C − c) has
no steps above Q; also, the path that follows P (C − c) to the line x = m and
then goes directly North to (m, r) is a lattice path that never goes above Q and so
corresponds to a basis that contains C − c, specifically, the basis (C − c)∪ Y where
Y contains the last r − (|C| − 1) elements in [m + r]. Thus, every proper subset of
C is independent. Therefore, C is a circuit.

Conversely, assume that C is a circuit. By the same type of argument as in the
second half of the last paragraph, it is clear that P (C) must have at least one North
step that goes above Q; since C is a minimal dependent set, it is clear that this
step must correspond to the greatest element of C. �

Corollary 3.11. The number of i-element circuits in the Catalan matroid Mn is
the Catalan number Ci−1.

Proof. From the last theorem, it follows that the lattice path P (C) associated with
an i-element circuit C can be decomposed as follows: a lattice path from (0, 0) to
(i−1, i−1) that does not go above the line y = x, followed by one North step above
the line y = x, followed by only East steps. Conversely, any such path corresponds
to an i-element circuit. From this the result follows. �

From Theorem 3.10 we also get the following result.

Corollary 3.12. The independent sets in the generalized Catalan matroid M [Q]
are precisely the subsets X of [m + r] such that the associated lattice path P (X)
never goes above the bounding lattice path Q.

From this result it follows that for k-Catalan matroids, the paths that correspond
to independent sets of a given size are precisely those given by Lemma 2.4.

Corollary 3.13. The number of independent sets of size i in the k-Catalan matroid
Mk

n is
(k + 1)(n − i) + 1

(k + 1)n + 1

(
(k + 1)n + 1

i

)
.

Generalized Catalan matroids have previously appeared in the matroid theory
literature [17]; they were also studied, from a very different perspective, in [12]
and they were recently rediscovered in yet another context in [1]. It can be shown
that generalized Catalan matroids are exactly the minors of Catalan matroids [3].
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We conclude this section with yet another perspective by showing that generalized
Catalan matroids are precisely the matroids that can be constructed from the empty
matroid by repeatedly adding isthmuses and taking free extensions. Theorem 3.14
can be generalized to all lattice path matroids; the generalization uses more matroid
theory, in particular, more general types of extensions than free extensions, so this
result will appear in [3]. We present the special case here since in the last part
of Section 6 we will use this result to give simple and efficient algebraic rules to
compute the Tutte polynomial of any generalized Catalan matroid.

Theorem 3.14. Let Q = q1q2 . . . qm+r be a word of length m + r in the alphabet
{E, N}. Let M0 be the empty matroid and define

M i =

{
M i−1 + i, if qi = E;
M i−1 ⊕ i, if qi = N.

Then Mm+r and the generalized Catalan matroid M [Q] are equal.

Proof. Let Qi be the initial segment q1q2 . . . qi of Q, let Ri be the region determined
by the bounding paths of M [Qi], and let the paths that correspond to bases of M [Qi]
go from (0, 0) to (mi, ri). We prove the equality M i = M [Qi] by induction on i.
Both M0 and M [Q0] are the empty matroid. Assume M i−1 = M [Qi−1]. Assume
first that qi is N , so i is an isthmus of M i. Thus we need to show that the bases of
M [Qi] are precisely the sets of the form B∪ i where B is a basis of M [Qi−1], which
is clear from Theorem 3.3 since the bounding paths for M [Qi] have a common last
(i-th) North step. Now suppose that qi is E. Note the equality ri = ri−1. Lattice
paths in the region Ri from (0, 0) to (mi, ri) are of two types: those in which
the final step is North, and so correspond to sets of the form I ∪ i where I is an
independent set of size ri−1 − 1 in M [Qi−1]; those in which the final step is East,
and so correspond to bases of M [Qi−1]. From this and the basis formulation of free
extensions, the equality M i = M [Qi] follows. �

4. Enumeration of lattice path matroids

In this section we give a formula for the number of connected lattice matroids
on a given number of elements up to isomorphism; to make the final result slightly
more compact, we let the number of elements be n + 1. The proof has two main
ingredients, the first of which is the following result from [3]. (Recall that P ρ

denotes the reversal sn+1sn . . . s1 of a lattice path P = s1s2 . . . snsn+1.)

Lemma 4.1. Two connected lattice path matroids M [P, Q] and M [P ′, Q′] are iso-
morphic if and only if either P ′ = P and Q′ = Q, or P ′ = Qρ and Q′ = P ρ.

The second main ingredient is the following bijection, going back at least to
Pólya, between the pairs of lattice paths of length n+1 that intersect only at their
endpoints and the Dyck paths of length 2n. (See, for example, [8].) A pair (P, Q)
of nonintersecting lattice paths from (0, 0) to (m, r) can be viewed as the special
type of polyomino that in [8] is called a parallelogram polyomino. Associate two
sequences (a1, . . . , am) and (b1, . . . , bm−1) of integers with such a polyomino: ai is
the number of cells of the i-th column of the polyomino (columns are scanned from
left to right) and bi + 1 is the number of cells of column i that are adjacent to cells
of column i + 1. Since the paths are nonintersecting, each bi is nonnegative. Now
associate to (P, Q) the Dyck path π having m peaks at heights a1, . . . , am and m−1
valleys at heights b1, . . . , bm−1. Figure 5 shows a polyomino and its associated Dyck
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Figure 5. A parallelogram polyomino and its associated Dyck path.

path; the corresponding sequences for this polyomino are (1, 2, 4, 2, 2) and (0, 1, 1, 0).
It can be checked that the correspondence (P, Q) 7→ π is indeed a bijection. Hence
the number of such pairs (P, Q) of lattice paths of length n + 1 is the Catalan
number Cn.

Note that Cn is not the number of connected lattice path matroids on n + 1
elements since different pairs of paths can give the same matroid. According to
Lemma 4.1, this happens only for a pair (P, Q) and its reversal (Qρ, P ρ), so we need
to find the number of pairs (P, Q) for which (P, Q) = (Qρ, P ρ). It is immediate
to check that (P, Q) = (Qρ, P ρ) if and only if the corresponding Dyck path π is
symmetric with respect to its center or, in other words, is equal to its reversal.
Since a symmetric Dyck path of length 2n is determined by its first n steps, the
number of such paths is given in part (ii) of Lemma 2.5. From the number Cn we
obtained in the last paragraph we must subtract half the number of nonsymmetric
Dyck paths, thus giving the following result.

Theorem 4.2. The number of connected lattice path matroids on n + 1 elements
up to isomorphism is

Cn −
1

2

(
Cn −

(
n

⌈n/2⌉

))
=

1

2
Cn +

1

2

(
n

⌈n/2⌉

)
.

This number is asymptotically of order O(4n). Since it is known that the number

of transversal matroids on n elements grows like cn2

for some constant c (see [4]),
it follows that the class of lattice path matroids is rather small with respect to the
class of all transversal matroids.

We remark that the total number of lattice path matroids (connected or not) on
k elements is the number of multisets of connected lattice path matroids, the sum
of whose cardinalities is k. A generating function for these numbers can be derived
using standard tools; however, the result does not seem to admit a compact form
so we omit it.

5. Tutte polynomials

The Tutte polynomial is one of the most widely studied matroid invariants.
From the Tutte polynomial one obtains, as special evaluations, many other im-
portant polynomials, such as the chromatic and flow polynomials of a graph, the
weight enumerator of a linear code, and the Jones polynomial of an alternating
knot. (See [6, 18] for many of the numerous occurrences of this polynomial in com-
binatorics, in other branches of mathematics, and in other sciences.) In this section,
after reviewing the definition of the Tutte polynomial, we show that for lattice path
matroids this polynomial is the generating function for two basic lattice path sta-
tistics. We use this lattice path interpretation of the Tutte polynomial to give a
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formula for the generating function
∑

n≥0 t(Mk
n ; x, y)zn for the sequence of Tutte

polynomials t(Mk
n ; x, y) of the k-Catalan matroids. Using this generating function,

we then derive a formula for each coefficient of the Tutte polynomial t(Mk
n ; x, y).

The Tutte polynomial t(M ; x, y) of a matroid M is most briefly defined as follows:

(1) t(M ; x, y) =
∑

A⊆E(M)

(x − 1)r(M)−r(A)(y − 1)|A|−r(A).

However, for our work the formulation in terms of internal and external activities,
which we review below, will prove most useful. For a proof of the equivalence of
these definitions (and that the formulation in terms of activities is well-defined),
see, for example [2].

Fix a linear order < on E(M) and let B be a basis of M . An element e 6∈ B
is externally active with respect to B if there is no element y in B with y < e for
which (B− y)∪ e is a basis. An element b ∈ B is internally active with respect to B
if there is no element y in E(M)−B with y < b for which (B−b)∪y is a basis. The
internal (external) activity of a basis is the number of elements that are internally
(externally) active with respect to that basis. We denote the activities of a basis B
by i(B) and e(B). Note that i(B) and e(B) depend not only on B but also on the
order <. The following lemma is well-known and easy to prove.

Lemma 5.1. Let the elements of a matroid M and its dual M∗ be ordered with the
same linear ordering. An element e is internally active with respect to the basis B
of M if and only if e is externally active with respect to the basis E(M)−B of M∗.

The Tutte polynomial, as defined in equation (1), can alternatively be expressed
as follows:

(2) t(M ; x, y) =
∑

B∈B(M)

xi(B)ye(B).

In particular, although i(B) and e(B), for a particular basis B, depend on the order
<, the multiset of pairs

(
i(B), e(B)

)
, as B ranges over the bases of M , does not

depend on the order. Thus, the coefficient of xiyj in t(M ; x, y) is the number of
bases of M with internal activity i and external activity j.

The crux of understanding the Tutte polynomial of a lattice path matroid is
describing internal and external activities of bases in terms of the associated lattice
paths; this is what we turn to now. Recall that if the bounding lattice paths P and
Q go from (0, 0) to (m, r), then the lattice path matroid M [P, Q] has ground set
[m + r]; the elements in [m + r] represent the first step, the second step, and so on.
We use the natural linear order on [m + r], that is, 1 < 2 < · · · < m + r. We start
with a lemma that is an immediate corollary of Theorem 3.3.

Lemma 5.2. Assume that {b1, b2, . . . , br} is a basis of a lattice path matroid with
b1 < b2 < · · · < br. Then bi is in the set Ni of potential i-th North steps.

The following theorem describes externally active elements for bases of lattice
path matroids.

Theorem 5.3. Assume that B = {b1, b2, . . . , br} is a basis of a lattice path matroid
M [P, Q] with b1 < b2 < · · · < br. Assume that x is not in B; say bi < x < bi+1.
There is a j with j ≤ i and with (B − bj) ∪ x a basis of M [P, Q] if and only if x is
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Q

P

Figure 6. The lattice path corresponding to a basis with internal
activity 2 and external activity 5, which contributes x2y5 to the
Tutte polynomial.

in Ni. Equivalently, x is externally active in B if and only if the x-th step of the
lattice path that corresponds to B is an East step of the lower bounding path P .

Proof. If x is in Ni, then clearly (B − bi) ∪ x is a transversal of the set system
N1, N2, . . . , Nr and so is a basis of M [P, Q]. Conversely, if (B − bj) ∪ x is a basis
of M [P, Q] for some j with j ≤ i, then since x is the i-th element in this basis,
Lemma 5.2 implies that x is in Ni. The equivalent formulation of external activity
follows immediately by interpreting the first assertion in terms of lattice paths. �

By the last theorem, Lemma 5.1, and the lattice path interpretation of matroid
duality, we get the following result.

Theorem 5.4. Let B be a basis of the lattice path matroid M [P, Q] and let P (B)
be the lattice path associated with B. Then i(B) is the number of times P (B) meets
the upper path Q in a North step and e(B) is the number of times P (B) meets the
lower path P in an East step.

Theorem 5.4 is illustrated in Figure 6. It is worth noting the following simpler
formulation in the case of k-Catalan matroids.

Corollary 5.5. Let B be a basis of a k-Catalan matroid and let P (B) be the
associated lattice path. Then i(B) is the number of times P (B) returns to the line
y = x/k and e(B) is j where (j, 0) is the last point on the x-axis in P (B).

This lattice path interpretation of basis activities is one of the keys for obtaining
the following generating function for the sequence of Tutte polynomials of the k-
Catalan matroids.

Theorem 5.6. Let

C = C(z) =
∑

n≥0

1

kn + 1

(
(k + 1)n

n

)
zn

be the generating function for the k-Catalan numbers. The generating function for
the Tutte polynomials of the k-Catalan matroids is

(3)
∑

n≥0

t(Mk
n ; x, y)zn = 1 +

(
xzyk

1 − z
∑k

l=1 ylCk−l+1

)
1

1 − xzCk
.
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Proof. From our lattice path interpretation of bases of the k-Catalan matroid Mk
n ,

we are concerned with lattice paths that

(i) go from (0, 0) to (kn, n) and
(ii) do not go above the line y = x/k.

We consider two special types of such lattice paths. Let djn be the number of such
lattice paths that, in addition, have the following two properties:

(iii) the last point of the path that is on the x-axis is the point (j, 0) and
(iv) the path returns to the line y = x/k exactly once.

By property (iv), we have dj0 = 0 for all j. Let D = D(y, z) =
∑

n,j>0 djnyjzn. Let

ein be the number of lattice paths that satisfy properties (i)–(ii) and the following
property:

(iii′) the path returns to the line y = x/k exactly i times.

Here the term e00 is 1. Let E = E(x, z) =
∑

n,i≥0 einxizn. By the lattice path
interpretation of bases and activities, we have

(4)
∑

n≥0

t(Mk
n ; x, y)zn = 1 + xD(y, z)E(x, z).

Equation (3) follows immediately from equation (4) and the following two equations,
the justifications of which are the focus of the rest of the proof.

(5) E(x, z) =
1

1 − xzC(z)k

(6) D(y, z) =
zyk

1 − z
∑k

l=1 ylC(z)k−l+1

To prove equations (5) and (6), it will be convenient to use the notation ls for the
line y = (x − s)/k.

Equation (5) is immediate once we prove that the generating function
∑

e1nzn

for the number of paths that return exactly once to the line y = x/k is zC(z)k. To
see this, consider the following decomposition of such a path P ∗. By considering
the last point of P ∗ that is on the line l1, and then the last point of P ∗ that is on
l2, and so on up to lk, it follows that the path P ∗ can be decomposed uniquely as a
sequence P ∗ = EP1EP2 · · ·EPk−1EPkN , where Pi is a path beginning and ending
on the line li and never going above this line.

We turn to equation (6). Let P ∗ be a path that returns to the line y = x/k
exactly once. If P ∗ consists of kn East steps followed by n North steps, then P ∗

contributes znykn to D(y, z); all such paths contribute
∑

i≥1 ziyki, that is zyk/(1−

zyk), to D(y, z). Assume path P ∗ is not of this type. Let i be the minimum value
of s such that P ∗ intersects ls in a point neither on the line y = 0 nor on x = kn.
Let t be ⌈ i

k ⌉. Since P ∗ contains the point (kn, n − t), it follows that P ∗ can be
decomposed uniquely as follows:

P ∗ = EiP ′PiEPi+1E · · ·EPtkN t,

where P ′ is a non-empty path that begins and ends on the line li and that returns
only once to this line, and Ps is a path that begins and ends on the line ls and does
not go above this line. There are kt− i +1 paths among Pi, Pi+1, . . . , Ptk and such
paths are enumerated by C(z). If i is kt, then the path PiEPi+1E · · ·EPtk reduces
to Pi. In this case if the path Pi were trivial, then the path P ∗ would intersect
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the line li only in the lines y = 0 and x = kn, which contradicts the choice of i.
Therefore, when i is kt we have to guarantee that Pi is nontrivial. Hence, we get

D =
zyk

1 − zyk
+

∑

i : i≥1,
kt−i+16=1

yi D ztCkt−i+1 +
∑

i : i≥1,
kt−i+1=1

yi D zt(C − 1)

=
zyk

1 − zyk
+ D

∑

i≥1

yiztCkt−i+1 − D
∑

i : i≥1,
kt−i+1=1

yizt.

Since kt − i + 1 is 1 if and only if i is kt, the last term above is D zyk/(1 − zyk).
To simplify the rest, note that

∑
i≥1 yiztCkt−i+1 is

yz Ck + y2z Ck−1 + · · · + ykz C +
yk+1z2Ck + yk+2z2Ck−1 + · · · + y2kz2C +
y2k+1z3Ck + y2k+2z3Ck−1 + · · · + y3kz3C +

...
... · · ·

...

which, by adding the columns, gives

z

1 − zyk

k∑

l=1

ylCk−l+1.

Thus,

D =
zyk

1 − zyk
+

D z

1 − zyk

k∑

l=1

ylCk−l+1 −
D zyk

1 − zyk
.

Solving for D gives equation (6), thereby completing the proof of the theorem. �

By extracting the coefficients of the expression in Theorem 5.6 we find a formula
for the coefficients of the Tutte polynomial of a k-Catalan matroid. To write this
formula more compactly, let us denote by S(m, s, k) the number of solutions to the
equation

l1 + · · · + ls = m

such that 1 ≤ li ≤ k for all i with 1 ≤ i ≤ s. Set S(0, 0, k) = 1. It will be useful to
note that

S(m, s, 1) =

{
1, if m = s;
0, otherwise.

An elementary inclusion-exclusion argument gives

S(m, s, k) =
s∑

i=0

(−1)i

(
s

i

)(
m − ki − 1

s − 1

)
.

Theorem 5.7. The coefficient of xiyj in the Tutte polynomial t(Mk
n ; x, y) of the

k-Catalan matroid Mk
n is

m∑

s=0

S(m, s, k)

(
(k + 1)(n − 1) − i − m

n − s − i − 1

)
s(k + 1) − m + k(i − 1)

n − s − i
,

where m = j − k. Equivalently, this is the number of lattice paths that

(i) go from (0, 0) to (kn, n),
(ii) use steps (1, 0) and (0, 1),
(iii) do not go above the line y = x/k,
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(iv) have as their last point on the x-axis the point (j, 0), and
(v) return to the line y = x/k exactly i times.

Proof. We need to extract the coefficient of xiyjzn in equation (3). We start by
extracting the coefficient of yj−k in

1

1 − z
∑k

l=1 ylCk−l+1
=
∑

s≥0

(
z

k∑

l=1

ylCk−l+1

)s

.

Let m = j − k. From basic algebra the coefficient of ym in (z
∑k

l=1 ylCk−l+1)s

is zsS(m, s, k)Cs(k+1)−m. From this it follows that the coefficient of xiyj in the
right-hand side of equation (3) is

ziCk(i−1)

(
m∑

s=0

zsS(m, s, k)Cs(k+1)−m

)
.

To conclude the proof, we have to extract the coefficient of zn in the above expres-
sion; this is done using Lemma 2.6. �

It is an open problem to obtain explicit expressions for the Tutte polynomials
of the matroids Mk,l

n for values of k and l not covered by the previous theorem,
namely k > 1 and l > 1. The first unsolved case is k = l = 2. The sequence
1, 6, 53, 554, 6362, 77580, . . . that gives the number of bases of M2,2

n also arises in
the enumeration of certain types of planar trees, and in that context Lou Shapiro
gave a nice expression for the corresponding generating function (see entry A066357
in [14]). This sequence also appears in [9]; indeed, as we show in Section 9, there is
a simple connection between the number of bases in certain lattice path matroids
and the problem considered in [9].

We single out a corollary of Theorem 5.7 that shows a very rare property pos-
sessed by the Tutte polynomials of the Catalan matroids Mn.

Corollary 5.8. For n > 1, the Tutte polynomial of the Catalan matroid Mn is

∑

i,j>0

i + j − 2

n − 1

(
2n− i − j − 1

n − i − j + 1

)
xiyj.

In particular, the coefficient of xiyj in the Tutte polynomial t(Mn; x, y) of the Cata-
lan matroid Mn depends only on n and the sum i + j.

We close this section with some simple observations. A well-known corollary of
Lemma 5.1 is that the Tutte polynomial of a matroid and its dual are related by
the following equation:

t(M∗; x, y) = t(M ; y, x).

From this and Theorem 3.9 we get the following corollary.

Corollary 5.9. The Tutte polynomial of the (k, l)- and (l, k)-Catalan matroids are
related as follows:

t(Mk,l
n ; x, y) = t(M l,k

n ; y, x).

Thus, the Tutte polynomial of the (k, k)-Catalan matroid Mk,k
n , and in particular

the Catalan matroid Mn, is a symmetric function in x and y.
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6. Computing the Tutte polynomial of lattice path matroids

There is no known polynomial-time algorithm for computing the Tutte poly-
nomial of an arbitrary matroid, or even its evaluations at certain points in the
plane [18]. There are many evaluations of the Tutte polynomial that are partic-
ularly significant; for instance, it follows from equation (2) that t(M ; 1, 1) is the
number of bases of M . Since the bases of a lattice path matroid correspond to
paths that stay in a given region and the number of such paths is given by a deter-
minant (see Theorem 1 in Section 2.2 of [10]), the number of bases of a lattice path
matroid can be computed in polynomial time. It turns out that other evaluations
like t(M ; 1, 0) and t(M ; 0, 1) can also be expressed as determinants. This led us
to suspect that the Tutte polynomial of a lattice path matroid could be computed
in polynomial time. In this section, we show that this is indeed the case: we give
such a polynomial-time algorithm. Also, we give a second technique for computing
the Tutte polynomial in the case of generalized Catalan matroids (this second tech-
nique, although more limited in scope, is particularly simple to implement using
standard mathematical software). The results in this section stand in striking con-
trast to those in [7], where it is shown that for fixed x and y with (x−1)(y−1) 6= 1,
the problem of computing t(M ; x, y) for a transversal matroid M is #P-complete.

By Theorem 5.4, for a lattice path matroid M = M [P, Q], the Tutte polynomial
t(M ; x, y) is the generating function

∑

B∈B(M)

xi(B)ye(B)

where i(B) is the number of North steps that the lattice path P (B) corresponding to
B shares with the upper bounding path Q and e(B) is the number of East steps that
P (B) shares with the lower bounding path P . Any lattice path can be viewed as a
sequence of shorter lattice paths. This perspective gives the following algorithm for
computing the Tutte polynomial of the lattice path matroid M = M [P, Q] where
P and Q go from (0, 0) to (m, r). With each lattice point (i, j) in the region R
bounded by P and Q, associate the polynomial

f(i, j) =
∑

P ′

xi(P ′)ye(P ′)

where the sum ranges over the lattice paths P ′ that go from (0, 0) to (i, j) and stay
in the region R, and where, as for t(M ; x, y), the exponent i(P ′) is the number of
North steps that P ′ shares with Q and e(P ′) is the number of East steps that P ′

shares with P . In particular, f(m, r) = t(M ; x, y). Note that for a point (i, j) in
R other than (0, 0), at least one of (i − 1, j) or (i, j − 1) is in R; furthermore, only
(i − 1, j) is in R if and only if the step from (i − 1, j) to (i, j) is an East step of P ,
and, similarly, only (i, j − 1) is in R if and only if the step from (i, j − 1) to (i, j) is
a North step of Q. The following rules for computing f(i, j) are evident from these
observations and the definition of f(i, j).

(a) f(0, 0) = 1.
(b) If the lattice points (i, j), (i − 1, j) and (i, j − 1) are all in the region R,

then f(i, j) = f(i − 1, j) + f(i, j − 1).
(c) If the lattice points (i, j) and (i − 1, j) are in R but (i, j − 1) is not in R,

then f(i, j) = y f(i − 1, j).
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Figure 7. The recursive computation of the Tutte polynomial of
an n-element circuit via lattice path statistics.

(d) If the lattice points (i, j) and (i, j − 1) are in R but (i − 1, j) is not in R,
then f(i, j) = x f(i, j − 1).

This algorithm is illustrated in Figure 7 where we apply it to compute the Tutte
polynomial of an n-element circuit.

If x and y are set to 1, the algorithm above reduces to a well-known technique
for counting lattice paths. This is consistent with the general theory of Tutte
polynomials; as noted above, t(M ; 1, 1) is the number of bases of M .

The recurrence above requires at most (r+1)(m+1) steps to compute the Tutte
polynomial of a lattice path matroid whose bounding paths go from (0, 0) to (m, r).
Thus, we have the following corollary.

Corollary 6.1. The Tutte polynomial of a lattice path matroid can be computed in
polynomial time.

We remark that the recurrence expressed in (a)–(d) above is essentially the
deletion-contraction rule for Tutte polynomials, along with the corresponding rules
for loops and isthmuses (see, e.g., [6] for this perspective on the Tutte polynomial).
This follows by considering the lattice path interpretations of deletion and contrac-
tion, which are given in [3]. We also remark that while the deletion-contraction rule
for computing t(M ; x, y) generally gives rise to a binary tree with 2|E(M)| leaves,
for lattice path matroids there are relatively few isomorphism types for minors,
and the geometry of lattice paths automatically collects minors of the same isomor-
phism type. To make this more specific, let R be the region bounded by the lattice
paths P and Q of the lattice path matroid M = M [P, Q]. As can be seen from the
description of minors in [3], each minor whose ground set is an initial segment [k]
of [m + r] can be viewed as having as bases the lattice paths in R from (0, 0) to
some specific point in R of the form (i, k− i). It follows that the number of possible
minors of M = M [P, Q] that arise when computing t(M ; x, y), rather than being
exponential, is bounded above by (r + 1)(m + 1).

By Theorem 3.14, generalized Catalan matroids are formed from the empty
matroid by iterating the operations of taking free extensions and direct sums with
the uniform matroid U1,1. The following rule is well-known and easy to check: for
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any matroid M ,

(7) t(M ⊕ U1,1; x, y) = x t(M ; x, y).

For free extensions, we have the following result, which is easy to prove using
formula (1) and the rank function of the free extension. (This formula is equivalent
to the expression for the Tutte polynomial of a free extension given in Proposition
4.2 of [5].)

Theorem 6.2. The Tutte polynomial of the free extension M + e of M is given by
the formula

(8) t(M + e; x, y) =
x

x − 1
t(M ; x, y) +

(
y +

x

x − 1

)
t(M ; 1, y).

Formulas (7) and (8) can be used, for instance, to compute Tutte polynomials of
(k, l)-Catalan matroids very quickly. It is through such computations that we were
lead, for instance, to Theorem 8.3.

7. The broken circuit complex and the characteristic polynomial

In this section we study two related objects for lattice path matroids, the broken
circuit complex and the characteristic polynomial. The second of these is an invari-
ant of the matroid but the first depends on a linear ordering of the elements. We
show that under the natural ordering of the elements, the broken circuit complex
of any loopless lattice path matroid has a property that is not shared by the broken
circuit complexes of arbitrary matroids, namely, the broken circuit complex of a
lattice path matroid is the independence complex of another matroid, indeed, of
a lattice path matroid. Our study of the characteristic polynomial is more spe-

cialized; we focus on the characteristic polynomial χ(M̂k
n ; λ) of the matroid M̂k

n

obtained from the k-Catalan matroid Mk
n by omitting the loops. Our results on

the broken circuit complex lead to a lattice path interpretation of each coefficient

of χ(M̂k
n ; λ) from which we obtain a formula for these coefficients. We start by

outlining the necessary background on broken circuit complexes; for an extensive
account, see [2].

Given a matroid M and a linear order < on the ground set E(M), a broken
circuit of the resulting ordered matroid is a set of the form C − x where C is
a circuit of M and x is the least element of C relative to the linear ordering. A
subset of E(M) is an nbc-set if it contains no broken circuit. Clearly subsets of nbc-
sets are nbc-sets. Thus, E(M) and the collection of nbc-sets of M form a simplicial
complex, the broken circuit complex of M relative to <, which is denoted BC<(M).
Different orderings of E(M) can produce nonisomorphic broken circuit complexes
(see, e.g., [2, Example 7.4.4]). The facets of BC<(M) are the nbc-basis, that is,
the basis of M that are nbc-sets. The following characterization of nbc-bases is
well-known and easy to prove.

Lemma 7.1. The nbc-basis of M are the bases of M of external activity zero.

Note that nbc-sets contain no circuits and so are independent. Thus, the broken
circuit complex BC<(M) of M is contained in the independence complex of M ,
that is, the complex with ground set E(M) in which the faces are the independent
sets of M . Note also that if M has loops, then the empty set is a broken circuit, so



20 JOSEPH E. BONIN, ANNA DE MIER, AND MARC NOY

M has no nbc-sets. Thus, throughout this section we consider only matroids with
no loops.

As in Section 5, we use the natural ordering on the points of lattice path ma-
troids. The examples in [2] show that the broken circuit complex need not be the
independence complex of another matroid. In contrast, Theorem 7.2 shows that the
broken circuit complex of a lattice path matroid without loops is the independence
complex of another lattice path matroid.

Theorem 7.2. With the natural order, the broken circuit complex of a lattice path
matroid M [P, Q] with no loops is the independence complex of the lattice path ma-
troid M [P ′, Q] where NP = P ′N .

Proof. Since a subset of E(M [P, Q]) is an nbc-set of M [P, Q] if and only if it is
contained in an nbc-basis of M [P, Q], it suffices to show that the nbc-bases of
M [P, Q] are precisely the bases of M [P ′, Q]. By Lemma 7.1 and Theorem 5.4, the
nbc-bases of M [P, Q] correspond to the lattice paths in the region bounded by P
and Q that share no East step with P . Thus, the nbc-bases of M [P, Q] correspond
to the lattice paths in the region bounded by P ′ and Q where the East steps of P ′

occur exactly one unit above those of P . This condition on P ′ is captured by the
equality NP = P ′N . �

Corollary 7.3. Let M [Q] be a generalized Catalan matroid with no loops. A subset
X of the ground set of M [Q] is an nbc-set if and only if X ∪ 1 is independent in
M [Q]. In particular, all independent sets of M [Q] that contain 1 are nbc-sets and
the nbc-basis of M are exactly the bases of M [Q] that contain 1.

We now turn to the characteristic polynomial, which plays an important role
in many enumeration problems in matroid theory (see [13, 19]) and which can be
defined in a variety of ways. As mentioned above, the isomorphism type of the
broken circuit complex of a matroid M can depend on the ordering of the points.
However, it can be shown that the number of nbc-sets of each size is an invariant
of the matroid; these numbers are the coefficients of the characteristic polynomial.
Specifically, the characteristic polynomial χ(M ; λ) of a matroid M is

(9) χ(M ; λ) =

r(M)∑

i=0

(−1)i nbc(M ; i)λr(M)−i,

where nbc(M ; i) is the number of nbc-sets of size i. Thus, (−1)r(M)χ(M ;−λ) is
the face enumerator of the broken circuit complex of M . (Equation (9) applies even
if the matroid M has loops, in which case χ(M ; λ) is 0.) Alternatively, χ(M ; λ)
can be expressed in terms of the Tutte polynomial as follows:

χ(M ; λ) = (−1)r(M)t(M ; 1 − λ, 0) =
∑

A⊆E(M)

(−1)|A|λr(M)−r(A).

The characteristic polynomial can also be expressed in the following way in terms
of the Möbius function of the lattice of flats:

χ(M ; λ) =
∑

flats F
of M

µ(∅, F )λr(M)−r(F ).

(See, e.g., [2, Theorem 7.4.6], for details.) In particular, the absolute value of the
constant term of χ(M ; λ) is both the number of nbc-bases of M and the absolute
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value of the Möbius function µ(M). This and Theorem 7.2 give the following
corollary.

Corollary 7.4. The absolute value of the Möbius function µ(M [P, Q]) of a loopless
lattice path matroid is the number of bases of the lattice path matroid M [P ′, Q] where
NP = P ′N , or, equivalently, of the lattice path matroid M [P ∗, Q∗] where P = P ∗N
and Q = NQ∗.

Our interest is in the characteristic polynomial of a specific type of lattice path
matroid. Recall that the elements 1, 2, . . . , k are loops of the k-Catalan matroid Mk

n .
Thus, the characteristic polynomial of Mk

n is zero. This motivates considering the

loopless Catalan matroid M̂n, which we define to be M [(NE)n−1N ], and more gen-

erally the loopless k-Catalan matroid M̂k
n , which we define to be M [(NEk)n−1N ].

Thus, these matroids are formed from almost the same bounding paths as those
for the Catalan and k-Catalan matroids except that the initial East steps that give
loops have been omitted.

We start with the following consequence of Corollary 7.4.

Corollary 7.5. The number of nbc-bases of M̂k
n , that is, |µ(M̂k

n)|, is the k-Catalan

number Ck
n−1. In particular, |µ(M̂n)| = Cn−1.

Proof. From the second part of Corollary 7.4, we have that |µ(M̂k
n)| is the number

of bases of Mk
n−1, which is Ck

n−1. �

By combining Corollary 3.12 and Corollary 7.3, we get the following characteri-

zation of the nbc-sets of size i of M̂k
n in terms of lattice paths.

Corollary 7.6. Via the map X 7→ P (X), the nbc-sets of size i, for 0 ≤ i ≤ n, in

the loopless k-Catalan matroid M̂k
n correspond bijectively to the following two types

of lattice paths.

(i) Lattice paths from (0, 1) to
(
(k + 1)(n − 1) − i + 1, i

)
that do not go above

the line y = 1
kx + 1.

(ii) Lattice paths from (0, 1) to
(
(k + 1)(n − 1) − i, i + 1

)
that do not go above

the line y = 1
kx + 1.

By using this characterization of nbc-sets we obtain the following expression for
each coefficient of the characteristic polynomial.

Theorem 7.7. The absolute value of the coefficient of λn−i in the characteristic

polynomial of the loopless k-Catalan matroid M̂k
n is given by the formula

nbc(M̂k
n ; i) =





1, if i = 0;

(k + 1)(n − i − 1) + 2
(k + 1)(n − 1) + 2

(
(k + 1)(n − 1) + 2

i

)
, if 1 ≤ i ≤ n − 1;

Ck
n−1, if i = n.

Proof. Since M̂k
n is loopless, the empty set is an nbc-set; from this the case i = 0

follows. The case i = n has been treated in Corollary 7.5. For i with 1 ≤ i ≤ n− 1,
we have to count the number of paths as in Corollary 7.6. This is equivalent to
counting the following:

(i) lattice paths from (0, 0) to
(
(k + 1)(n − 1) − i + 1, i − 1

)
that do not go

above the line y = x/k, and
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(ii) lattice paths from (0, 0) to
(
(k + 1)(n − 1) − i, i

)
that do not go above the

line y = x/k.

Observe that the sum of the number of paths described in items (i) and (ii) is the
number of paths from (0, 0) to

(
(k + 1)(n − 1) − i + 1, i

)
that do not go above the

line y = x/k. The formula follows then from Lemma 2.4. �

From the formula in Theorem 7.7 and appropriate manipulation, we see that the

linear term in the characteristic polynomial of M̂n is also a Catalan number. Note
that, however, for the loopless k-Catalan matroid the linear term of the character-
istic polynomial is not the corresponding k-Catalan number.

Corollary 7.8. The linear term in χ(M̂n, λ) is Cn.

8. The β invariant

The β invariant β(M) of a matroid M , which was introduced by Crapo, can
be defined in several ways; see [19, Section 3] for a variety of perspectives on the
β invariant, as well as its applications to connectivity and series-parallel networks.
We use the following definition. It can be shown that for any matroid M , the coef-
ficients of x and y in the Tutte polynomial t(M ; x, y) are the same; this coefficient
is β(M). Since loops are externally active with respect to every basis, no basis of a
matroid M with loops will have external activity zero, so β(M) is zero; dually, if M
has isthmuses, then β(M) is zero. Therefore, in this section we focus on matroids
with neither loops nor isthmuses.

Let Nk,k
n be the generalized Catalan matroid whose upper path is Q = (NkEk)n.

It is clear from the lattice path presentation that Nk,k
n is formed from the (k, k)-

Catalan matroid Mk,k
n+1 by deleting the k loops and the k isthmuses. The main

result of this section is that β(Nk,k
n ) is k times the Catalan number Ckn−1. This

result was suggested by looking at examples of Tutte polynomials of lattice path
matroids, but it can be formulated entirely in terms of lattice paths, which is the
perspective we use in the proof. Indeed, the result is most striking when viewed in
terms of lattice paths.

The β invariant of Nk,k
n is the number of bases with internal activity one and

external activity zero; let B be such a basis and let P (B) be its associated lattice
path. By Theorem 5.4, the first step of P (B) is N , the second is E, and P (B)
does not contain any other North step in Q. It is easy to see that such lattice
paths P (B) are in 1-1 correspondence with the paths from (0, 0) to (kn−1, kn−1)
that do not go above the path Nk−1(EkNk)n−1Ek−1. Recall that the number of
paths from (0, 0) to (kn − 1, kn− 1) that do not go above the line y = x is Ckn−1.
In this section we show that the number of paths that do not go above the path
Nk−1(EkNk)n−1Ek−1 is k times Ckn−1. We start with the case k = 1.

Theorem 8.1. The β invariant of N1,1
n is Cn−1.

Proof. By the discussion above, β(N1,1
n ) is the number of paths from (0, 0) to

(n − 1, n − 1) that do not go above the path (EN)n−1, which is Cn−1. �

From here on, we consider only paths that use steps U and D. From the dis-
cussion above and the correspondence between the alphabets, we get the following
lemma.

Lemma 8.2. The β invariant of the matroid Nk,k
n is the number of paths that
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Figure 8. The path Dk−1(UkDk)n−1Uk−1 for k = 3 and n = 4.

(i) go from (0, 0) to
(
2(nk − 1), 0

)
,

(ii) use steps U and D, and
(iii) never go below the path Dk−1(UkDk)n−1Uk−1.

A path of the form Dk−1(UkDk)n−1Uk−1 is depicted in Figure 8. The next
theorem is the main result of this section.

Theorem 8.3. The number of paths that go from (0, 0) to
(
2(nk−1), 0

)
, use steps

U and D, and do not go below the path Dk−1(UkDk)n−1Uk−1 is k Cnk−1.

Before proving the theorem, we mention that if we change the bounding path to
(DkUk)n, the elegance and brevity of the result seem to disappear; currently there
is no known comparably simple answer. Indeed, the path (DkUk)n is connected
with an open problem in enumeration that is discussed in the next section. The
following corollary is an immediate consequence of Lemma 8.2 and Theorem 8.3.

Corollary 8.4. The β invariant of the matroid Nk,k
n is k Cnk−1.

Proof of Theorem 8.3. Let us denote the path Dk−1(UkDk)n−1Uk−1 by B. In this
proof we consider paths from (0, 0) to (2kn−1,−1) using steps U and D. When we
say that one such path does not go below a given border, we refer to the path with
the last step removed. Hence, a Dyck path is a path from (0, 0) to (2kn−1,−1) that
does not go below the line y = 0 (except for the last step). A cyclic permutation of
a path s1s2 . . . sl is a path sisi+1 . . . sls1 . . . si−1 for some i with 1 ≤ i ≤ l. It is easy
to show that all cyclic permutations of a Dyck path from (0, 0) to (2kn−1,−1) are
different; note that this does not hold if we consider Dyck paths ending in a point
of the form (2l, 0).

The proof is in the spirit of several results generically known as the Cycle Lemma
(see the notes at the end of Chapter 5 of [15]). One such result states that among
the 2l + 1 possible cyclic permutations of a path from (0, 0) to (2l + 1,−1), there is
exactly one that is a Dyck path. Moreover, the cyclic permutation that leads to a
Dyck path is the one that starts after the leftmost minimum of the path (see [16,
Theorem 1.1] for more details on this). To prove the theorem, we show that for
every Dyck path from (0, 0) to (2kn − 1,−1), exactly k of its cyclic permutations
are paths that do not go below B; conversely, every path that does not go below B
can be obtained as one of these k cyclic permutations of a Dyck path. To describe
these permutations we need to introduce some terminology.

It is clear that if a lattice point (x, y) is in a path that begins at (0, 0) and
uses steps U and D, then x + y is even. We partition the lattice points whose
coordinates have an even sum into k disjoint classes. The point (x, y) is in class c
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10 2100 1 2 210 2

Figure 9. The partition of the points (x, y) for which x + y is
even (k = 3).

0 1 22100 1 2

1

2

p

p

1 2 0

Figure 10. A Dyck path and the points pi of the proof of Theorem 8.3.

with 0 ≤ c ≤ k − 1 if (x + y)/2 ≡ c modulo k. As can be seen in Figure 9, each
class corresponds to an infinite family of parallel lines.

We say that a point (x, y) has height y. It is easy to see that a point in class
c is not below the path B if and only if the height of the point is strictly greater
than c − k. Let p = (x, y) be a point in a path that uses steps U and D; we say
that p is a down point if p is the end of a D step. The cyclic permutation at p is
the permutation that starts in the step that has p as the first point.

Let R be a Dyck path from (0, 0) to (2kn− 1,−1); clearly, R does not go below
B. The other k − 1 cyclic permutations of R that do not go below B are given by
the points p1, . . . , pk−1 that we define next. The point p1 is the first down point of
R that is in class k − 1 and has height 0. The point p2 is the first down point of
R that is in class k − 2 and has height 0, if such a point exists; otherwise, take the
first down point in class k − 1 and with height 1. To find the i-th point pi, among
all down points that are in class k − i + j and have height j for 0 ≤ j ≤ i− 1, take
the ones that have minimum j, and among those take as pi the one that appears
first in R. See Figure 10 for an example.

We next show that the points pi exist. Since R is a Dyck path, the point(
2(kn − 1), 0

)
is always in R. Moreover, it is a down point and belongs to class

k − 1; hence there is at least one down point in R in class k − 1 with height 0.
In general, we prove that if for j with j < i − 1 there is no down point in class
k − i + j with height j, then there exists a down point in class k − 1 with height
i − 1, and thus we take as pi the first such point that appears in R. Assume that
R contains no point in class k − i + j with height j for j with j < i − 1. Since R
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is a Dyck path all points at height 0 are down, so the point
(
2(kn − i), 0

)
is not

in the path R. The point
(
2(kn − i) + 1, 1

)
is in class k − i + 1 and has height 1,

so by assumption it cannot be down. Then, if it is in R, the previous step must
be U , but that forces the point

(
2(kn − i), 0

)
to be in R, which is a contradiction.

Hence
(
2(kn − i) + 1, 1

)
is not in R. In the same way one proves that the points

of the form
(
2(kn − i) + j, j

)
are not in R for j with 0 ≤ j ≤ i − 2. Note that

this implies that the path R goes above all these points. Now consider the point(
2(kn− i) + i − 1, i− 1

)
, which is in class k − 1. If this point is not in R, then the

point in R with first coordinate equal to 2(kn− i)+ i−1 would have height at least
i + 1; however, from such a point it is impossible to reach the point (2(kn− 1), 0),
which is always in the path. Therefore, the point

(
2(kn − i) + i − 1, i − 1

)
is in R,

and since the point
(
2(kn− i)+ i−2, i−2

)
is not, it has to be a down point. Hence

R contains a down point in class k − 1 with height i − 1, and the existence of pi is
proved.

Now we have to check that πi(R), the cyclic permutation of R at pi, is a path
that does not go below the path B. We split πi(R) into two subpaths R1 and R2

such that R = R1R2 and πi(R) = R2R1. We prove that there is no point in either
part R1 or R2 of πi(R) below the path B. Assume that pi belongs to class k− i+ j
and has height j for some j with j ≤ i − 1.

Suppose first there is a point in the subpath R1 that goes below B and let q be
the first such point; this point is a down point and if it is in class c, then its height
is c − k. Let us move the point q to R, that is, let the point qR be the point of R
that goes to q after the cyclic permutation at pi. It is easy to check that the point
qR has height j + 1 + c − k and belongs to class c + j − i + 1 modulo k. Since R
is a Dyck path we have j + 1 + c − k ≥ 0; from this and the inequality j ≤ i − 1
it follows that the class of qR is indeed c + j − i + 1. Since c < k, we have that
j + 1 + c− k ≤ j. This together with the fact that the point qR comes before pi in
R contradict the choice of pi.

Similarly, suppose there is a point in the subpath R2 of πi(R) that goes below
B and let q′ be the first such point. As before, the point q′ is down and if it is in
class c′, then its height is c′ − k. Let q′R be the point of R that is mapped to q′ by
the cyclic permutation at pi. The point q′R has height j + c′ − k; thus since R is a
Dyck path, j + c′− k ≥ 0. The class of q′R is k− i + j + c′ modulo k. By combining
the inequalities j ≤ i − 1, c′ < k, and j + c′ − k ≥ 0, we get that class of qR is
k − i + (j + c′ − k). Since j + c′ − k < j, the point qR contradicts the choice of pi.
This finishes the proof that the cyclic permutation at pi is a path that does not go
below B.

We now have that every Dyck path from (0, 0) to (2kn − 1,−1) gives rise to k
paths that do not go below B, including the Dyck path itself. As noted above, all
cyclic permutations of a Dyck path are different and for every path only one cyclic
permutation is a Dyck path. Since there are Ckn−1 Dyck paths, we have that the
number of paths as described in the statement of the theorem is at least k Ckn−1.

To complete the proof of the equality, we have to show that every path that does
not go below B is either a Dyck path R or one of the k − 1 cyclic permutations of
a Dyck path R at one of the points p1, p2, . . . , pk−1 defined above. Let S be a path
from (0, 0) to (2kn− 1,−1) that does not go below B and that is not a Dyck path;
let q0 be its first point and qS its leftmost minimum. The cyclic permutation at qS

is a Dyck path S′. Let q′0 be the image of the point q0 in S′. If the point qS is in
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class c and has height h in S, then the point q′0 in S′ is a down point that belongs
to class k− 1− c and has height −h− 1; also h > c− k. We have to show that q′0 is
one of the points p1, . . . , pk−1 with respect to the Dyck path S′. Since by definition
the point pi is in class k − i + j and has height j, it follows that q′0 should be the
point pc−h with j = −h− 1 (note that c − h is a valid index since c − k < h). The
result will follow if we show that no down point in S′ is in class k−c+h+j and has
height j for 0 ≤ j < −h− 1, and that any down point in class k− c− 1 with height
−h− 1 comes after q′0 in S′. It is easy to show that if there were a point satisfying
either condition, then its height in the path S would exceed the class minus k, and
hence the point would be below the path B, which is a contradiction. 2

9. Connections with the tennis ball problem

The following problem is of current interest in enumerative combinatorics; only
a very limited number of cases have been settled (see [9]).

The (k + l, l) tennis ball problem. Let b1, b2, . . . , b(k+l)n be a sequence of
distinct balls. At stage 1, balls b1, b2, . . . , bk+l are put in bin A and then l balls are
moved from bin A to bin B. At stage i, balls b(i−1)(k+l)+1, b(i−1)(k+l)+2, . . . , bi(k+l)

are put in bin A and then some set of l balls from bin A are moved to bin B. (In
particular, balls that remain in bin A after stage i − 1 can go in bin B at stage i.)
How many different sets of ln balls can be in bin B after n iterations?

We show that the answer is the number of bases of the (k, l)-Catalan matroid

Mk,l
n+1.
It is well known that free extensions of transversal matroids are also transversal;

we use the presentations of free extensions given in the following lemma.

Lemma 9.1. Assume that M is a transversal matroid of rank r with presentation
(Aj : j ∈ K) where |K| = r. Then the free extension M + e is also transversal and
the set system (Aj ∪ e : j ∈ K) is a presentation of M + e.

Proof. The partial transversals X of (Aj ∪ e : j ∈ K) with e 6∈ X are precisely the
partial transversals of (Aj : j ∈ K). Also, for any partial transversal X of (Aj : j ∈
K) with |X | < r, the set X ∪ e is a partial transversal of (Aj ∪ e : j ∈ K). �

There are many ways to add a set I = {f1, f2, . . . , fu} of isthmuses to a transver-
sal matroid with presentation (Aj : j ∈ K); for instance, (Aj : j ∈ K) together
with {f1}, {f2}, . . . , {fu} is such a presentation. The presentation of interest for us
is the union of the multiset (Aj ∪ I : j ∈ K) with u copies of I.

By Theorem 3.14, the (k, l)-Catalan matroid Mk,l
n+1 can be constructed from the

empty matroid by taking k free extensions, then adding l isthmuses, then taking
k free extensions, then adding l isthmuses, etc., for a total of n + 1 iterations.
With this in mind, as well as the presentations of free extensions and additions of

isthmuses just discussed, consider the following bipartite graph Gk,l
n+1. One set of

the bipartition of the vertex set is [(k + l)(n + 1)], the ground set of Mk,l
n+1; let vj

h,
with 1 ≤ j ≤ n + 1 and 1 ≤ h ≤ l, be the remaining vertices. Vertices (k + l)i + κ,

with 1 ≤ κ ≤ k, are adjacent to all vj
h with 1 ≤ j ≤ i and 1 ≤ h ≤ l; vertices

(k + l)i + η, with k + 1 ≤ η ≤ k + l, are adjacent to all vj
h with 1 ≤ j ≤ i + 1 and

1 ≤ h ≤ l. The graph G2,2
3 is illustrated in Figure 11.
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1       2      3       4      5       6       7      8       9      10    11     12

v      v                        v      v                        v       v
1        1                               2         2                               3         3
1         2                              1         2                               1         2

Figure 11. The lattice path presentation of M2,2
3 and the graph G2,2

3 .

It follows from the descriptions of presentations of free extensions and extensions

by isthmuses that the bases of Mk,l
n+1 are precisely the sets of vertices in [(k+l)(n+1)]

of maximal size that can be matched in Gk,l
n+1. Note that Mk,l

n+1 has as many bases
as the matroid obtained by deleting the first k elements (which are loops) and the

last l elements (which are isthmuses); let Ĝk,l
n+1 denote graph obtained from Gk,l

n+1

by deleting these vertices. The graph Ĝk,l
n+1 can be used to model n iterations

of the (k + l, l)-tennis ball problem: after relabelling vertices, those adjacent to
vn
1 , vn

2 , . . . , vn
l can be viewed as the balls that could be selected to go in bin B on first

iteration; those adjacent to vn−1
1 , vn−1

2 , . . . , vn−1
l can be viewed as the candidates

to go in bin B on the second iteration, and so on. Furthermore, maximal-sized sets
of vertices that can be matched in this graph are precisely the sets of balls that
can be in bin B at the end of n iterations. Thus, the answer to the (k + l, l) tennis
ball problem, with n iterations, is the number of bases of the (k, l)-Catalan matroid

Mk,l
n+1.
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