
ar
X

iv
:m

at
h.

N
T

/0
30

23
15

v3

20
 M

ar
 2

00
3

Memory Efficient Arithmetic

Ernie Croot

February 3, 2007

Abstract

In this paper we give an algorithm for finding the mth base-b digit
of a positive integer n (m = 1 is the least significant digit) defined
as the final number in a sequence of integers gotten by multiply-
ing, adding, and subtracting previous numbers in the sequence (ac-
tually, the algorithm finds arbitrarily precise approximations to n/bm

(mod 1), which can be used to get this mth digit whenever the lower
m − 1 digits do not begin with a long run of the digit b − 1). In
many cases, this algorithm will require far less memory than it takes
to write down the base-b digits of n, and will have a running time (in
bit operations) only slightly worse than linear in the number of these
base-b digits.

One easy-to-state consequence of the above result is that the mth
base-10 digit of 2t can be found using O(t2/3 logC t) bits of memory
and O(t logC t) bit operations, where C > 0 is constant. Of course,
if m = O(t2/3) then one can do much better (by just computing n
(mod bm)), so the result is only non-trivial when t = O(m3/2).

The algorithm we give is highly parallelizable, although if one uses
M processors, to get an M -fold reduction in running time, the memory
requirements will increase by a factor of M .

1 Introduction

Suppose that α is a positive real number. Then, a standard fact regarding
base-b representations is that given any integer b ≥ 2, there exists and integer
J , and a sequence of integers rJ , rJ−1, ..., such that

α =
∑

j≤J

rjb
j , 0 ≤ rj ≤ b− 1, rJ 6= 0, (1)

1

http://arxiv.org/abs/math.NT/0302315v3

and we write
α = (rJrJ−1...r0.r−1...)b

to denote this expansion (when J > 0). If we further disallow rn = b− 1 for
all n ≤ N , for some N , then the sequence of ri’s is unique. If we make no
such restrictions on rn, then the sequence of ri’s may not be unique, as in
the base-10 expansion

1 = 0.9999999...

A question which has attracted recent attention (see [1]) is the follow-
ing: Given a base b, and an integer m ≥ 0, efficiently determine a good
approximation to

ν = {bmπ},

where for a real number θ, the notation {θ} means

{θ} = θ − ⌊θ⌋ (Note : {θ} ≡ θ (mod 1), 0 ≤ {θ} < 1).

We will say that such an approximation γ is a level-p approximation if and
only if

|γ − ν| <
1

bp
.

Now, if the approximation γ is sufficiently good, then one can use it to
determine the digits of π: For example, if we take m = 3 and b = 10, then
we get

ν ≡ bmπ ≡ 103π ≡ 0.59265358979... (mod 1).

Suppose we had an approximation γ to ν satisfying

|γ − ν| <
1

1000
;

so, γ = 0.59.... Then, the leading base-10 digit of γ is the same as the fifth
base-10 digit of π (from the left), which is 5.

More generally, a good approximation to ν gives us the (m + 2)nd digit
of π; however, depending on the value of m selected, this approximation may
need to be extremely close to ν, in order to determine this digit. For example,
in the above instance with m = 3, if γ = 0.6, then

|γ − ν| <
1

100
,

2

and we note that the leading digit of γ is not the same as the leading digit
of ν.

In this paper we will describe a method for determining the mth base-b
digit of an integer, where m = 1 corresponds to the least significant digit
(note that for the digits-of-π problem above, m = 1 corresponded to the
leading digit; so, the mth digit is defined differently in this context). As in
the problem concerning digits of π, this method produces arbitrarily precise
approximations to

ν =
{ n

bm

}

,

where n is this integer, which will be defined by a certain type of expansion
that we will describe below. Note that the value of m is at least 1 (if m ≤ 0,
then ν is trivially 0). Now, if

ν = (0.r−1r−2 · · ·)b,

then the mth digit of n equals r−1; and, if λ is a sufficiently good approxi-
mation to ν, then the leading digit of λ will also equal r−1.

The type of expansion for n we will use is defined as follows: In [2],
Smale and Shub say that a computation of length L of a positive integer n is
a sequence of integers s1, s2, ..., sL, where s1 = 0, s2 = 1, and for i ≥ 3,

si = sj ◦ sk, where j, k < i,

where ◦ is either addition, subtraction, or multiplication, and where sL = n.
If one expresses such a computation as a string indices (j, k) and operations
+,− and ×, then given an integer N ≥ 2, one can compute n (mod N)
using only O(L(log L)(log N)(log log N)2) bit operations, by just computing
the sequence s1, ..., sL modulo N . The factor (log N)(log log N)2 in this big-
O appears because a product of integers modulo N can be computed using
Fast Fourier Transforms using only O((log N)(log log N)2) bit operations.

We will say that an integer n has computational complexity L if and only
if there exists a computation of lenth L for computing n.

In the next section we will prove a general result, which we will use to
prove the following theorem:

Theorem 1 Given a positive integer n having computational complexity L,
an approximation A to the number of base-b digits of n (see the input specs

3

below), an integer m ≥ 0, and a level y, there exists an algorithm for com-
puting a level-y approximation to

ν =
{ n

bm

}

.

This algorithm requires only

O(yL(log2/3 n) logC(b + m + y + L + log n)) bits of memory,

and
O(yL(logn) logC(b + m + y + L + log n)) bit operations.

The input and output requirements of this algorithm are as follows:

Input: The integers m, y, and a string representing the length-L
computation of n. Also, the algorithm requires as input an integer
A, which is an approximation to the number d of base-b digits of
n. This approximation need only satisfy

1

2
<

A

d
< 2.

We further restrict m so that m < 2A + y + 1, since otherwise
γ = 0 satisfies the conclusion of our Theorem.

Output: The level-y approximation to ν, encoded as a string of
y + 1 base-b digits.

This theorem requires a little more explanation. First of all, the input
to the algorithm will be a string of O(L logL + log m + log y) bits, which
is smaller than the space requirement listed above (when C > 1). The
L log L, log m, and log y terms here account for the number of bits needed
to specify the length L computation of n, the index m, and the level y,
respectively. The approximation A to d requires only O(log log n) bits of
space, and this turns out to be O(L logL): To see why this is so, we note
that any length L computation produces an integer n < 22L−1

, which can be
proved by induction. It follows then that log log n = O(L).

The output of the algorithm will be a string of O(y) bits, representing
the base-b approximation γ to ν. The number γ will have only y + 1 base-b
digits, and will satisfy

|γ − ν| <
1

by
.

4

Perhaps the most surprising aspect of the above theorem is that the indi-
cated algorithm can require significantly less memory to find the approxima-
tion to ν than it does to write down the number n, which will have O(logn)
base-b digits. The following corollary of the above theorem will make this
point clear:

Corollary 1 Suppose that a, b ≥ 2 and m, t, y ≥ 1 are all integers. There
exists an algorithm which computes a level-y base-b approximation γ to ν,
where

ν =

{

at

bm

}

.

This algorithm requires only

O(yt2/3 logC(a + b + y + m + t)) bits of memory,

where C > 0, and performs

O(yt logC(a + b + y + m + t)) bit operations.

Now, the number of bits needed to write down the number n = at is clearly
O(t log a); and yet, if, say, we take y = 1, this algorithm requires only t2/3+o(1)

bits of space.
This corollary follows since at has computational complexity

L = O(log2(a + t)).

To see this, we note that at can be generated by repeated squaring: If t =
2t1 + · · ·+2ts, then at = a2t1 · · ·a2ts

. These numbers a2h

can be computed by
starting with a; then squaring to get a2; then squaring again to get a4; then
continuing, this produces the list a, a2, a4, ..., a2h

after only h multiplications.

The rest of this paper is organized as follows: In the next section we will
state the Main Theorem (Theorem 2) and then use it to deduce Theorem
1. In section 3 we give a proof of the Main Theorem. Finally, in section 4
we give a proof of a proposition (Proposition 1), which is an auxillary result
needed for the proof of the Main Theorem.

5

2 Main Theorem and Proof of Theorem 1

Theorem 1 is actually a corollary of a more general result concerning approx-
imations to ν. In this section we will state this result, which will henceforth
be called the Main Theorem, and then show how to apply it to prove Theo-
rem 1. The proof of this theorem, as well as a brief description of the ideas
used to prove it, can be found in section 3; also, at the end of Section 3.1,
we will give a brief statement on how to parallelize the algorithm.

We suppose that b ≥ 2 is an integer, which is to be the base used; that
0 < n/at < 1 is some rational number where n, a ≥ 1, t ≥ 0 are integers,
and where n has computational complexity L; that y ≥ 1 is some level of
precision to be used; and finally, that µ ≥ 0 is some integer. Then, given any
pair of integers S, T satisfying

ST >
3(log n + (µ + y + 2) log b)

log a
, aS > T 2, (2)

we have the following

Theorem 2 (Main Theorem) Let

ν =
{

bµ n

at

}

. (3)

There exists an algorithm which computes a level-y approximation γ to this
number ν, where the space and time requirements of the algorithm are as
follows:

Space: O(yL(S + T) logC(y + L + S + T + a + b + µ + log t)) bits
of memory, where C > 0.

Time: O(yL(ST + T 3) logC(y + L + S + T + a + b + µ + log t))
bit operations.

Here we give more precise information about the input and output spec-
ifications of the algorithm:

Input: The positive integers a, t, µ, y, S and T , as well as a string
of O(L log L) characters representing the length-L computation
needed to produce n.

6

Output: The algorithm will give an approximation γ to ν. This
approximation will have y + 1 base-b digits, and will satisfy

|γ − ν| <
1

by
.

To prove Theorem 1, using this result, we let a = b, t = 2A, and µ = t−m.
We note that this gives

bµn

at
=

n

bm
.

We also let

S =

⌊

(

3(log b)(3A + µ + y + 2)

log a

)2/3
⌋

+ 1,

T =

⌊

(

3(log b)(3A + µ + y + 2)

log a

)1/3
⌋

+ 1.

We note that this choice of S and T satisfies (2). 1

Now, applying the algorithm described in Theorem 2 with the parameters
indicated above, we get the same output as described in Theorem 1. The
running time and space requirements to run this algorithm are also as stated
in Theorem 1 for our particular choices of S and T .

3 Proof of Theorem 2

Let S and T be as in (2), and let r and k be integers such that

t = Sk − r, 0 ≤ r ≤ S − 1.

Then, we have that

α =
n

at
=

nar

aSk
.

The idea of the proof of Theorem 2 is to approximate bµα (and therefore
ν) as follows:

bµα = γ1 + · · ·+ γT + E, (4)
1To show this, one needs the fact that 3A log b > log n, which follows since n has ≤ 2A

base-b digits.

7

where

γj = bµ Aj

aS − j
,

for some rationals A1, ..., AT , and where

|E| <
1

by+2
for ST sufficiently large. (5)

Then, we will find approximations γ′
1, ..., γ

′
T to {γ1}, ..., {γT}. Now, if the

precision of these approximations γ′
1, ..., γ

′
T is high enough, and if we we let

Σ satisfy
Σ = {γ′

1 + γ′
2 + · · ·+ γ′

T},

then Σ will be an approximation to ν; and, if we then take γ to be the closest
number to Σ having y+1 base-b digits, then γ will be a level-y approximation
to ν.

We claim that the approximations γ′
1, ..., γ

′
T to {γ1}, ..., {γT} need only

have

w = y +

⌊

log T

log b

⌋

+ 3,

base-b digits (and be level-w approximations), in order to guarantee that Σ
is a level-y + 1 approximation to ν. Note that this would imply that

|{γj} − γ′
j | <

1

Tby+2
.

To see only w base-b digits are needed, we note that if these numbers γ′
j

satisfy this last inequality, then by the triangle inequality,

|γ − ν| ≤
1

by+1
+ |Σ− ν| ≤

1

by+1
+

T
∑

j=1

|γ′
j − {γj}| + |E|

<
1

by+1
+

1

by+2
+

1

by+2
≤

1

by
,

as claimed.
Let us now find a set of values for A1, ..., AT which make (4) hold: Using

the geometric series identity, we have that

T
∑

i=1

Ai

aS − i
=

∞
∑

j=1

Bj

aSj
, (6)

8

where
Bj = A1 + A22

j−1 + A33
j−1 + · · ·+ AT T j−1.

We seek values for A1, ..., AT so that

Bj =

{

0, for 1 ≤ j ≤ T, j 6= k;
nar, for j = k.

The following Proposition gives the solution we seek

Proposition 1 We have that

Aj =
nar

(

Coef. of xk−1 in
∏T

h=1

h6=j

x− h
)

∏T
h=1

h6=j

j − h
; (7)

and,
|Aj| ≤ nTaS4T . (8)

Note that this implies

γj = bµ
(−1)T−jnar

(

Coef. of xk−1 in
∏T

h=1

h6=j

x− h
)

(j − 1)!(T − j)!(aS − j)
.

From this proposition we deduce that

|E| = bµ

∣

∣

∣

∣

∣

∞
∑

j=T+1

A1 + A22
j−1 + · · ·+ AT T j−1

aSj

∣

∣

∣

∣

∣

≤ bµ
∞

∑

j=T+1

(nTaS4T)T j

aSj

=
naS4T T T+2bµ

aS(T+1)

∞
∑

j=0

T j

aSj

=
naS4T T T+2bµ

aST (aS − T)
<

nbµ

aST/3
<

1

by+2
,

for ST large enough; and so, (5) follows.
We now have all the ingredients necessary to prove Theorem 2, which we

will give as the following algorithm:

9

3.1 Algorithm 1

The input, output, and requirements of this algorithm are as stated in The-
orem 2. Here are the steps of the algorithm:

1. Let

w = y +

⌊

log T

log b

⌋

+ 3.

Note that this choice of w satisfies

T

bw
≤

1

by+2
.

2. Set Σ = 0, and let r, S, T and k be as described at the beginning of
this section.

3. For j from 1 to T do steps 4 through 8.

4. Compute
Q ← aS − j.

5. Set
v ← (j − 1)!(T − j)!Q.

This number can be computed using O((T + S) logC(T + S)) bit operations,
and just as much memory (for some C > 0).

6. Apply Algorithm 2 (given in the next subsection of the paper) to
compute

H ← Coef. of xk−1 in
T

∏

h=1

h6=j

x− h.

This step requires O(T 2 logC T) bit operations and O(T logC T) bits of mem-
ory.

7. Compute

u ← (−1)T−jnarH (mod v), 0 ≤ u ≤ v − 1.

10

Since n has computational complexity L, this step requires only O(L(S +
T) logC(L + S + T + a)) bit operations, and just as much memory.

8. Find a number τ having w + 1 base-b digits satisfying

|τ − φ| <
1

bw
,

where
φ =

{

bµ u

v

}

.

(So, τ will be a level-w approximation to φ.)
We note that this number τ can be easily computed by first letting

u0 ≡ bµu (mod v), 0 ≤ u0 ≤ v − 1,

and then noting that
{

bµu

v

}

=
u0

v
= (0.r−1r−2...)b.

Then, by finding the first w + 1 significant digits of u0/v, and letting τ =
(0.r−1...r−w−1)b one see that the above inequalities are satisfied.

9. Set
Σ ← {Σ + τ}.

We only need to do level-w arithmetic in base-b here.
(If j < T , then increment j and loop back to step 4.)

10. (We assume j = T .) Let γ be the number having y + 1 base-b digits
which comes nearest to Σ, and then OUTPUT γ.

We note that we can perform the operations in steps 3 through 8, with
different values of j, in parallel. For example, given two processors, we can
assign processor 1 to perform steps 3 through 8, with values of j ≤ T/2, and
then assign processor 2 to do the same, but with T/2 < j ≤ T . This would
result in an two-fold reduction in the running time, as long as µ is sufficiently
large. Of course, the memory requirements would double, because each of
the two processors would require their own seperate memories.

More generally, we have that, given M processors, for µ sufficiently large,
Algorithm 1 can be computed in parallel, resulting in an M-fold reduction
in running time, but an M-fold increase in memory requirements.

11

3.2 Algorithm 2

Input: T, k, j.

Output: Coef. of xk−1 in
∏T

h=1

h6=j

x− h.

Requirements: The algorithm performs O(T 2 logC T) bit opera-
tions (for some C > 0), but requires only O(T logC T) bits of
memory.

1. Let P be the least integer such that

∆ =
∏

p≤P

p prime

p ≥ 2T+1T !

Note: P = O(T log T), and can be computed using O(T logD T) bit opera-
tions (for some D > 0); and so, we can compute and store P within the time
and space requirements listed above for the algorithm. We also note that
every coefficient of the polynomial in the output specifications is less than
∆/2 in absolute value.

2. Set Σ = 0.

3. For each prime p ≤ P do steps 4 through 8.

4. Compute the polynomial

f(x) ≡

T
∏

h=1

h6=j

x− h (mod p).

Note: This polynomial can be stored as a length-T coefficient vector, and
the number of bits required to store such a vector is O(T log p) = O(T log T);
also, this polynomial can be computed using O(T logD T) bit operations by
making use of FFT’s and a divide-and-conquer strategy for polynomial mul-
tiplication. The divide-and-conquer part of the algorithm can probably best
be described as the following recursive procedure: First, we suppose that L
is a set of polynomials to be producted together modulo p, and Product(L)

12

denotes the procedure for computing this product. The pseudocode for this
procedure is given as follows:

If |L| = 1 (i.e. L has only one polynomial), then
RETURN the contents of L (mod p);

Else, if |L| ≥ 2, say L = {f1, ..., ft}, then
RETURN

Product({f1, ..., f⌊t/2⌋})·Product({f⌊t/2⌋+1, ..., ft}) (mod p)

Now, using FFT’s to perform the polynomial multiplication in this second
step (the ‘Else’ step), we see that if the two polynomials being multiplied
together have degrees ℓ1 and ℓ2, respectively, then the multiplication should
take no more than O((ℓ1+ℓ2) logD(ℓ1+ℓ2+p)) bit operations. Now, if we run
Product(L) starting with L consisting of all linear factors x− h, 1 ≤ h ≤ T ,
h 6= j, then if T−1 is a power of 2, the procedure products together (T−1)/2
pairs of degree 1 polynomials; (T − 1)/4 pairs of degree 2 polynomials; and
so on, all the way down to two polynomials of degree (T −1)/2. So, the total
number of bit operations required to run this producedure is

≪ (logD T)
∑

j≤(log T)/ log 2+1

T

2j
2j = O(T logD T).

The memory requirements (in bits) are likewise of the same order.

5. Set
H ← Coef. of xk−1 in f(x) (mod p).

6. Set

N ← (∆/p)−1H (mod p), where 0 ≤ N ≤ p− 1.

7. Set

Σ ← Σ +
N∆

p
.

13

8. Increment the value of p, and return to step 4, unless p > P , in which
case we proceed to step 9.

9. Let r be the least residue in absolute value of Σ (mod ∆).

10. Return the value of r, and STOP.

It is relatively easy to see that the algorithm requires no more than the
indicated space and time requirements.

The idea behind the algorithm is that we use the Chinese Remainder
Theorem to compute the xk−1 coefficient of our polynomial, and the compu-
tation in step 7 is just an “on the fly” CRT calculation. This calculation is
based on the following fact: If q1, ..., qh are coprime, and if a1, ..., ah are any
integers, then if we set

∆′ =

h
∏

i=1

qi,

and

Σ′ =

h
∑

i=1

bi
∆′

qi
, where bi ≡ ai(∆

′/qi)
−1 (mod qi),

then
Σ′ ≡ ai (mod qi), for every i = 1, 2, ..., h.

One might guess that the coefficient of our polynomial can be computed
using less resources by using a “Fourier Series” method; that is,

Coef. xk−1 in f(x) =
1

T

T−1
∑

ℓ=0

e−2πiℓ(k−1)/T f(e2πiℓ/T).

It is not obvious (to me) how to do this without using the special form of
the polynomial f(x): First of all, we would need to maintain ≫ T digits
of precision for each term in the sum, since any particular coefficient of the
polynomial f(x) can have size 2cT log T , for some c > 0. Thus, ≫ T 2 bit
operations would be needed to compute each term f(e2πiℓ/T). In total,≫ T 3

bit operations would be needed to evaluate all the terms in the sum. If one
tries to use FFT’s to evaluate all the terms in the sum at the same time,
this reduces the running time to O(T 2 logD T) bit operations; however, the
memory requirements then increase to ≫ T 2 bits of storage, which is the

14

amount needed to store the all numbers f(e2πiℓ/T), 0 ≤ ℓ ≤ T to ≫ T bits
of precision. Even if we try a discrete version of this method, where the
polynomials are computed, say, modulo 2k for k ≫ T , and the roots of unity
are roots of unity modulo 2k, we would run into the same difficulties.

4 Proof of Proposition 1

The Ai’s can be computed by solving the equation

1 1 1 · · · 1
1 2 3 · · · T
1 22 32 · · · T 2

...
...

... · · ·
...

1 2T−1 3T−1 · · · T T−1

A1

A2

A3
...

AT

=

0
...
0

nar

0
...
0

. (9)

If we call the matrix on the left-hand-side M , then

Aj = narM−1
j,k , (10)

where M−1
j,k is the entry in the jth row, kth column of M−1.

We will calculate M−1
j,k via polynomial interpolation: We have that for

any set of ordered pairs

(1, b1), (2, b2), ..., (T, bT),

where b1, ..., bT ∈ C, there exists a unique degree T−1 polynomial f(x) ∈ C[x]
such that

f(i) = bi, for all i = 1, 2, ..., T ;

moreover, if we write

f(x) = cT xT−1 + cT−1x
T−2 + · · ·+ c2x + c1,

15

then these coefficients ci can be calculated in two different ways: The first
way is through basic linear algebra, since

1 1 1 · · · 1
1 2 22 · · · 2T−1

1 3 32 · · · 3T−1

...
...

...
...

...
1 T T 2 · · · T T−1

c1

c2

c3
...

cT

=

b1

b2

b3
...

bT

. (11)

We notice that the matrix on the left-hand-side is M ′, the transpose of our
matrix M .

The second way of calculating the ci’s is by Lagrange interpolation, which
gives

f(x) =
T

∑

i=1

bi

T
∏

h=1

h6=i

x− h

i− h
. (12)

Now, if we suppose that

bi =

{

0, if i 6= j,
1, if i = j,

then for this choice of bi’s, one sees from (11) that

ck = (M ′)−1
k,j = M−1

j,k .

On the other hand, from (12) we see that

ck = Coef. of xk−1 in
T

∏

h=1

h6=j

x− h

j − h
.

Thus,

M−1
j,k = Coef. of xk−1 in

T
∏

h=1

h6=j

x− h

j − h
,

and we conclude from this and (10) that (7) holds.
Finally, to prove (8), we note that

∣

∣

∣

∣

∣

∣

∣

T
∏

h=1

h6=j

j − h

∣

∣

∣

∣

∣

∣

∣

= (T − j)!(j − 1)!,

16

The coefficient of xk−1 in the above polynomial is clearly less than

T !

(

T

k − 1

)

< T !2T .

So,

|Aj| ≤ naS2T T !

(T − j)!(j − 1)!
= jnaS2T

(

T

j

)

< nTaS4T ,

which proves (8).

5 Acknowledgements

I would like to thank Richard Hudson for an email he sent to me, which got
me interested in these digit calculation questions, which eventually lead me
to prove the theorems listed above. I would also like to thank Kevin Hare
for pointing out to me that my algorithm above is highly parallelizable.

References

[1] D. Bailey, P. Borwein, and S. Plouffe, On the Rapid Computation of
Various Polylogarithmic Constants, Math Comp. 66 (1997), 903-913.

[2] M. Shub and S. Smale, On the Intractability of Hilbert’s Nullstellensatz
and an Algebraic Version of “P=NP?”, Duke Math. Jour. 81 (1995),
47-54.

17

	Introduction
	Main Theorem and Proof of Theorem 1
	Proof of Theorem 2
	Algorithm 1
	Algorithm 2

	Proof of Proposition 1
	Acknowledgements

