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Partial Sums of Multiple Zeta Value Series II: Finiteness of

p-Divisible Sets ∗

Jianqiang Zhao†

Department of Mathematics, University of Pennsylvania, PA 19104, USA

Abstract. In this paper we continue to study the partial sums of the multiple zeta value series
(abbreviated as MZV series). We conjecture that for any prime p and any MZV series there is always
some N such that if n > N then p does not divide the numerator of the nth partial sum of the MZV
series. This generalizes a conjecture of Eswarathasan and Levine and Boyd for harmonic series. We
provide a lot of evidence for this general conjecture and make some heuristic argument to support
it.

1 Introduction

In [13] we have studied the partial sums of the multiple zeta value series (abbreviated as MZV series)
which are defined as

ζ(~s ) := ζ(s1, . . . , sd) =
∑

0<k1<···<kd

k−s1

1 · · ·k−sd

d (1)

for ~s = (s1, . . . , sd) ∈ Nd. We call wt(~s ) := s1 + · · ·+sd the weight and d the depth. These generalize
the notion of harmonic series ζ(1) whose weight is equal to 1. The main task in [13] is to provide
generalizations of Wolstenholme’s Theorem for the partial sums of MZV series.

Recall that for ~s = (s1, . . . , sd) ∈ Nd we denote the nth partial sum of MZV series by

H(~s ;n) :=
∑

1≤k1<···<kd≤n

k−s1

1 · · · k−sd

d , n ∈ Z≥0. (2)

By convention we set H(~s ; r) = 0 for r = 0, . . . , d − 1, and H(∅; 0) = 1. To save space, for an
ordered set (e1, . . . , et) we denote by {e1, . . . , et}d the ordered set formed by repeating (e1, . . . , et) d
times. One of the main results in [13] is the following generalization of Wolstenholme’s Theorem to
homogeneous MZV series

Theorem 1.1. [13, Thm. 2.13]) Let s and d be two positive integers. Let p be an odd prime such
that p ≥ d+ 2 and p− 1 divides none of sl and sl + 1 for l = 1, . . . , d. Then

H({s}d; p− 1) ≡
{

0 (mod p ) if sd is even,

0 (mod p2) if sd is odd.

In particular, the above is always true if p ≥ sd+ 3.

One can also investigate the partial sums H(~s ;n) with fixed ~s but varying n. Such a study
for harmonic series was initiated systematically by Eswarathasan and Levine [7] and Boyd [2], in-
dependently. It turns out that to obtain precise information one has to study Wolstenholme type
congruences in some detail and so these two directions of research are interwoven into each other
rather tightly. To state our main results and conjectures we define

H(~s ;n) =
a(~s ;n)

b(~s ;n)
, a(~s ;n), b(~s ;n) ∈ N, gcd(a(~s ;n), b(~s ;n)) = 1.
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For completeness, we set a(~s ; 0) = 0 and b(~s ; 0) = 1. Fixing a prime p we are interested in p-
divisibility of the integers a(~s ;n) and b(~s ;n) for varying n. Thus we put H(~s ;n) inside Qp, the
fractional field of the p-adic integers and let vp be the discrete valuation on Qp such that vp(p) = 1.
In this general situation we’re forced to change the notation used by the previous authors. For any
m ∈ N and ~s ∈ Nd, put

I(~s |m) :={n ∈ Z≥0 : b(~s ;n) 6≡ 0 (mod m)},
J(~s |m) :={n ∈ Z≥0 : a(~s ;n) ≡ 0 (mod m)}.

Note that J(~s |m) 6= ∅ since 0 ∈ J(~s |m) always. For any prime p we call J(~s |p) the p-divisible set of
(the partial sums of) the MZV series ζ(~s ) defined by (1).

In [2] Boyd presented a heuristic argument by modeling on simple branching processes to convince
us that the p-divisible set of the harmonic series is finite for every prime p (this is also independently
conjectured by Eswarathasan and Levine [7, Conjecture A]). Boyd also proves this conjecture for all
primes less than 550 except for 83, 127 and 397. We now provide a generalization:

Conjecture 1.2. Let d be a positive integer and ~s ∈ Nd. Then the p-divisible set J(~s |p) is finite
for every prime p.

Although we are not able to prove this conjecture in general, we obtain a lot of partial results.
The primary tool to prove these when d ≥ 2 is our Criterion Theorem 2.1. Fixing an arbitrary prime
p we define

G0 = {0} and Gt = {n : pt−1 ≤ n < pt} for t ∈ N.

Criterion Theorem Let d ≥ 2 be a positive integer and p be a prime such that d ∈ Gt0 . Let ~s =
(s1, · · · , sd) ∈ Nd and put m = min{si : 1 ≤ i ≤ d}. For t ∈ N set f(~s , p; t) = min{−vp

(

H(~s ;n)
)

:
n ∈ Gt}. If there is τ > t0 such that

f(~s , p; τ) > (wt(~s ) −m)(τ − 1) −m,

then J(~s |p) is finite.

We list only some results obtained by applying our Criterion Theorem below. More examples
including those when d = 1 can be found in sections 2-4 or in the online supplement [12].

Theorem 1.3. The p-divisible set J(~s |p) is finite if

1. ~s = (1, 1) and p = 3, 7, 13, 31, or ~s = (1, 1, 1) and p = 3, or ~s = (1, 1, 2) and p = 7.

2. ~s = (4, 3, 5) or ~s = (5, 3, 4) and p = 17.

3. ~s = {s}d, 1 ≤ d ≤ 20, s ≥ 2, and p = 2.

4. ~s = (s, t), s, t ≤ 20, t ≥ 2, and p = 2, 3, 5.

5. ~s = (r, s, t), r, s, t ≤ 10, t ≥ 2, and p = 2, 3, 5.

6. ~s = (q, r, s, t), q, r, s, t ≤ 4, t ≥ 2, and p = 2, 3, 5.

Moreover, for ~s in the last four cases we have J(~s |2) = {0}.

Conjecture 1.4. For all positive integer d and ~s ∈ Nd the 2-divisible set J(~s |2) = {0}.

In [7, Conjecture B] Eswarathasan and Levine state that there should be infinitely many primes p
(so called harmonic primes) such that J(1|p) = {0, p− 1, p2− p, p2− 1}. Boyd [2] further suggest 1/e
as the expected density of such primes. For any ~s ∈ Nd we extend this notion to define the reserved
(divisibility) set RJ(~s ;x) of polynomials in x with rational coefficients. For any prime p ≥ wt(~s )+3
we have RJ(~s ; p) ⊆ J(~s |p) and there are primes p (called reserved primes for ~s ) such that equality
holds. We determine RJ(~s ) for many types of ~s in Thm. 7.2. Further we argue heuristically that
the following conjecture should be true.
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Conjecture 1.5. Let ~s ∈ Nd. If d = 1, ~s = s ≥ 2 then the proportion of primes p with J(~s |p) =
RJ(~s ) is 1/

√
e. This proportion is equal to 1/e for all other ~s .

This conjecture is supported by very strong numerical and theoretical evidence which we gather
online [11] and in Thm. 7.2. It also generalizes Boyd’s density conjecture of the harmonic primes.

At the end of this paper we put forward some more conjectures of J(~s |p) related to the distribution
of irregular primes.

2 A process to determine J(~s |p)

For any positive integer n let n = pñ+ r, where ñ, r ∈ N and 0 ≤ r ≤ p− 1. For any ~s ∈ Nd define

H∗(~s ;n) =
∑

1≤k1<···<kd≤n
(p,k1)=···=(p,kd)=1

1

ks1

1 · · · ksd

d

.

Then by a straightforward computation using the shuffle trick we have: for any s, d ∈ N

H(s;n) =H∗(s;n) + p−s ·H(s; ñ), (3)

H({s}d;n) =

d
∑

l=0

p−l ·H({s}l; ñ) ·H∗({s}d−l;n). (4)

where H({s}0;m) = H∗({s}0;m) = 1 for any integer m. We omit the proofs of these formulas whose
main ingredient is contained in the proof of the main Criterion Theorem 2.1 below. Both of these
formulate are generalizations of [7, (2.2)] for partial sums of harmonic series. They are the primary
tools to study Conj. 1.2 for homogeneous MZV series.

For more general MZV series we need a more complicated version of these formula. Fixing an
arbitrary prime p we define

G0 = {0} and Gt = {n : pt−1 ≤ n < pt} for t ∈ N.

For any ~s ∈ Nd we set Jt(~s |p) = Gt ∩ J(~s |p).
Theorem 2.1. (Criterion Theorem) Let d ≥ 2 be a positive integer and p be a prime such that
d ∈ Gt0 . Let ~s = (s1, · · · , sd) ∈ Nd and put m = min{si : 1 ≤ i ≤ d}. For t ∈ N set f(~s , p; t) =
min{−vp

(

H(~s ;n)
)

: n ∈ Gt}. If there is τ > t0 such that

f(~s , p; τ) > (wt(~s ) −m)(τ − 1) −m,

then J(~s |p) is finite.

Proof. Let n = pñ+ r ∈ Gτ+1. By definition we have

H(~s ;n) =
∑

α+β=d
α,β≥0

∑

1≤i1<···<iα≤n
1≤j1<···<jβ≤n

{1,...,n}={i1,...,iα}∪{j1,...,jβ}

∑

Kil
=pkil

,1≤l≤α

Kjl
=kjl

,(kjl
,p)=1,1≤l≤β

1≤K1<···<Kd≤n

1

Ks1

1 · · ·Ksd

d

. (5)

Note that the terms corresponding to α = d, β = 0 form the series A = H(~s ; ñ)/pwt(~s ) 6= 0 since
τ > t0 so that ñ ≥ pt0 > d. For all other terms with β ≥ 1 we have the natural bound

vp(K
s1

1 · · ·Ksd

d ) ≤ (wt(~s ) −m)τ

since Kj < pτ+1 for all j and one of them is prime to p. Set B = H(~s ;n) − A then obviously
vp(B) ≥ −(wt(~s ) −m)τ. Since ñ ∈ Gτ by assumption of τ we know that

vp(A) < −wt(~s ) − (wt(~s ) −m)(τ − 1) +m = −(wt(~s ) −m)τ ≤ vp(B).

By induction it’s easy to see that for all t > τ and n ∈ Gt we have

vp

(

H(~s ;n)) < −wt(~s )(t− τ) − (wt(~s ) −m)(τ − 1) +m = −wt(~s )(t− 1) +mτ < 0.

This shows clearly that J(~s |p) is finite.
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Corollary 2.2. Let s, d be two positive integers, d ≥ 2, and p be a prime. Suppose d ∈ Gt0 . Then
the p-divisible set J({s}d|p) is finite if there exists τ > t0 such that fd(τ) > (d− 1)sτ − s.

Proposition 2.3. Let r, s, t be three positive integers. Let ~s = (r, s) with 1 ≤ r ≤ 10 and 2 ≤ s ≤ 10,
or ~s = (r, s, t) with 2 ≤ r, s, t ≤ 5. Then there’s always some prime p ≥ wt(~s ) + 3 such that the
p-divisible set J(~s |p) = RJ(~s ; p) is finite where RJ(~s ; p) is given in Thm 7.2.

Proof. The set RJ(~s ; p) will be defined for general ~s in Definition 7.1 and computed in Thm 7.2.
The proof of the proposition follows from the Criterion Theorem 2.1 by computation. To save space
we put the details online [12].

3 Finiteness of J(s|p)

We now describe an approach to determine the p-divisible set J(s|p) for any given positive integer
s and odd prime p. This is essentially discovered by Eswarathasan and Levine [7] and by Boyd [2],
independently. It follows quickly from (3) that

n ∈ I(s|p) if and only if ñ ∈ J(s|ps). (6)

Therefore
n ∈ J(s|p) implies ñ ∈ J(s|ps). (7)

It’s also clear that
I(s|p) = pJ(s|ps) +R, R = {0, 1, · · · , p− 1}.

Remark 3.1. The case when s > 1 is very different from that of s = 1 considered by previous
authors in that the information of I(s|p) is in general not enough to determine J(s|p).

To get an equivalent condition of (7) we need a partial generalization of [7, Lemma 3.1]. Set the
parity function p(m) = 1 if m is odd and p(m) = 2 if m is even.

Lemma 3.2. Let p be an odd prime, s and d be two positive integers. If p−1 ∤ s, s+1 then we have

H∗(s; pn) ≡ 0 (mod pp(s−1)). (8)

Proof. By definition

H∗(s; pn) =
∑

1≤k≤n
(p,k)=1

1

ks
=

n−1
∑

m=0





∑

mp<k<(m+1)p

1

ks



 . (9)

The lemma follows from the fact that each inner sum in the parentheses satisfies the congruence in
(8) which can be proved by the same argument as that in the proof of [13, Lemma 2.2] (when n is
odd the shorter proof suffices). It also follows from [10, Cor. 1].

Proposition 3.3. Let s, d ∈ N and p be an odd prime such that p ≥ d+ 2 and p− 1 divides none of
sl and sl + 1 for l = 1, . . . , d. Then

H∗({s}d; pn) ≡ 0 (mod pp(sd−1)).

The proof as well as the result itself is so similar to that of Thm. 1.1 that we leave it to the
interested readers. The first step of induction is given as Lemma 3.2 above. In fact, the proposition
itself reduces to Thm. 1.1 when n = 1.

Definition 3.4. For n ∈ J(s|ps) there is a unique integer ψs(s|p;n) ∈ [0, p− 1] such that

ψs(s|p;n) ≡ 1

ps
H(s;n) (mod p). (10)
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Lemma 3.5. For n = pñ+ r, 0 ≤ r < p, we have

H∗(s;n) −H∗(s; pñ) ≡ H(s; r) (mod p). (11)

Furthermore, if ñ ∈ J(s|ps) then

H(s;n) ≡ H(s; r) + ψs(s|p; ñ) (mod p) (12)

Proof. This follows from (3) and Lemma 3.2. Also see the proof of [7, Lemma 3.2].

Theorem 3.6. Let n = pñ+ r, 0 ≤ r < p. Then n ∈ J(s|p) if and only if

ñ ∈ J(s|ps) and H(s; r) + ψs(ñ) ≡ 0 (mod p). (13)

Proof. If n ∈ J(s|p) then (7) implies that ñ ∈ J(s|ps). In addition, the congruence in (13) follows
immediately from (12). On the other hand, if (13) holds then (12) implies that n ∈ J(s|p) and the
proof is complete.

We now use the above theorem to define a branching process by using the sets Gt which will
compute J(s|p) if it’s finite.

Proposition 3.7. Let s be a positive integer and p an odd prime. Then J(s|p) = ∪∞
t=0Jt(s|p) where

Jt(s|p) can be determined recursively by

Jt+1(s|p) = {n = pñ+ r : ñ ∈ Jt(s|ps), r ∈ R, vp

(

H(s; r) + ψs(ñ)
)

> 0}

for t ∈ N. Here, as before, R = {0, 1, · · · , p− 1}.
The next corollary follows naturally.

Corollary 3.8. Let s be a positive integer and p an odd prime. Then J(s|p) is finite if and only if
Jt(s|ps) = ∅ for some t ∈ N.

An easy computation according to Cor. 3.8 yields the following concrete result.

Proposition 3.9. Let s be a positive integer. Then J(s|p) is finite for primes p = 2, 3, 5, 7.

Proof. (1) p = 2. We claim that J(s|2) = {0}. We can prove that 2 does not divide H(s;n) by
induction on n. This is clear for n = 1 and n = 2 because H(s; 1) = 1, H(s; 2) = (1 + 2s)/2s.
Suppose r 6∈ J(s|2) for all r ≤ n and n ∈ J(s|2). If n is odd then let H(s;n− 1) = a

2b where a is odd
by inductive assumption. Then

H(s;n) =
a

2b
+

1

ns
=

Na+ 2B

l.c.m(2b, ns)
,

where N = ns/gcd(ns, b) and B = b/gcd(ns, b). Hence Na + 2B is odd because both N and a are
odd, which is a contradiction. If n = 2ñ then

H(s; 2ñ) =

ñ
∑

k=1

(

1

(2k − 1)s
+

1

(2k)s

)

≡ ñ+
1

2s
H(s; ñ) (mod 2).

By inductive assumption 2 ∤ H(s; ñ) which implies that 2 ∤ H(s; 2ñ). So n can not belong to J(s|2)
either if n is even. This shows that J(s|2) = {0}. In fact, it is not hard to see that for n ∈ Gt, t ≥ 1
we have

v2
(

H(s;n)
)

= −(t− 1)s. (14)

For 3 ≤ p ≤ 7 Eswarathasan and Levine [7] have shown that J(1|p) are finite. We also know
that when s ≤ 4 then J(s|p) are finite for these primes by explicit computation [12]. Assume s ≥ 4.
Then by Cor. 3.8 we only need to show that J1(s|ps) = ∅. We need [13, Cor. 2.7] which implies that
if p ≥ 3 is a regular prime then

H(s; p− 1) 6≡ 0 (mod ps) for s ≥ 4. (15)
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(2) p = 3. Neither H(s; 1) = 1 nor H(s; 2) = 1 + 1/2s is divisible by 3s. so J1(s|3s) = ∅.
(3) p = 5. Neither H(s; 1) = 1 nor H(s; 2) = 1 + 1/2s is divisible by 5s. Now

6sH(s; 3) = 2s + 3s + 6s ≡ 2s + (−2)s + 1 ≡
{

2 · 4n + 1 (mod 5) if s = 2n,

1 (mod 5) if s is odd.
.

So we always have H(s; 3) 6≡ 0 (mod 5), i.e., 3 6∈ J1(s|5s). Finally, (15) implies that 4 6∈ J1(s|5s) for
s ≥ 4 because 5 is a regular prime. Hence J1(s|5s) = ∅.

(4) p = 7. Clearly 1, 2 6∈ J1(s|7s) and 6sH(s; 3) = 2s + 3s + 6s < 7s when s ≥ 4. Now

H(s; 4) = H(s; 6) − 1

5s
− 1

6s
≡ (−1)s+1

(

1 +
1

2s

)

(mod 7).

Because 23 ≡ 1 (mod 7) we get

1 +
1

2s
≡











2 (mod 7) if s ≡ 0 (mod 3),

3/2 (mod 7) if s ≡ 1 (mod 3),

3 (mod 7) if s ≡ −1 (mod 3).

Therefore 4 6∈ J1(s|7s). Similarly, H(s; 5) ≡ (−1)s+1 6≡ 0 (mod 7). Finally, it follows from (15) that
6 6∈ J1(s|7s) for s ≥ 4. These show that J1(s|7s) = ∅ for all s ≥ 4.

Remark 3.10. The case p = 11 is not so easy since H(3; 4) ≡ 0 (mod 11) and moreover, for any
positive integer e there is some s < pe(p− 1) such that H(s; 4) ≡ 0 (mod 11e+1).

We also computed J(s|p) for some other s and p (see [12]), which confirms the following

Proposition 3.11. Let p be a prime such that p ≤ 3001. Then J(s|p) is finite for 2 ≤ s ≤ 300.

4 Finiteness of J({s}d|p)

In order to apply Criterion Theorem 2.1 we set

fd(t) := f({s}d, p; t) = min{−vp(H({s}d;n)) : n ∈ Gt}, ∀t ≥ 1.

We first look at the case s ≥ 2.

Lemma 4.1. For all s ≥ 2 we have v2(3
s + 1) = p(s − 1) which is 1 if s is even and 2 if s is odd.

In particular, we always have 3s + 1 6≡ 0 (mod 2s).

Proof. This is clear because

3s + 1 =

{

9n + 1 ≡ 2 (mod 8) if s = 2n,

3 · 9n + 1 ≡ 4 (mod 8) if s = 2n+ 1.

Proposition 4.2. Let s ≥ 2 and d ≤ 20 be two positive integers. Then the 2-divisible set J({s}d|2)
is finite.

Proof. When d = 1 this is included in Prop. 3.9. So we assume s, d ≥ 2. Then

H(s; 2) = 1 +
1

2s
, H(s, s; 2) =

1

2s
, H(s; 3) =

6s + 3s + 2s

6s
.

Further, by Lemma 4.1 we know that

H(s, s; 3) =
1

2s
+

(

1 +
1

2s

)

1

3s
=

3s + 1 + 2s

6s

6



has at least a factor 2 in the denominator. Therefore we can take τ = 2 to get f(τ) ≥ 1 >
(2s− s)(τ − 1) − s = 0. So the condition in Cor. 2.2 is satisfied and consequently J(s, s|2) = {0}.

A detailed study of using Lemma 4.1 tells more. Let t ≥ 0 and n ∈ Gt+2. Then by induction and
equation (4) we can easily show that

v2
(

H(s, s;n)
)

=

{

−(2t+ 1)s if 2t+1 ≤ n < 2t+1 + 2t,

p(s− 1) − (2t+ 1)s if 2t+1 + 2t ≤ n < 2t+2.
(16)

Putting d = 3 in the following equation

H({s}d;n) = H({s}d;n− 1) +
1

ns
H({s}d−1;n− 1), (17)

and applying induction on t we can show that

v2
(

H(s, s, s;n)
)

=











p(s− 1) − 3ts if 2t+1 ≤ n < 2t+1 + 2t−1,

−3ts if 2t+1 + 2t−1 ≤ n < 2t+1 + 2t,

−(3t+ 1)s if 2t+1 + 2t ≤ n < 2t+2.

(18)

So we get J(s, s, s|2) = {0} when s ≥ 2.
When d ≥ 4 we can utilize (17) again. However, even in the case d = 4 it is very complicated

already. Nevertheless the idea is straightforward so we omit the details of the proof. Suppose s = 2
and n ∈ Gt+2 with t ≥ 1 (note that H({s}4;n) = 0 for all n ≤ 3). Then we have

v2
(

H({2}4;n)
)

=







































(1) − 2(4t− 1) if 2t+1 ≤ n < 2t+1 + 2t,

(2) − 8t if 2t+1 + 2t ≤ n < 2t+1 + 2t + 2t−1,

(3) − 8t+ δ(t) if 2t+1 + 2t + 2t−1 ≤ n < 2t+1 + 2t + 2t−1 + 2t−4,

(4) − 8t+ 7 if 2t+1 + 2t + 2t−1 + 2t−4 ≤ n < 2t+1 + 2t + 2t−1 + 2t−3,

(5) − 2(4t− 2) if 2t+1 + 2t + 2t−1 + 2t−3 ≤ n < 2t+1 + 2t + 2t−1 + 2t−2,

(6) − 2(4t− 1) if 2t+1 + 2t + 2t−1 + 2t−2 ≤ n < 2t+2.

(19)
Here if t = 1 then (3)-(6) merge into (6); if t = 2 then δ(t) = 5 and (3)-(5) merge into (3); if t = 3
then (3) and (4) merge into (3); if t ≥ 3 then δ(t) = 6. When s = 3 and n ∈ Gt+2 with t ≥ 1 we
have

v2
(

H({3}4;n)
)

=



















(1) − 3(4t− 1) if 2t+1 ≤ n < 2t+1 + 2t,

(2) − 12t if 2t+1 + 2t ≤ n < 2t+1 + 2t + 2t−1,

(3) − 3(4t− 1) if 2t+1 + 2t + 2t−1 ≤ n < 2t+1 + 2t + 2t−1 + 2t−2,

(4) − 3(4t− 1) + 1 if 2t+1 + 2t + 2t−1 + 2t−2 ≤ n < 2t+2.

(20)
Here if t = 1 then (3) and (4) merge into (4). When s ≥ 4 we have

v2
(

H({s}4;n)
)

=











(1) − s(4t− 1) if 2t+1 ≤ n < 2t+1 + 2t,

(2) − 4st if 2t+1 + 2t ≤ n < 2t+1 + 2t + 2t−1,

(3) − 4st+ 2 p(s− 1) if 2t+1 + 2t + 2t−1 ≤ n < 2t+2.

(21)

Equations (19)-(21) imply that J({s}4|2) = {0} for all s ≥ 2.
Similar computation shows that when d = 5 and n ∈ Gt+2 with t ≥ 1 we have

v2
(

H({2}5;n)
)

=







































(1) − s(5t− 3) + 2 p(s− 1) if 2t+1 ≤ n < 2t+1 + 2t−3,

(2) − s(5t− 3) + 3 if 2t+1 + 2t−3 ≤ n < 2t+1 + 2t−2,

(3) − s(5t− 3) if 2t+1 + 2t−2 ≤ n < 2t+1 + 2t−1,

(4) − s(5t− 2) if 2t+1 + 2t−1 ≤ n < 2t+1 + 2t,

(5) − s(5t− 1) if 2t+1 + 2t ≤ n < 2t+1 + 2t + 2t−1,

(6) − s(5t− 1) + 1 if 2t+1 + 2t + 2t−1 ≤ n < 2t+2.

(22)
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Here if t = 1 then (1)-(3) do not appear; if s ≥ 3 then (1) and (2)) merge into (1). This implies that
J({s}5|2) = {0} for all s ≥ 2.

As d gets larger there are more and more cases. The number of cases, denoted by C(d), is
independent of s when s is large enough and tends to increase with d though not always. We
compute the following

C(6) = 5, C(7) = 7, C(8) = 6, C(9) = 8, C(10) = 8, C(11) = 11, C(12) = 10,

C(13) = 12, C(15) = 15, C(16) = 12, C(17) = 15, C(18) = 14, C(19) = 18, C(20) = 15.

After tedious verification we find J({s}d|2) = {0} for all d ≤ 20 and s ≥ 2.

For any given d by similar method we should be able to determine J({s}d|2) for all s ≥ 2.
However, for odd primes we can only extend this to small d and small s by computer computation.

Proposition 4.3. Let s and d be two positive integers. Suppose 2 ≤ s ≤ 10 and 2 ≤ d ≤ 10.
Then the p-divisible set J({s}d|p) is finite for the consecutive five primes immediately after sd + 2.
Moreover there’s always some prime p such that J({s}d|p) = RJ({s}d; p) where

RJ({s}d; p) =

{

{0, p− 1} if 2 ∤ s,

{0, i+ (p− 1)/2, p− 1 : 0 ≤ i ≤ d− 1} if 2|s.

Proof. The set RJ(~s ; p) will be defined for general ~s in Definition 7.1 and computed in Thm 7.2.
The proof of the proposition follows from Cor. 2.2 by computer computation. To save space we put
the details online [12].

In the rest of this section we turn to the case s = 1. We may assume d ≥ 2 since the harmonic
series has been handled by [7] and [2]. According Cor. 2.2 if we can find τ large enough such that
fd(τ) ≥ (d− 1)(τ − 1) then J({1}d|p) is finite.

Proposition 4.4. 1. The p-divisible set J({1}2|p) is finite if p = 3, 7, 13, 31.

2. Let s, t ≤ 20 and t ≥ 2. Then the set J(s, t|p) is finite for p = 2, 3, 5.

3. Let r, s, t ≤ 10 and t ≥ 2. Then the set J(r, s, t|p) is finite for p = 2, 3, 5.

4. Let q, r, s, t ≤ 4 and t ≥ 2. Then the set J(q, r, s, t|p) is finite for p = 2, 3, 5.

Proof. We only need to find τ satisfying the condition of Cor. 2.2.
(1) For each τ in the following we have f2(τ) = τ − 1.
p = 3. Take τ = 6. Then computation reveals that J(1, 1|3) = {0, 5}. If d = 3 then we

take τ = 10. Then we have f3(τ) ≥ 2(τ − 1). Note that in G9 there is n = 17770 such that
v3

(

H({1}3;n)
)

= −15 so f3(9) = 15. By Cor. 2.2 and simple computation we see that J({1}3|3) =
{0, 8}.

p = 7. Take τ = 4. Then J(1, 1|7) = {0, 4, 6, 7, 13}.
p = 13. Take τ = 4. Then J(1, 1|13) = {0, 12, 13, 25}.
p = 31. Take τ = 4. Then J(1, 1|31) = {0, 17, 22, 30, 31, 61}.
For the last three cases with p = 2, 3, 5 we put the result of computation online [12]. For example,

we can take τ = 10 and show that J(1, 1, 1|3) = {0, 8}.

Remark 4.5. We could extend our results to larger d and some other primes p but it’d be very
time consuming with our slow PCs. However, even in the case ~s = (1, 1) similar process fails for
p = 2. Computations suggest that J(1, 1|2) = {0}, J(1, 1|5) = {0, 4, 5, 9}, J(1, 1|11) = {0, 10, 11, 21}
and J(1, 1|17) = {0, 11, 13, 16, 17, 33}. We will analyze the situation for p = 2 in detail in the next
section.
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5 Sequences related to J(s, 1|2)

One may wonder what goes wrong in Proposition 4.4 if we let ~s = (1, 1) and p = 2. We will see that,
amazingly, this problem might be related to some pseudo-random process.

Only in this section we adopt the shorthand H1(n) := H(1;n) and H2(n) := H(1, 1;n). Let’s
start with the first few partial sums of H2(n) when 2 ≤ n ≤ 14. Here ∼ means we only consider the
fractional part of the numbers.

H2(2) ∼ 1

2
, H2(3) ∼ 1, H2(4) ∼ 11

24
, H2(5) ∼ 7

8
, H2(6) ∼ 23

90
,

H2(7) ∼ 109

180
, H2(8) ∼ 9371

10080
, H2(9) ∼ 467

2016
, H2(10) ∼ 25933

50400
,

H2(11) ∼ 25933

50400
, H2(12) ∼ 39353

50400
, H2(13) ∼ 13501

415800
, H2(14) ∼ 4027

14850
.

It looks like 2 never divides the numerator and moreover, the 2-powers in the denominators of H2(n)
tend to increase with n, though not always. To proceed we need to know the 2-divisibility of H∗

1 (n).

Lemma 5.1. Let n be a positive integer. Then

H∗
1 (n) ≡

{

0 (mod 4) if n ≡ 0, 3 (mod 4),

1 (mod 4) if n ≡ 1, 2 (mod 4).

Proof. If n is even then obviously H∗
1 (n) = H∗

1 (n−1). So we only need to consider n ≡ 1, 3 (mod 4).
Set δ = 1 if n = 4l+ 1 and δ = 0 if n = 4l − 1. Then

H∗
1 (n) =

δ

4l+ 1
+

2l
∑

i=1

1

2i− 1
=

δ

4l + 1
+

l
∑

i=1

(

1

2i− 1
+

1

4l− 2i+ 1

)

≡ δ (mod 4)

as desired.

Remark 5.2. By working more carefully we can obtain the following improvement of Lemma 5.1:
if n = 2dm or n = 2dm − 1 where m is odd and d ≥ 1. Then v2

(

H∗
1 (n)

)

= 2(d − 1). However, the
proof is complicated and it is not needed in the rest of the paper so we leave the proof of this general
statement to the interested readers.

The following result is exactly the reason why Cor 2.2 cannot be applied to J(1, 1|2).

Proposition 5.3. For any t ≥ 2, there is a unique nt ∈ Gt such that v2
(

H2(nt)
)

≥ 2 − t whereas

for all nt 6= n ∈ Gt we have v2
(

H2(n)
)

≤ 1 − t. Therefore, for all positive integers n 6∈ {nt}t≥1 the
numerator of H2(n) is not divisible by 2.

Proof. Note that G1 = {1} and G2 = {2, 3}. Thus n2 = 3 because H2(3) = 1. Assume that t ≥ 3
and each ni has been found in Gi uniquely for i ≤ t. Let n = 2ñ+ r ∈ Gt+1 for r = 0 or 1. When
d = p = 2 and s = 1 equation (4) becomes

H2(n) = H∗
2 (n) +

1

2
H1(ñ)H∗

1 (n) +
1

4
H2(ñ). (23)

It’s easy to show that v2
(

H1(m)
)

= 1 − t for m ∈ Gt by induction and the recursive relation

H1(n) = H∗
1 (n) +H1(ñ)/2. If ñ 6= nt then we have v2

(

H2(ñ)
)

≤ 1 − t and hence

v2
(

H2(n)
)

= min{v2
(

H∗
1 (n)

)

− t,−1 − t} = −1 − t < 1 − (t+ 1).

Suppose now ñ = nt and n = 2nt + rt. We consider four possible cases.
(i) If v2

(

H2(nt)
)

= 2 − t and v2
(

H∗
1 (n)

)

≥ 1 then n 6= nt+1 because

v2
(

H2(n)
)

= min{v2
(

H∗
1 (n)

)

− t,−t} = −t = 1 − (t+ 1).
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(ii) If v2
(

H2(nt)
)

= 2 − t and v2
(

H∗
1 (n)

)

= 0 then

v2

(

1

2
H1(nt)H

∗
1 (n)

)

= v2

(

1

4
H2(nt)

)

= −t.

Hence n = nt+1 because
v2

(

H2(n)
)

≥ 1 − t = 2 − (t+ 1).

(iii) If v2
(

H2(nt)
)

≥ 3−t and v2
(

H∗
1 (n)

)

= 0 then n 6= nt+1 because v2
(

H2(n)
)

= min{v2
(

H∗
1 (n)

)

−
t, v2

(

H2(nt)
)

− 2 − t} = −t = 1 − (t+ 1).

(iv) If v2
(

H2(nt)
)

≥ 3 − t and v2
(

H∗
1 (n)

)

≥ 1 then n = nt+1 because

v2
(

H2(n)
)

≥ min{v2
(

H∗
1 (n)

)

− t, v2
(

H2(nt)
)

− 2 − t} ≥ 1 − t = 2 − (t+ 1).

Now if nt = 2l is even then by Lemma 5.1
(1) 2nt + 1 ≡ 1 (mod 4) and v2

(

H∗
1 (2nt + 1)

)

= 0, and

(2) 2nt ≡ 0 (mod 4) and v2
(

H∗
1 (2nt + 1)

)

≥ 1.
If nt = 2l+ 1 is odd then by Lemma 5.1

(3) 2nt + 1 ≡ 3 (mod 4) and v2
(

H∗
1 (2nt + 1)

)

≥ 1 and

(4) 2nt ≡ 2 (mod 4) and v2
(

H∗
1 (2nt + 1)

)

= 0.
Therefore, we have four situations to consider:

(a) nt is even and v2
(

H2(nt)
)

= 2 − t. Then nt+1 = 2nt + 1 by (1) and (ii).

(b) nt is even and v2
(

H2(nt)
)

≥ 3 − t. Then nt+1 = 2nt by (2) and (iv).

(c) nt is odd and v2
(

H2(nt)
)

≥ 3 − t. Then nt+1 = 2nt + 1 by (3) and (iv).

(d) nt is odd and v2
(

H2(nt)
)

= 2 − t. Then nt+1 = 2nt by (4) and (ii).
It follows that nt+1 ∈ Gt+1 is uniquely determined. This finishes the proof of the proposition.

Denote the dyadic valuation v2
(

H2(nt)
)

by −wt. Then we have the following two interesting
sequences:

{nt}t≥2 = {3, 6, 13, 27, 54, 109, 219, 439, 879, 1759, 3518, 7037, 14075, 28151,

56303, 112606, 225212, 450424, 900848, 1801696, 3603393, . . .} (24)

{wt}t≥2 = {0, 1, 3, 4, 3, 3, 5, 7, 9, 10, 9, 10, 12, 14, 13, 13, 15, 17, 19, 19, . . .} (25)

Set r1 = r2 = 1 and define rt = 0 or 1 for t ≥ 3 as determined in the proof of Prop. 5.3 such that
nt+1 = 2nt + rt. Then clearly nt can be written as

nt = (r1r2 . . . rt)2 (26)

in binary system and apparently the sequence {nt} increases very fast. Further, the occurrence of
rt = 0 or rt = 1 does not seem to have any predictable pattern so we think this might be related
to some pseudo-random process. By this we mean the following. First we of course conjecture that
{wt}t≥3 is always bounded below by 1 which is equivalent to say J(1, 1|2) = {0}. We also have
proved that wt is bounded above by 1− t and it is not hard to see that wt = t− 1 for infinitely many
t’s. It’s also conceivable that wt are near t− 1 most of the time. However, we believe wt could move
very far away from t− 1 for very large t. At the present stage, we could not even determine whether
the difference between wt and t− 1 can be arbitrarily large.

Remark 5.4. We put the two sequences {nt}t≥2 and {wt}t≥2 in Sloane’s online database of integer
sequences as A079403(n) and A079404(n), respectively. Shortly after Benoit Cloitre emailed me a
formula for the known terms of {nt}t≥2:

nt = ⌊2t−1c⌋ (27)

where c = 1.718232.... Indeed, it’s easy to see that

n1 = 1, nt = 2t−1
t−1
∏

k=1

(

1 +
rk
2nk

)

, ∀t ≥ 2.
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Further,

c = lim
t→∞

t−1
∏

k=1

(

1 +
rk
2nk

)

exists by comparison test. From equation (26) we get

c = (r1.r2r3r4 . . . )2 = (1.101101111101111000001...)2 = 1.718232...

Moreover, using binary system we see that the integral part of 2t−1c is exactly nt, as desired.

We can easily generalize Prop. 5.3 to the following.

Proposition 5.5. For any t ≥ 2, there is a unique nt ∈ Gt such that v2
(

H(s, 1;nt)
)

≥ −s(t−1)+1

whereas for all nt 6= n ∈ Gt we have v2
(

H(s, 1;n)
)

≤ −s(t − 1). Therefore, for all positive integers
n 6∈ {nt}t≥1 the numerator of H(s, 1;n) is not divisible by 2.

Proof. We can assume that s ≥ 2 because of Prop. 5.3. The key to the proof is equation (5) which
yields that

H(s, 1;n) = H∗(s, 1;n) + U(s, 1;n) + V (s, 1;n) +
1

2s+1
H(s, 1; ñ)

where

U(s, 1;n) =
1

2s

∑

1≤2k<l≤n,2∤l

1

ksl
, V (s, 1;n) =

1

2

∑

1≤k<pl≤n,2∤k

1

ksl
.

Now it’s easy to see that if v2
(

H(s, 1; ñ)
)

≤ −s(t− 1) then v2
(

H(s, 1;n)
)

≤ −st.
When t = 2 we find n2 = 2 always because

H(s, 1; 2) =
1

2
, H(s, 1; 3) =

1

2
+

2s + 1

3 · 2s
.

Assume that t ≥ 3 and ñ is the unique nt ∈ Gt such that v2
(

H(s, 1; ñ)
)

> −s(t − 1). Then

v2
(

H(s; ñ)
)

= −s(t − 1) by equation (14). So we can always uniquely choose rt so that for n =
2ñ+ rt ∈ Gt+1

v2
(

U(s, 1;n)
)

= v2
(

U(s, 1; 2ñ) + rH(s; ñ)/2s
)

= −st
if v2

(

H(s, 1; ñ)
)

= −s(t− 1) + 1. If v2
(

H(s, 1; ñ)
)

> −s(t− 1) + 1 then we can uniquely choose rt so
that

v2
(

U(s, 1;n)
)

≥ −st+ 1.

The upshot is for nt ∈ Gt there is a unique nt+1 ∈ Gt+1 satisfying the condition of the proposition.
This finishes the proof.

In general, we cannot apply Criterion Theorem to determine the finiteness of J(~s ′, 1|2) for any
~s ′ ∈ Nd, because of the existence of similar sequences. Moreover we believe 2 never divides the
numerator of any partial sums of MZV series.

Conjecture 5.6. For all positive integer d and ~s ∈ Nd the 2-divisible set J(~s |2) = {0}.
We have verified this conjecture for all ~s = (s, t) and ~s = (r, s, t) with 1 ≤ r, s ≤ 10 and

2 ≤ t ≤ 10, and for all ~s = (r, s, t, u) with 1 ≤ r, s, t ≤ 4 and 2 ≤ u ≤ 4. See [12]. The computation is
very time-consuming, for example when ~s = (1, 4, 4, 2) the Maple program runs more than 3.5 hours
on my PC with Pentium 4 CPU 3.06GHZ and 512 MB RAM. The same program in GP Pari runs a
little faster. We put the program at the end of our online supplement [12].

We believe that ~s = (~s , 1) are the only cases that our Criterion Theorem fails (see [12]) among
all possible ~s and prime p. Let me sketch a heuristic argument for this belief for the case ~s = {1}d

and p ≥ 3.
By the recursive relation

H({1}d;n) =

d
∑

l=0

p−l ·H({1}l; ñ) ·H∗({1}d−l;n).
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it is not hard to see that the size of τ we are looking for in the Criterion Theorem depends on the
length of the sequences {nt}t>t0 not satisfying the condition in the theorem, where nt ∈ Gt and
nt+1 = pnt + rt for some 0 ≤ rt < p. If nt is already found then the existence of nt+1 depends
on H∗(1;n) essentially, which we assume to distribute among (p + 1)/2 values modulo p by the
symmetric structure of J1(1|p) (see section 6). So nt produces two possible nt+1 or no nt+1 with the
same probability q = (p− 1)/2p, and it produces exactly one nt+1 with probability 1/p.

Let’s assume that a certain cell reproduces itself according a similar law as above, namely, it
clones itself or dies in the next generation with the same probability q, and it stays alive without
reproduction with probability 1/p. Let pk be the probability that starting from k cells in the begin-
ning the cells eventually all die out. We claim that pk = 1 for all k. Indeed, it is not too hard to
see that we only need to show p1 = 1. This follows from the criticality theorem for Galton-Watson
branching process (see [8, Preface] or [1, p. 7, Thm. 1]) because the average offspring is 2q+1/p = 1.

6 The structure of J1({s}d|p)

Set J0
t (~s |m) = {0} ∪ Jt(~s |m) for any positive integers t, m and ~s ∈ Nd. The next result is easy

but very useful in determining the structure of J1(s|p) since it tells us essentially that J0
1 (s|p) is

symmetric about (p− 1)/2.

Proposition 6.1. Let p be an odd prime and s ∈ N. Let r ∈ {1, . . . , p− 2}. Then r ∈ J1(s|p) if and
only if p− 1 − r ∈ J1(s|p).
Proof. If p− 1|s then J1(s|p) = ∅ because H(s; r) ≡ r (mod p) for all r ∈ {1, . . . , p− 2}. If p− 1 ∤ s
then we have

H(s; r) =

r
∑

k=1

1

ks
=

p−1
∑

k=p−r

1

(p− k)s
≡ (−1)s

p−1
∑

k=p−r

1

ks
(mod p).

Subtracting 0 ≡ (−1)s
∑p−1

k=1
1
ks (mod p) from the above we get the desired result.

Remark 6.2. We feel prompted to mention that the symmetry of J0
1 (s|p) is not enjoyed by J0

1 (s|p2).
For instance, while J0

1 (5|37) = {0, 6, 9, 12, 18, 24, 27, 30, 36} is symmetric about 18 the set J0
1 (5|372) =

{0, 6, 36} is not.

Now that we know J0
1 (s|p) is symmetric we may wonder what happens to the center (p − 1)/2.

When s is odd the answer is related to the irregularity of primes.

Proposition 6.3. Let p be an odd prime and s be a positive integer such that p − 1 ∤ s − 1 and
p− 1 ∤ s. If s is even then (p− 1)/2 ∈ J1(s|p). When s is odd we let n be the unique positive integer
such that s ≡ n (mod p− 1) and 2 ≤ n ≤ p− 2. Then we have

H(s; (p− 1)/2) ≡ 2 − 2n

n
Bp−n (mod p2). (28)

Therefore,
(a) If (p, p− n) is an irregular pair then (p− 1)/2 ∈ J1(s|p).
(b) If (p− 1)/2 ∈ J1(s|p) and 2s 6≡ 2 (mod p) then (p, p− n) is an irregular pair.

In particular, if s ≥ 3 is odd and p > 2s − 2 then (p − 1)/2 ∈ J1(s|p) if and only if (p, p− s) is an
irregular pair.

Proof. Let p, s, and n be as given in the proposition. By Voronoi congruence for m > 1 we get
(taking a = 2 and n = p2 in [9, Prop. 15.2.3])

(2m − 1)Bm ≡ m2m−1

p2−1
∑

k=(p2+1)/2

km−1 (mod p2).

Replacing k by p2 − k we see that

(2m − 1)Bm ≡ m(−2)m−1

(p2−1)/2
∑

k=1

km−1 (mod p2). (29)
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Now we break the sum into two parts: 1 ≤ k < p(p − 1)/2 and p(p − 1)/2 ≤ k ≤ (p2 − 1)/2. For
k < p(p− 1)/2 we write k = pq + r, 0 ≤ q ≤ (p− 3)/2, 0 ≤ r ≤ p− 1. Then

∑

1≤k<p(p−1)/2

km−1 =

(p−3)/2
∑

q=0

p−1
∑

r=0

(pq + r)m−1

≡
(p−3)/2

∑

q=0

p−1
∑

r=0

(m− 1)pqrm−2 + rm−1 ≡ 0 (mod pp(m)) (30)

by Thm. 1.1, where p(m) = 1, 2 is the parity of m. For p(p − 1)/2 ≤ k ≤ (p2 − 1)/2 we write
k = p(p− 1)/2 + r where 0 ≤ r ≤ (p− 1)/2. Then

(p2−1)/2
∑

k=p(p−1)/2

km−1 =

(p−1)/2
∑

r=0

((

p

2

)

+ r

)m−1

≡
(p−1)/2

∑

r=0

(m− 1)

(

p

2

)

rm−2 + rm−1 (mod p2). (31)

Putting the three congruences (29), (30) and (31) together and taking m = p− n > 1 we obtain

(2m − 1)Bp−n ≡ m(−2)m−1

[

(m− 1)

(

p

2

)

H(n+ 1; (p− 1)/2) +H(n; (p− 1)/2)

]

(mod pp(m)).

(32)
If s is even then m = p− n is odd and Bp−n = 0 since n 6= p− 1. Consequently

H(n; (p− 1)/2) ≡ 0 (mod p)

from (32). If s is odd then we may use the even case we’ve just proved to obtain (28) from (32). The
rest of the proposition follows quickly.

Problem 6.4. Unfortunately, Prop. 6.3 tells us nothing when s ≡ 1 (mod p). Maple computation
reveals that for all such s and all primes p < 10, 000, 000 we have (p− 1)/2 6∈ J(s|p) except p = 1093
and p = 3511. Are there any other such primes? Can one characterize all such primes?

The above proposition says that if s is even and p − 1 ∤ s then (p − 1)/2 ∈ J1(s|p). A natural
question is that when is (p− 1)/2 ∈ J1(s|p2)? The answer is given below.

Corollary 6.5. Suppose s is a positive even integer such that p− 1 ∤ s. Let n be the unique integer
between 2 and p − 1 such that n − 1 ≡ s (mod p − 1). Then H(s; (p − 1)/2) ≡ 0 (mod p2) if and
only if either (p, p − n) is an irregular pair or p|2n − 1. Moreover, when p − 1 ∤ s + 2 we have
H(s; (p− 1)/2) ≡ 0 (mod p3) if and only if p2|(2n − 1)Bp−n.

Proof. Let m = (p− 1)/2. Prop. 6.3 implies that
∑p−1

k=m+1 1/kn+1 ≡ 0 (mod p) if p− 1 ∤ s+ 2.

H(s;m) =

p−1
∑

k=m+1

1

(p− k)n−1
≡

p−1
∑

k=m+1

1

kn−1
+ (n− 1)p

p−1
∑

k=m+1

1

kn
(mod p3)

≡H(n− 1; p− 1) −H(n− 1;m) + (n− 1)pH(n; p− 1) − (n− 1)pH(n;m) (mod p3).

It follows from Thm. 1.1, [13, Thm. 2.4] and (28) that

2H(s;m) ≡ H(n− 1; p− 1) − (n− 1)pH(n;m) ≡ pBp−n
(n− 1)(2n − 1)

n
(mod p3).

This finishes the proof of the corollary.

Remark 6.6. For every positive even integer s and every irregular prime p ≥ s + 4 up to 100,000,
p2 always divides H(s; (p − 1)/2) exactly. Is this true in general? The answer is no. A calculation
by Maple shows that for the 5952nd irregular pair (p, p − n) = (130811, 52324) we have n = 78487
and 2n ≡ 2 (mod p) and therefore p3|H(n − 1; (p − 1)/2). The peculiarity of this pair was already
noticed in [5]. The next two such pairs are (599479,359568) (see [6]), and (2010401,1234960) (see
[4]). Note that apparently this problem is not related to the problem of 2p ≡ 2 (mod p2).
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Theorem 6.7. Let s be a positive integer and p > 2ds+ 1 be an odd prime. Then

{p− 1, j + (p− 1)/2 : j = 0, 1, · · · , d− 1} ⊂ J1

(

{2s}d|p
)

.

Proof. Let m = (p− 1)/2. By [13, Lemma 2.11] there are integers cλ such that

d!H
(

{s}d;n
)

=
∑

λ∈P (d)

cλHλ(s;n), (33)

where P (d) is the set of partitions of d, H(λ1,...,λr)(s;n) =
∏r

l=1H(λls;n) and c(d) = (−1)d−1(d−1)!.

Plugging in n = m we get m ∈ J1

(

{2s}d|p
)

by Prop. 6.3. By definition H({s}d; q) = 0 for q =

1, · · · , d − 1. When q = 1 this implies that
∑

λ∈P (d) cλ = 0 by (33). Hence m + 1 ∈ J1

(

{2s}d|p
)

.

Similarly, because 1, 1/22s, · · · , 1/(d− 1)2s are linearly independent when regarded as a function of
s, we see that for all independent variables x1, . . . , xj , j ≤ d− 1, we have

∑

λ=(λ1,...,iλr)∈P (d)

cλ

r
∏

l=1

(xλl

1 + · · ·xλl

j ) = 0.

The theorem now follows from setting xj = 1/(m+ j)2s for j = 1, · · · , d− 1.

Corollary 6.8. Let s be a positive integer and p > 4s+ 1 be an odd prime. Then
(1) If s is even then (p− 1)/2, (p+ 1)/2 ∈ J1(s, s|p).
(2) If s is odd and (p, p− s) is an irregular pair then (p− 1)/2 ∈ J1(s, s|p). Further, if s is odd,

2s 6≡ 2 (mod p), and (p− 1)/2 ∈ J1(s, s|p), then (p, p− s) is an irregular pair. In particular, if s ≥ 3
is odd and p > 2s − 2 then (p− 1)/2 ∈ J1(s, s|p) if and only if (p, p− s) is an irregular pair.

Proof. Let s and p be the integers satisfying the conditions of the corollary. When s is even the
corollary follows from Thm. 6.7. If s is odd then by Prop. 6.3 and the shuffle relation we have

2H(s, s; (p− 1)/2) ≡ H(s; (p− 1)/2)2 −H(2s; (p− 1)/2). (34)

The corollary follows immediately.

7 Reserved set of partial sums of MZV series

In Conjecture B of [7] Eswarathasan and Levine state that there should be infinitely many primes
p such that the divisible set J(1|p) = {0, p− 1, p2 − p, p2 − 1}. Boyd [2] further suggest 1/e as the
expected density of such primes. The most important steps are to elucidate the structure of J1(1|p)
and determine the relation between Jt(1|p) and Jt+1(1|p) for t > 0. We put forward some similar
results and conjectures concerning the divisible sets of general MZV series in this last section.

Definition 7.1. For any ~s ∈ Nd there are finitely many function f0(x) = 0, f1(x), . . . , fr(x) ∈ Q[x]
such that for all primes p ≥ wt(~s ) + 3

f0(p) < f1(p) < · · · < fr(p) and f0(p), f1(p), . . . , fr(p) ∈ J(~s |p).

We call the largest r the reserved (divisibility) number of MZV series ζ(~s ), denoted by ρ(~s ). We
call the corresponding set {f0(x), . . . , fρ(~s )(x)} the reserved (divisibility) set of ζ(~s ), denoted by
RJ(~s ) = RJ(~s ;x). Its t-th segment is RJt(~s ) = {f(x) ∈ RJ(~s ) : f(p) ≤ pt − 1 for all prime p} for
t ≥ 1. Note that 0 ∈ RJt(~s ) for all t ≥ 0. If J(~s |p) = RJ(~s ; p) for some prime p then is called a
reserved prime for MZV series ζ(~s ).

For example, the reserved number of the harmonic series is 3, the reserved set is RJ(1) = {0, x−
1, x2 − x, x2 − 1}, and 5 is a reserved prime for the harmonic series because J(1|5) = {0, 4, 20, 24}.
We summarize all known reserved sets in the following theorem.

Theorem 7.2. Let r, s, t, d ≤ 5 be positive integers. Then
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1. RJ(1) = {0, x− 1, x2 − 1, x2 − x}.

2. If d is even then RJ({1}d) = {0, x− 1, x, 2x− 1}.

3. If 1 6= d is odd then RJ10({1}d) = {0, x− 1}.

4. If s ≥ 3 is odd then RJ10({s}d) = {0, x− 1}.

5. If s is even then RJ8({s}d) = {0, i+ (x− 1)/2, x− 1 : 0 ≤ i ≤ d− 1}.

6. If s ≥ 3 is odd then RJ(s, 1) = {0, x− 1, x}.

7. If s 6= t have the same parity and t 6= 1 then RJ(s, t) = {0, x− 1}.

8. If s and t have different parity then RJ(s, t) = {0}.

9. If r + s+ t ≥ 5 is odd, r, s, t ≥ 2, and r 6= t, then RJ(r, s, t) = {0}.

10. If s is odd then RJ(r, s, r) = {0, x− 1}.

11. If r + s + t ≥ 6 is even, (r, s, t) 6= (4, 3, 5), (5, 3, 4), and r, s, t ≥ 2 are not all the same, then
RJ(r, s, t) = {0}.

12. RJ10(2, 1, 1) = RJ(1, 1, 2) = RJ(4, 3, 5) = RJ(5, 3, 4) = {0, x− 1}.

13. RJ10(1, 2, 1) = {0, x− 1, 2x− 1}.

Remark 7.3. We are sure that we can replace RJ10 in the above by RJ when more powerful
computational tools are available to us.

Proof. Even without restriction of the bound 5, the inclusions RJ(~s ; p) ⊆ J(~s |p) except the second
and the last cases follow from equation (33), Thm. 1.1, [13, Thm. 3.1, Thm. 3.5], and Thm. 6.7.

For ~s = {1}d, d ≥ 2, Thm. 1.1 implies p− 1 ∈ J
(

{1}m|pp(m−1)
)

for all m ≥ 1 and p ≥ m+ 3. In
fact, we have

H({1}d; p− 1) ≡ (−1)d−1H(d; p− 1)

d
≡











−pBp−d−1

d+ 1
(mod p2) if 2|d,

−p
2(d+ 1)Bp−d−2

2d+ 4
(mod p3) if 2 ∤ d,

(35)

by [13, Thm 3.1]. So if p ≥ d+ 3 then

H({1}d; p) = H({1}d; p−1)+
1

p
H({1}d−1; p−1) ≡











−p(d+ 2)Bp−d−1

2(d+ 1)
(mod p2) if 2|d,

−Bp−d

d
(mod p) if 2 ∤ d,

(36)

Further, setting hi = H({1}i; p− 1), h0 = 1 and h−1 = 0 we have

H({1}d; 2p− 1) =

d
∑

i=0

∑

1≤k1<···<ki≤p<ki+1<···<kd<2p

1

k1k2 . . . kd

≡
d

∑

i=0

(

hi +
1

p
hi−1

)(

hd−i + (−1)d−ipH(d− i+ 1; p− 1)
)

(mod p2). (37)

Here we have used geometric series expansion inside Qp such that for any m < p

∑

1≤l1<···<lm<p

1

(p+ l1) · · · (p+ lm)
≡hm − p

m
∑

i=1

H
(

({1}i−1, 2, {1}m−i); p− 1
)

(mod p3)

≡ hm + p((m+ 1)hm+1 − h1hm) ≡hm + (−1)mpH(m+ 1; p− 1) (mod p3)
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by equation (33). It follows from equations (33), (37) and [13, Thm. 3.1] that

H({1}d; 2p− 1) ≡ 2hd +
1

p

d−1
∑

i=0

hihd−1−i − (−1)dH(d; p− 1) (mod p2).

When d is even we have

H({1}d; 2p− 1) ≡ − (d+ 2)H(d; p− 1)

d
+

2H(d− 1; p− 1)

p(d− 1)
≡ −2pBp−d−1 (mod p2). (38)

So it’s divisible by p. When d = 2n+ 1 is odd hd ≡ 0 (mod p2) and we get

H({1}d; 2p− 1) ≡ 1

p

n
∑

i=0

h2ih2n−2i ≡
−H(2n; p− 1)

np
≡ −2Bp−d

d
(mod p) (39)

which is rarely congruent to 0.
For RJ(1, 2, 1) we have for any prime p ≥ 7

H(1, 2, 1; 2p− 1) =
∑

1≤l<m<n<2p

1

lm2n
= A+B + C +D,

where

A =
∑

1≤l<m<n≤p

1

lm2n
= H(1, 2, 1; p− 1) +

1

p
H(1, 2; p− 1),

B =
∑

1≤l<m≤p<n<2p

1

lm2n
=

(

H(1, 2; p− 1) +
1

p2
H(1; p− 1)

)

∑

1≤k<p

1

p+ k
,

C =
∑

1≤l≤p<m<n<2p

1

lm2n
=

(

H(1; p− 1) +
1

p

)

∑

1≤m<n<p

1

(p+m)2(p+ n)
,

D =
∑

p<l<m<n<2p

1

lm2n
=

∑

1≤l<m<n<p

1

(p+ l)(p+m)2(p+ n)
≡ H(1, 2, 1; p− 1) (mod p).

We know that H(1, 2, 1; p − 1) ≡ 0 (mod p) by [13, Prop. 3.6] and H(1; p − 1) ≡ 0 (mod p2) by
Wolstenholme’s Theorem. By geometric series expansion we get

∑

1≤m<n<p

1

(p+m)2(p+ n)
≡

∑

1≤m<n<p

(1 − 2p/m)(1 − p/n)

m2n
(mod p2).

Hence

H(1, 2, 1; 2p− 1) ≡ 1

p

(

H(1, 2; p− 1) +H(2, 1; p− 1)
)

− 2H(3, 1; p− 1) −H(2, 2; p− 1) (mod p).

By Thm. 1.1 and [13, Thm. 3.1 or Cor. 3.4] we have H(2, 2; p − 1) ≡ H(3, 1; p − 1) ≡ 0 (mod p).
Further, from shuffle relation we have

H(1, 2; p− 1) +H(2, 1; p− 1) = H(1; p− 1)H(2; p− 1) −H(3; p− 1) ≡ 0 (mod p2)

by Thm. 1.1. This shows that H(1, 2, 1; 2p− 1) ≡ 0 (mod p).
To prove the theorem we now only need to demonstrate that RJ(~s ; p) = J(~s |p) for some p ≥

wt(~s ) + 3 which can be done through a case by case computation. We put this part of verification
online [12]. In fact, much more data is available in this supplement.

Problem 7.4. Are there any other ~s ∈ Nd (d ≤ 3) besides those listed in Thm. 7.2 such that
RJ(~s ) 6= {0}?
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We would be surprised to find an affirmative answer to this problem. When d ≥ 4 we suspect
that RJ(~s ) = {0} except when ~s is homogeneous or ~s is palindrome of odd weight (see [13, sec. 2.4
and sec. 3.2]), or ~s has one of the special forms listed in the last conjecture of [13].

From Thm. 7.2 we see that to determine RJ(~s ) we often only need to study RJ1(~s ) because
for all non-homogeneous ~s not equal to (2r − 1, 1) or (1, 2, 1), the proportion of primes p such that
Jt(~s |p) = ∅ for all t ≥ 2 is supposed to be positive. This implies that RJ(~s ) = RJ1(~s ) for all such
~s . Precisely, we have the following

Conjecture 7.5. Suppose ~s ∈ Nd such that (i) ~s = 1, or (ii) ~s = (1, 2, 1), or (iii) ~s = (2r − 1, 1)
for some r ≥ 1, or (iv) ~s = {1}2d for some d ≥ 1. Then RJ(~s ) = RJ2(~s ). For all other ~s we have
RJ(~s ) = RJ1(~s ).

In what follows we provide a heuristic argument for part of this conjecture. It is not hard to
prove the conjecture for each explicitly given ~s by some computation. But we could not prove the
general statement.

(I ) d = 1 and s ≥ 2. Then J2(s|p) = ∅ if J1(s|ps) = ∅ by Thm. 3.6. First let s ≥ 4. By [13,
Thm. 2.8] we know that when p is large enough higher than expected powers of p divides H(s; p− 1)
occurs if and only if p2|Bp(p−1)−2n for some irregular pairs (p, p−2n−1) which rarely happens (here
s = 2n or s = 2n − 1). So we can safely bet that the density of primes p such that ps|H(s; p − 1)
is 0. The same is true for H(s; (p− 1)/2) by Prop. 6.3 and Cor. 6.5. We further believe that when
r 6= (p− 1)/2 ranges from 1 to p− 2 the numbers H(s; r) distribute randomly modulo ps. Therefore
the probability of J1(s|ps) = ∅ is (1 − 1/ps)p−3 → 1 as p → ∞. For s = 2 (resp. s = 3), the above
argument fails only for irregular primes such that (p, p − 3) (resp. (p, p − 5)) is an irregular pair,
whose density is evidently 0. In a word, for any fixed positive integer s ≥ 2, the proportion of p such
that J2(s|p) 6= ∅ is 0.

Further, by recursive relation (4) we find that if n ∈ Gt+1 is rooted on r, 1 ≤ r ≤ p− 1 (meaning
that n = pn1 + r1, n1 = pn2 + r2, . . . , nt−1 = pnt + rt−1 and nt = r), and p ∤ H(s; r) then
vp

(

H(s;n)
)

= −s(t+ 1).
(II ) d ≥ 2 and ~s = {1}d = {1}2m+1 for some m ∈ N. For any prime p ≥ d+3 we have for n ∈ G2

H({1}2m+1;n) = H({1}2m+1;n− 1) +
1

n
H({1}2m;n− 1). (40)

The case n = p+1 can be safely excludes because it’s clear that the other term, namelyH({1}2m+1; p)/(p+
1) ≡ −Bp−2m−1/(2m+1) (mod p), is rarely divisible by p by (36). The same reason applies to n = p,
only this time the first term is always divisible by p while the second term rarely is. It is not hard
to see that H({1}2m+1;n) ∈ Zp for all p+ 1 < n < p+ 2m. However,

H({1}d; p+ d− 1) ≡ 1

p+ d− 1
H({1}d−1; p+ d− 2) ≡ · · · (mod Zp)

≡ 1

(p+ d− 1) · · · (p+ 1)
H(1; p) ≡ 1

(d− 1)!p
(mod Zp). (41)

This means that vp

(

H({1}2m+1; p+2m)
)

= −1. If we assume random distribution of pH({1}2m+1;n)
for all other p+ 2m < n < 2p modulo p then the heuristic probability that none of H({1}2m+1;n) is
divisible by p is about (1 − 1/p2)p−2m−1 → 1 as p → ∞. Further it’s not hard to show that in this
range the vp-valuation is bounded below by −1.

Turning to n = 2p and using (38), (39) and (40) we find that H({1}2m+1; 2p) ≡ −(2m +
3)Bp−2m−1/(2m + 1) (mod p). This implies that the density of p such that 2p ∈ J2({1}2m+1|p)
is probably 0 for any fixed m, in any case it’s very small.

When 2p ≤ n ≤ 2p + 2m − 1 it’s easy to show that vp

(

H({1}2m+1;n)
)

≥ −1. When n passes
2p+ 2m− 1 things are quite different because we now usually have p2 appearing in the denominator
of H({1}2m+1;n). The chance for this number to be p-divisible is much smaller. Indeed, consider

H({1}2m+1; 2p+ 2m− 1) ≡H({1}2m; 2p+ 2m− 2)

2p+ 2m− 1
≡ · · · (mod

1

p
Zp)

≡ H(1, 1; 2p)

(2p+ 2m) · · · (2p+ 1)
≡ H(1; 2p− 1)

(2m)!2p
≡ 1

2(2m)!p2
(mod

1

p
Zp)
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since H(1; 2p−1) ≡ 1/p+2H(1; p−1) ≡ 1/p. (mod pZp). This implies that vp

(

H({1}2m+1; 2p+2m−
1)

)

= −2. Similar but more involved argument shows that in general for f = 1, 2, . . . , d, (d = 2m+1)
we have that

vp

(

H({1}2m+1; fp+ 2m− f + 1)
)

= −f.
In each interval fp + 2m − f < n ≤ (f + 1)p + 2m − f we can safely assume the numbers
pfH({1}2m+1;n) distribute randomly modulo p. Then the probability that p divides some of them in
this range is (1−1/pf+1)p → 0 as p→ ∞. The same argument applies to dp+2m−d = (2m+1)p−1 <

n < p2 and we see that probability that p divides none of such n is (1− 1/pd+1)p2−dp → 1 as p→ ∞
because d = 2m+ 1 ≥ 3.

(III ) d ≥ 2 and ~s = {s}d, s ≥ 2. This case is easier than (II). We can use induction on d and the
results from part (I). We leave out the details.

(IV ) d = 2 and ~s = (s1, s2) 6= (2r − 1, 1) for any r ≥ 1 and s1 6= s2, or d ≥ 3 and ~s 6= (1, 2, 1)
is non-homogeneous. Then we believe that there does not exist recursive relations similar to (4).
However, heuristically and inductively we can still show that if n ∈ Gt+1 and t ≥ 1 then for almost
all p > d

0 ≥ vp

(

H(~s ;n)
)

≥ −wt(~s ) · t. (42)

The second inequality is obvious because each term in H(~s ;n) satisfies the same inequality. Only
the left hand inequality is relevant to Conj. 7.5 and needs explanation.

We only consider G2 as other segments Gt are easier. We divide G2 into p parts: [ap, (a+1)p−1]
for 1 ≤ a ≤ (p− 1). We only need to consider the end points of these intervals because by using

H(~s ;n) = H(~s ;n− 1) +
H(~s ′;n− 1)

nsd
, ~s ′ = (s1, . . . , sd−1),

we can easily reduce the case apt < n < (a + 1)pt to the above. The case n = ap in the above
equation will play an very important role in our argument so we rewrite it here:

H(~s ; ap) = H(~s ; ap− 1) +
H(~s ′; ap− 1)

asdpsd
. (43)

(IV.1 ) Let d = 2 and ~s = (s1, s2) 6= (2r − 1, 1) for any r ≥ 1 and s1 6= s2. First suppose a = 1.
There’re two cases. (1) If s2 ≥ 3, or s2 = 2 and s1 even then for almost all primes p we get

vp

(

H(s1, s2; p)
)

− s2 = 1 − s2 = −1.

(2) If s2 = 2 and s1 is odd, or s2 = 1 and s1 is even, then p ∤ H(s1, s2; p−1) whereas p ∤ H(s1; p−1)/ps2

for almost all p by [13, Thm. 3.1] and [13, Prop. 2.4], respectively. The chance that their sum is
divisible by p is 1/p for p large if we assume random distribution of these two numbers modulo p.
So for almost all p

vp

(

H(s1, s2; p)
)

= 0.

Let’s assume now 2 ≤ a ≤ p− 1. Then by the congruence (12) of Lemma 3.5

H(s1; ap− 1) ≡ H(s1; p− 1) +
1

ps1
H(s1; a− 1) (mod p).

For almost all p this has vp value equal to −s1 except when a−1 = (p−1)/2 and s1 is even in which
case the value is increased by 1 for almost all primes p by Cor. 6.5 and Problem 6.4. By (43) this
means that for 2 ≤ a ≤ p− 1 and almost all p

vp

(

H(s1, s2; ap)
)

≡
a

∑

b=1

H(s1; b− 1)

bs2ps1+s2
≡ H(s1, s2; a− 1)

ps1+s2
6≡ 0 (mod

1

ps2
Zp)

because s1 6= s2. This proves (42) for d = 2 and t = 1 for almost all p.
(IV.2 ) Assume now d ≥ 3 and ~s is non-homogeneous and assume (42) holds for smaller d’s. In

equation (43) if a = 1 then vp

(

H(~s ′; ap − 1)
)

≤ 2 for almost all p and the upper bound can be

achieved only if ~s ′ is homogeneous of odd weight by shuffle relation (33). But the term H(~s ; p− 1)
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is assumed to be a random number modulo p so that with probability 1/p its vp-valuation is 0. So
vp

(

H(~s ; p)
)

≤ 0 whenever the two terms on the right hand side of (43) have different valuations.

Otherwise, the probability of vp

(

H(~s ; p)
)

≥ 1 is at most 1/p when assuming random distributions
modulo p.

When a ≥ 2 we assume that H(~s ′; ap−1) has random distribution modulo p2 (the case a = 2 and
~s ′ = (1, 2, 1) has to be dealt with separately, but that’s not hard). Thus the chance that p|H(~s ; ap) is

less than 1/p3 for large p. This implies that the probability of J2(~s |p) = ∅ is roughly (1−1/p3)p2 → 1
as p→ ∞.

Definition 7.6. Let ~s ∈ Nd. Define the reserved density of the MZV series ζ(~s ) by

density(RJ(~s );X) =
♯{prime p : wt(~s ) + 2 < p < X, J(~s |p) = RJ(~s )}

♯{prime p : wt(~s ) + 2 < p < X} (44)

and the mth reserved density by

density(RJm(~s );X) =
♯{prime p : wt(~s ) + 1 < p < X,∪m

t=0Jt(~s |p) = RJm(~s )}
♯{prime p : wt(~s ) + 2 < p < X} . (45)

Conjecture 7.7. Let ~s ∈ Nd. Then

density(RJ(~s );∞) =

{

1/
√
e, if d = 1, ~s ≥ 2,

1/e, if d = ~s = 1 or d ≥ 2.

Note that we always have RJ(~s ; p) ⊆ J(~s |p). We have put the data strongly supporting Conj. 7.7
online [11]. In fact, we have only computed the first or the second reserved density because according
to Conj. 7.5 this is enough to determine the reserved density in whole.

We now provide a heuristic argument for Conj. 7.7. Suppose d = 1 and ~s = s ≥ 2 first. Then
by Prop. 6.1 we only consider H(s; r) for 1 ≤ r ≤ (p − 5)/2 + p(s − 1) because for most p the
midpoint (p − 1)/2 ∈ J1(s|p) if and only if s is even (see Prop. 6.3). If we assume that when r
varies the numbers H(s; r) distribute randomly modulo p for any large fixed p then the probability
that J0

1 (s|p) = RJ1(s; p) is (1 − 1/p)(p−5)/2+p(s−1) → 1/
√
e as p→ ∞. By the argument in (I) after

Conj. 7.5 we see that the probability that J(s|p) = RJ(s; p) is 1/
√
e.

Now we assume d ≥ 2. In general J0
1 (~s |p) does not have any symmetry so we see that the

probability that J0
1 (~s |p) = RJ1(~s ; p) is (1 − 1/p)p−δ → 1/e as p→ ∞, where δ = ♯RJ1(~s ). When ~s

does not belong to the cases (i)-(iv) in Conj. 7.5 we see that the probability that J(~s |p) = RJ(~s ; p)
is 1/e by Conj. 7.5.

Finally let’s deal with larger reserved sets when d ≥ 2. By Thm 7.2 we know that if ~s = {1}2m or
(1, 2, 1) or (2r− 1, 1) for some r ≥ 1 then RJ(~s ) = RJ2(~s ). Let ~s = {1}2m. It follows from equation
(41) that when p+2m−1 ≤ n < 2p the probability that p dividesH({1}2m;n) is 1/p2. Other heuristic
argument of part (II) after Conj. 7.5 implies that vp

(

H({1}2m; 2p)
)

= −1 for almost all prime p. As n
gets large it’s more and more unlikely that n ∈ J({1}2m|p). We may thus disregard all n ≥ p+2m−1.
So assuming random distribution of numbers H({1}2m;n) modulo p for 2 ≤ n ≤ p+ 2m− 2 we see
that the probability that J({1}2m|p) = RJ({1}2m; p) is (1− 1/p)p+2m−5 → 1/e as p→ ∞. We omit
the arguments for ~s = (1, 2, 1) and (2r − 1, 1) which are similar.

We conclude our paper by some conjectures which concern distributions of irregular primes in
disguised forms.

Conjecture 7.8. Let r, s and t be positive integers. Then

1. If s > 1 is odd then there are infinitely many primes p such that J1(s|p) = {(p− 1)/2, p− 1}.

2. If s > 1 is odd then there are infinitely many primes p such that J1(s, s|p) = {(p− 1)/2, p− 1}.

3. Let s, t be positive integers. Suppose s+ t is odd. Then there are infinitely many primes p such
that J1(s, t|p) = {p− 1}.
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4. Let r, s, t be positive integers. Suppose r + s + t is odd and r 6= t. Then there are infinitely
many primes p such that J1(r, s, t|p) = {p− 1}.

Note that by various results of this paper and [13] an affirmative answer to any part of our
Conj. 7.8 would imply that there are infinitely many irregular pairs (p, p − w) for any fixed odd
number w (≥ 5 in 4). Therefore, even if the sets of primes in Conj. 7.8 are expected to be infinite
they are extremely sparse; very likely they have zero density.
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