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Abstract

We consider sequences of the type An = 6An−1 − An−2, A0 =
r, A1 = s (r and s integers) and show that all sequences that solve
particular cases of the Pell generalized equation are expressible as a
constant times one of four particular sequences of the same type.

Let α = 3 + 2
√

2, β = 3 − 2
√

2 be the roots of the polynomial x2 − 6x + 1.
Note that α+β = 6, αβ = 1, α−β = 4

√
2. Also let γ = 1+

√
2, δ = 1−

√
2.

Then γ2 = α, δ2 = β, γδ = −1. We take γ = α
1

2 , δ = −β
1

2 .
Consider the sequence An defined by

An = 6An−1 − An−2, A0 = r, A1 = s, (1)

where r and s are integers.
The object of this contribution is to show that all sequences of the type given
by Equation 1 that solve particular cases of the Pell generalized equation
(see [3]) are expressible as a constant times one of four particular sequences
of the same type.
The generating function of An is given by

g(x) =
r + (s − 7r)x + (6r − s)x2

(1 − x)(1 − 6x + x2)
,

from which we get the closed form

An =
2sγα − 2rγ

8
√

2γ3
αn −

2rγβ + 2sδβ

8
√

2δ3
βn.
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Two important particular cases of Equation 1 are the sequences

Tn =
αn − βn

4
√

2
, (2)

Ln = αn + βn. (3)

The initial conditions are, respectively, T0 = 0, T1 = 1, and L0 = 2, L1 = 6.
They are, respectively, sequences A001109 and A003499 in [4]. Tn is related
to triangular numbers: see [2]. The relationships between Tn and Ln are of
the same genre as those between Fibonacci and Lucas numbers: so a wealth
of known identities relating Fibonacci and Lucas numbers translates to our
pair.
Now we establish some identities concerning α and β that allow us to intro-
duce the other sequences necessary for our argument. First note that from

α + β + 2
√

αβ = 8 it follows
(

α
1

2 + β
1

2

)2

= 8, that is α
1

2 + β
1

2 = 2
√

2. Also

from α + β − 2
√

αβ = 4 it follows
(

α
1

2 − β
1

2

)2

= 4, that is α
1

2 − β
1

2 = 2.

Then

1.
(

αn+
1

2 + βn+
1

2

) (

α
1

2 − β
1

2

)

= αn+1 − αn + βn − βn+1,

from which we get

αn+
1

2 + βn+
1

2

2
√

2
= Tn+1 − Tn = Bn,

which is sequence A001653 in [4]. We have B0 = 1, B1 = 5.

2.
(

αn+
1

2 + βn+
1

2

) (

α
1

2 + β
1

2

)

= αn+1 + αn + βn + βn+1.

Then

√
2

(

αn+
1

2 + βn+
1

2

)

=
αn+1 + αn + βn + βn+1

2

=
Ln+1 + Ln

2
= En,

which is sequence A077445 in [4]. We have E0 = 4, E1 = 20. We see
that En = 4Bn.
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3.
(

αn+
1

2 − βn+
1

2

) (

α
1

2 + β
1

2

)

= αn+1 + αn − βn − βn+1.

From this we get

αn+
1

2 − βn+
1

2 = 2(Tn+1 + Tn) = Cn.

This is sequence A077444 in [4]. We have C0 = 2, C1 = 14. We can
write as well

Cn = γ2n+1 + δ2n+1.

Then Cn

2
are the NSW numbers (sequence A002315 in [4], also see

[1]). Also Cn

2
= R2n+1, where the Rn sequence gives the numerators

of continued fraction convergents to
√

2 (sequence A001333 in [4]).

4.
(

αn+
1

2 − βn+
1

2

) (

α
1

2 − β
1

2

)

= αn+1 − αn − βn + βn+1.

From this we get

αn+
1

2 − βn+
1

2 =
Ln+1 − Ln

2
= Cn.

Now we are going to study in more details the Ln sequence. In the Ln

sequence there are hidden some sequences of squares. More precisely, we
have that L2n + 2, 2(L2n − 2), L2n+1 − 2, 2(L2n+1 + 2) are perfect squares.

1.

L2
n = (αn + βn)2

= α2n + β2n + 2

= L2n + 2.

2.

(8Tn)2 = 64

(

αn − βn

4
√

2

)2

= 2(α2n + β2n − 2)

= 2(L2n − 2).
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3.

L2n+1 − 2 = α2n+1 + β2n+1 − 2

=
(

αn+
1

2 − βn+
1

2

)2

= C2
n.

4.

2(L2n+1 + 2) = 2(α2n+1 + β2n+1 + 2)

=
(√

2
(

αn+
1

2 + βn+
1

2

))2

= E2
n.

Also we obtain easily

4(8T 2
n + 1) = L2n + 2 = L2

n, (4)

2C2
n + 8 = 2(L2n+1 + 2) = E2

n, (5)

and finally
4(2B2

n − 1) = L2n+1 − 2 = C2
n, (6)

which means that 8T 2
n + 1, 2C2

n + 8 and 2B2
n − 1 are perfect squares.

After some tedious algebra we can write the following formula involving the
square of An:

32A2
n + 2(r2 + s2 − 6rs) = (r2 − s2)L2n−2 + (6s2 − 2rs)L2n−1. (7)

We would like to find conditions on r and s under which the LHS can be
reduced to a perfect square. This happens only if we can find values of r

and s for which the RHS can be written as a constant times Ln for some
n: this because of the results obtained before for Ln. In this case we would
have solutions to particular generalized Pell equations.
The first elementary cases arise when we set equal to zero one of the two
coefficients on the RHS. If we set r2 = s2 we get s = ±r. If s = r then
A0 = r, A1 = r, A2 = 5r, A3 = 29r, . . . so we can conclude An = rBn−1.
If s = −r then A0 = r, A1 = −r, A2 = −7r, A3 = −41r, . . . so we can
conclude An = −r

Cn−1

2
.

If we set 6s2 − 2rs = 0 we obtain s = 0 or 3s = r. If s = 0 then A0 =
r, A1 = 0, A2 = −r, A3 = −6r, . . . so we can conclude An = −rTn−1. If

4



3s = r, setting r = 3k we have A0 = 3k, A1 = k, A2 = 3k, A3 = 17k, . . . so
that An = k

Ln−1

2
.

Now let a0 = 2rs − 6s2, a1 = r2 − s2 and define the recurrence

an = 6an−1 − an−2, n ≥ 2.

Then

32A2
n + 2(r2 + s2 − 6rs) = a1L2n−2 − a0L2n−1

= a1(6L2n−1 − L2n) − a0L2n−1

= (6a1 − a0)L2n−1 − a1L2n

= a2L2n−1 − a1L2n

= a2(6L2n − L2n+1) − a1L2n

= (6a2 − a1)L2n − a2L2n+1

= a3L2n − a2L2n+1

= · · · · · · · · ·

So in general we have

32A2
n+2(r2+s2−6rs) = am+3L2n+m−am+2L2n+m+1, m = −2, −1, 0, 1...

Our problem is solved if for some integer h

am+2 = −6h = −T2h, am+3 = −h = −T1h,

since then

32A2
n + 2(r2 + s2 − 6rs) = −hL2n+m + 6hL2n+m+1

= hL2n+m+2.

Now

am+1 = 6am+2 − am+3

= −6T2h + T1h

= −T3h,

am = 6am+1 − am+2

= −6T3h + T2h

= −T4h,
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and so on. Then the conditions are

a0 = −Tm+4h, a1 = −Tm+3h.

For sake of simplicity, write Tm+4 = t1, Tm+3 = t0. So we have

2rs − 6s2 + t1h = 0, (8)

r2 − s2 + t0h = 0. (9)

Solving for r Equation 8 and solving for h Equation 9 after insertion of the
value for r we get

h =
2(−s2t0 + 3s2t1 ± s2)

t21
.

In obtaining this result we used the identity

T 2
n − 6TnTn+1 + T 2

n+1 = 1.

This can be proved in the following way:

T 2
n =

α2n + β2n − 2

32
, T 2

n+1 =
α2n+2 + β2n+2 − 2

32
,

TnTn+1 =
α2n+1 + β2n+1 − 6

32
.

Then

T 2
n − 6TnTn+1 + T 2

n+1 =
1

32
(L2n + L2n+2 − 6L2n+1 + 32),

but
L2n + L2n+2 − 6L2n+1 = 0,

from which the desired identity.
If in h we take the plus sign and insert into the expression for r we get

r =
s(t0 − 1)

t1
. (10)

On the other hand if we take the minus sign we obtain

r =
s(t0 + 1)

t1
. (11)
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Next we will prove the following identities

T2n+1Bn−1 = (1 + T2n)Bn, (12)

T2nLn−1 = (1 + T2n−1)Ln. (13)

Identity 12:

T2n+1Bn−1 =
α2n+1 − β2n+1

4
√

2

αn−
1

2 + βn−
1

2

2
√

2

=
α3n+

1

2 + α2n+1βn−
1

2 − αn−
1

2 β2n+1 − β3n+
1

2

16

=
α3n+

1

2 + αn+1+
1

2 − βn+1+
1

2 − β3n+
1

2

16
,

where we used several times the fact that αβ = 1.

Bn(1 + T2n) =
αn+

1

2 + βn+
1

2

2
√

2
+

α3n+
1

2 − αn+
1

2 β2n + α2nβn+
1

2 − β3n+
1

2

16

=
4
√

2αn+
1

2 + 4
√

2βn+
1

2

16
+

+
α3n+

1

2 − αn+
1

2 β2n + α2nβn+
1

2 − β3n+
1

2

16

=
αn+1+

1

2 − αn+
1

2 β + αβn+
1

2 − βn+1+
1

2

16
+

+
α3n+

1

2 − αn+
1

2 β2n + α2nβn+
1

2 − β3n+
1

2

16

=
α3n+

1

2 + αn+1+
1

2 − βn+1+
1

2 − β3n+
1

2

16
,

where we used again αβ = 1 and α − β − 4
√

2. Hence

T2n+1Bn−1 = (1 + T2n)Bn =
C3n + Cn+1

16
.

Identity 13:

T2nLn−1 =
α2n − β2n

4
√

2
(αn−1 + βn−1)

=
α3n−1 + α2nβn−1 − αn−1β2n − β3n−1

4
√

2

=
α3n−1 + αn+1 − βn+1 − β3n−1

4
√

2
.
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(1 + T2n−1)Ln = αn + βn + (αn + βn)
α2n−1 − β2n−1

4
√

2

=
αn+1 − αnβ + αβn − βn+1

4
√

2
+

+
α3n−1 − αnβ2n−1 + α2n−1βn − β3n−1

4
√

2

=
α3n−1 + αn+1 − βn+1 − β3n−1

4
√

2
.

Hence
T2nLn−1 = (1 + T2n−1)Ln = T3n−1 + Tn+1.

Along these lines we can prove these two other identities

(T2n − 1)Cn = T2n+1Cn−1 =
B3n − Bn+1

2
, (14)

(T2n+1 − 1)Tn+1 = TnT2n+2 =
L3n+2 − Ln+2

32
. (15)

Going back to Equation 10 if m = 2k we get using Identity 15

s

r
=

Tk+2

Tk+1

,

from which
r = µTk+1 = A0, s = µTk+2 = A1,

so that An = µTn+k+1. If m = 2k + 1 we get using Identity 14

s

r
=

Ck+2

Ck+1

,

from which
r = µCk+1 = A0, s = µCk+2 = A1,

so that An = µCn+k+1. On the other hand in the case of Equation 11 if
m = 2k we get using Identity 9

s

r
=

Lk+2

Lk+1

,

from which
r = µLk+1 = A0, s = µLk+2 = A1,
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so that An = µLn+k+1. Finally if m = 2k + 1 we get using Identity 8

s

r
=

Bk+2

Bk+1

,

from which
r = µBk+1 = A0, s = µBk+2 = A1,

so that An = µBn+k+1.

The conclusion is that any sequence we looked for is expressible as a constant
times one of the four sequences Ln, Tn, Bn and Cn.
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