
ar
X

iv
:m

at
h.

N
T

/0
30

52
70

 v
3 

  3
0 

Ju
n 

20
03

Sequences related to convergents to square root of

rationals

Mario Catalani

Department of Economics, University of Torino

Via Po 53, 10124 Torino, Italy

mario.catalani@unito.it

1 The Initial Results

This note has its source in [4], in a different setting. Consider the system of
recurrences, with a0 = b0 = 1,

an = an−1 + kbn−1, (1)

bn = an−1 + bn−1. (2)

Later on we will generalize and show that the ratio an

bn

is related to conver-
gents to the square root of rationals.
We postpone the proof by induction of the following formulas (”summation
formulas”)

a2n =
n
∑

i=0

(

2n + 1

2i + 1

)

kn−i, (3)

a2n+1 =
n+1
∑

i=0

(

2n + 2

2i

)

kn+1−i, (4)

b2n =
n
∑

i=0

(

2n + 1

2i

)

kn−i, (5)

b2n+1 =
n
∑

i=0

(

2n + 2

2i + 1

)

kn−i. (6)
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Let α = k + 1 + 2
√

k, β = k + 1 − 2
√

k. Note that α + β = 2(k + 1), αβ =
(k − 1)2, α − β = 4

√
k. Using Identities 1.87 and 1.95 in [2] and Pascal’s

Identity (see [3]) we have the following closed form representations

a2n =
αn + βn

2
+
√

k
αn − βn

2
, (7)

a2n+1 =
αn+1 + βn+1

2
, (8)

b2n =
αn + βn

2
+

αn − βn

2
√

k
, (9)

b2n+1 =
αn+1 − βn+1

2
√

k
. (10)

Let w(r, s) denote the recurrence

wn = 2(k + 1)wn−1 − (k − 1)2wn−2, w0 = r, w1 = s.

Furthermore let dn = w(1, k + 1), un = w(0, 2k), vn = w(0, 2). The closed
forms are

dn =
αn + βn

2
,

un =
(α − β)(αn − βn)

8
,

vn = 2
αn − βn

α − β
.

Note that
kvn = un. (11)

Then
a2n = dn + un, (12)

a2n+1 = dn+1, (13)

b2n = dn + vn, (14)

b2n+1 = vn+1. (15)

It follows that a2n = w(1, 3k + 1), a2n+1 = w(k + 1, k2 + 6k + 1), b2n =
w(1, k + 3), b2n+1 = w(2, 4k + 4). Finally

an = 2(k + 1)an−2 − (k − 1)2an−4
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a0 = 1, a1 = k + 1, a2 = 3k + 1, a3 = k2 + 6k + 1,

bn = 2(k + 1)bn−2 − (k − 1)2bn−4

b0 = 1, b1 = 2, b2 = k + 3, b3 = 4k + 4.

These fourth order recurrences can be transformed in second order recur-
rences in the following way. First of all note that

1 − 2(k + 1)x2 + (k − 1)2x4 =
(

1 − 2x − (k − 1)x2
) (

1 + 2x − (k − 1)x2
)

.

The generating function of an is

1 + (k + 1)x + (k − 1)x2 − (k − 1)2x3

1 − 2(k + 1)x2 + (k − 1)2x4
.

This can be simplified to

1 + (k − 1)x

1 − 2x − (k − 1)x2
,

so that we obtain

an = 2an−1 + (k − 1)an−2, a0 = 1, a1 = k + 1.

Analogously, the generating function of bn is

1 + 2x − (k − 1)x2

1 − 2(k + 1)x2 + (k − 1)2x4
,

and this becomes
1

1 − 2x − (k − 1)x2
,

so that we obtain

bn = 2bn−1 + (k − 1)bn−2, b0 = 1, b1 = 2.

Writing ǫ = 1 +
√

k, η = 1 −
√

k (so that ǫ = α
1

2 , η = β
1

2 ) the closed forms
are

an =
ǫn+1 + ηn+1

2
,

bn =
ǫn+1 − ηn+1

2
√

k
.
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Now it is easy to show that limn−→∞
an

bn

=
√

k. Indeed

an

bn

=
ǫn+1 + ηn+1

2
· 2

√
k

ǫn+1 − ηn+1

=
√

k
ǫn+1 + ηn+1

ǫn+1 − ηn+1

=
√

k
1 +

(η
ǫ

)n+1

1 −
(η

ǫ

)n+1 .

Since
(η

ǫ

)n+1
converges to zero we have that an

bn

converges to
√

k.

Now we are ready to prove by induction the summation formulas. Assume
that Equation 3, Equation 4, Equation 5 and Equation 6 hold for some
integer n. This is tantamount to say that Equation 12, Equation 13, Equa-
tion 14 and Equation 15 hold for some integer n. For n = 0 they are satisfied
since

a0 = 1 =

(

1

1

)

k0 = d0 + u0,

a1 = k + 1 =
1
∑

i=0

(

2

2i

)

k1−i = d1,

b0 = 1 =

(

1

1

)

k0 = d0 + v0,

b1 = 2 =

(

2

1

)

k0 = v1.

Now

a2(n+1) = a2n+2

= a2n+1 + kb2n+1

= dn+1 + kvn+1

= dn+1 + un+1,

where the third line is due to the induction hypothesis and we used Equa-
tion 11. Then Equation 3 is satisfied through Equation 12.

b2(n+1) = b2n+2

= a2n+1 + b2n+1

= dn+1 + vn+1.

4



Again the third line is due to the induction hypothesis. Then Equation 5 is
satisfied through Equation 14.

a2(n+1)+1 = a2n+3

= a2n+2 + kb2n+2

= dn+1 + un+1 + kdn+1 + kvn+1

= (1 + k)dn+1 + 2un+1

= (1 + k)
αn+1 + βn+1

2
+

(αn+1 − βn+1(α − β)

4

=
(α + β)(αn+1 + βn+1)

2
+

(αn+1 − βn+1(α − β)

4

=
2αn+2 + 2βn+2

4
= dn+2.

Here the third line is due to the fact that we already proved the formulas
for a2n and b2n. Then Equation 4 is satisfied through Equation 13. For the
last relationship consider first of all that

un + vn =
(αn − βn)(α + β)

α − β
.

Then

b2(n+1)+1 = b2n+3

= a2n+2 + b2n+2

= 2dn+1 + un+1 + vn+1

= αn+1 + βn+1 +
(αn+1 − βn+1)(α + β)

α − β

=
(α − β)(αn+1 + βn+1) + (αn+1 − βn+1)(α + β)

α − β

= 2
αn+2 − βn+2

α − β
= vn+2.

Here again the third line is due to the formulas already proven. Then Equa-
tion 6 is satisfied through Equation 15.

5



2 Other Initial Conditions

If we start out with a0 = 0, b0 = 1 and we denote the resulting sequences
by ãn and b̃n we get

ã2n =
n−1
∑

i=0

(

2n

2i + 1

)

ki+1 =

√
k

2
(αn − βn),

ã2n+1 =
n
∑

i=0

(

2n + 1

2i + 1

)

ki+1 =

√
k

2
(αn − βn) +

k

2
(αn + βn),

b̃2n =
n
∑

i=0

(

2n

2i

)

ki =
1

2
(αn + βn),

b̃2n+1 =
n
∑

i=0

(

2n + 1

2i

)

ki =

√
k

2
(αn − βn) +

1

2
(αn + βn).

Then
ãn = 2ãn−1 + (k − 1)ãn−2, ã0 = 0, ã1 = k,

b̃n = 2b̃n−1 + (k − 1)b̃n−2, b̃0 = 1, b̃1 = 1.

It follows easily (n > 0)
ãn = kbn−1,

b̃n = an−1,

so that ãn

b̃n

−→
√

k.

3 Generalization

The work done allows to analyze easily the following situation. Let us con-
sider the sequences

un = un−1 + kvn−1,

vn = hun−1 + vn−1,

with k and h positive integers, where we start with u0 = 1, v0 = 0. Then
we get the following summation formulas and closed forms (where α1 =
1 + hk + 2

√
hk, β1 = 1 + hk − 2

√
hk)

u2n =
n
∑

i=0

(

2n

2i

)

(hk)i =
1

2
(αn

1 + βn
1 ),
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u2n+1 =
n
∑

i=0

(

2n + 1

2i

)

(hk)i =

√
hk

2
(αn

1 − βn
1 ) +

1

2
(αn

1 + βn
1 ),

v2n = h

n−1
∑

i=0

(

2n

2i + 1

)

(hk)i =

√
h

2
√

k
(αn

1 − βn
1 ),

v2n+1 = h

n
∑

i=0

(

2n + 1

2i + 1

)

(hk)i =

√
h

2
√

k
(αn

1 − βn
1 ) +

h

2
(αn

1 + βn
1 ).

From this, using the same approach as before, we obtain

un = 2un−1 + (hk − 1)un−2, u0 = 1, u1 = 1,

vn = 2vn−1 + (hk − 1)vn−2, v0 = 0, v1 = h.

Using the closed forms given before we see that

u2n

v2n
−→

√

k

h
,

u2n+1

v2n+1
−→

√

k

h
,

so that we can conclude

un

vn
−→

√

k

h
.

4 Reduction

Returning to the initial case, if k is an odd number the fraction an

bn

can
be reduced and new sequences can be defined. More precisely, let k =
2m + 1, m = 0, 1, 2, . . .. Then

α = 2m + 1 + 1 + 2
√

k

= 2(m + 1 +
√

k)

= 2γ,

with γ = m + 1 +
√

k. Analogously, with δ = m + 1 −
√

k, we have

β = 2δ.

Note that γ + δ = 2(m + 1), γδ = m2, γ − δ = 2
√

k = 2
√

2m + 1. Now
define

c2n =

(

1

2

)n

a2n =
γn + δn

2
+

√
k

γn − δn

2
, (16)
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c2n+1 =

(

1

2

)n

a2n+1 =
γn+1 + δn+1

2
, (17)

d2n =

(

1

2

)n

b2n =
γn + δn

2
+

γn − δn

2
√

k
, (18)

d2n+1 =

(

1

2

)n

b2n+1 =
γn+1 − δn+1

2
√

k
. (19)

Then of course
cn

dn

−→
√

k.

Let u(r, s) denote the recurrence

un = 2(m + 1)un−1 − m2un−2, u0 = r, u1 = s.

Then c2n = u(1, 3m + 2), c2n+1 = u(m + 1, m2 + 4m + 2), d2n = u(1, m +
2), d2n+1 = u(1, 2(m + 1)). And finally

cn = 2(m + 1)cn−2 − m2cn−4,

dn = 2(m + 1)dn−2 − m2dn−4,

where the initial conditions are determined by the previous recurrences.
The generating function of cn is

1 + (1 + m)x + mx2 − m2x3

1 − 2(1 + m)x2 + m2x4
,

that of dn is
1 + x − mx2

1 − 2(1 + m)x2 + m2x4
.

5 Some Identities

We will work with the sequences

an = 2an−1 + (k − 1)an−2, a0 = 1, a1 = k + 1,

and
bn = 2bn−1 + (k − 1)bn−2, b0 = 1, b1 = 2,

with closed forms

an =
ǫn+1 + ηn+1

2
,
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bn =
ǫn+1 − ηn+1

2
√

k
.

where ǫ = 1 +
√

k, η = 1 −
√

k. Using induction and Equations 1 and 2 we
get

an = (k − 1)bn−1 + bn,

an+1 + (k − 1)an−1

2k
= bn,

kbn = an + (k − 1)an−1.

Using the closed forms (and the fact that ǫη = 1 − k) we get

a2
n − kb2

n = (1 − k)n+1,

a2n = 2an−1an − (1 − k)n,

(k − 1)bm−1bn + bmbn+1 = bm+n+1,

(k − 1)am−1an + aman+1 = kbm+n+1.

Writing n = m − 1 the last two become

(k − 1)b2
m−1 + b2

m = b2m,

(k − 1)a2
m−1 + a2

m = kb2m.

Using these identities we obtain

a2n =
2kan

k − 1

√

a2
n − (1 − k)n+1

k
− 2a2

n

k − 1
− (1 − k)n, (20)

b2n =
(1 − k)n+1 + 2kb2

n − 2bn

√

kb2
n + (1 − k)n+1

k − 1
. (21)

Now noting that a2n+1 = a2·2n , writing 2n instead of n we get recurrences
for a2n and b2n

a2n+1 =
2ka2n

k − 1

√

a2
2n − (1 − k)2n+1

k
− 2a2

2n

k − 1
− (1 − k)2

n

,

b2n+1 =
(1 − k)2

n+1 + 2kb2
2n − 2b2n

√

kb2
2n + (1 − k)2n+1

k − 1
.
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6 Newton’s Iteration

The Newton’s iteration algorithm (see [8]) to approximate the square root
of integers is given by

xn+1 =
1

2

(

xn +
k

xn

)

,

starting with x0 = 1. We assume k > 1. The limit of this recursion is the
fixed point of the mapping

f(x) =
1

2

(

x +
k

x

)

,

which is
√

k.
For n ≥ 0 let us write

xn =
an

bn

.

We extend the sequences an and bn setting a0 = b0 = 1. Then we have

an = a2
n−1 + kb2

n−1, (22)

bn = 2an−1bn−1. (23)

We can generalize considering the recursion

xn+1 =
1

2

(

xn +
k

hxn

)

,

where h, k are positive integers with h 6= k. This produces an approximation

to
√

k
h
. In this case we have

an = ha2
n−1 + kb2

n−1,

bn = 2han−1bn−1.

We are going to prove using induction that, for n ≥ 2,

an = 2a2
n−1 − (k − 1)2

n−1

. (24)

Using Equation 22 and Equation 23 we have a1 = k + 1, b1 = 2, a2 =
(k+1)2+4k = 1+k2+6k. If we use Equation 24 we have a2 = 2a2

1−(k−1)2 =
1+k2 +6k, so that Equation 24 is true for n = 2. Now assume that it holds
for some n. Coupled with Equation 22 we get

2a2
n−1 − wn−1 = a2

n−1 + kb2
n−1,

10



that is
a2

n−1 = kb2
n−1 + wn−1, (25)

where we wrote
wn−1 = (k − 1)2

n−1

.

Now

an+1 = a2
n + kb2

n

= (2a2
n−1 − wn−1)

2 + 4ka2
n−1b

2
n−1

= 4a4
n−1 − 4a2

n−1wn−1 + w2
n−1 + 4ka2

n−1b
2
n−1.

On the other hand

2a2
n − wn = 2(a2

n−1 + kb2
n−1)

2 − wn

= 2a4
n−1 + 2k2b4

n−1 + 4ka2
n−1b

2
n−1 − wn.

Now using Equation 25 we have

k2b4
n−1 = (a2

n−1 − wn−1)
2

= a4
n−1 + w2

n−1 − 2a2
n−1wn−1.

Then

2a2
n − wn = 4a4

n−1 − 4a2
n−1wn−1 + 2w2

n−1 + 4ka2
n−1b

2
n−1 − wn

= an+1,

since wn = w2
n−1. This concludes the proof.

Using Equation 25 we get

an−1 =
√

kb2
n−1 + wn−1,

so that, through Equation 23, we get a recurrence for bn

bn = 2bn−1

√

kb2
n−1 + wn−1. (26)

Now we are going to prove, again by induction, the following closed forms

an =
α2n

+ β2n

2
, (27)

bn =
α2n − β2n

2
√

k
, (28)

11



where α = 1 +
√

k, β = 1 −
√

k. Note that α + β = 2, αβ = 1 − k. Hence
an and bn are doubly exponential sequences (see [1]).
For n = 0 the closed form for a0 gives α+β

2 = 1; for b0 gives α−β

2
√

k
= 1 so

Equation 27 and Equation 28 are satisfied. Now assume that Equation 27
and Equation 28 hold for some n. Then

an+1 = a2
n + kb2

n

=

(

α2n

+ β2n

2

)2

+ k

(

α2n − β2n

2
√

k

)2

=
α2n+1

+ β2n+1

+ 2(αβ)2
n

4
+ k

α2n+1

+ β2n+1 − 2(αβ)2
n

4k

=
α2n+1

+ β2n+1

2
.

This concludes the proof for an.
For bn we have

bn+1 = 2anbn

= 2
α2n

+ β2n

2

α2n − β2n

2
√

k

=
α2n+1 − β2n+1

2
√

k
.

This concludes the proof.
Incidentally we have proved, for n ≥ 1, that kb2

n + wn is a perfect square.
With k = 2, an is sequence A001601 and bn is sequence A051009 in [6].

Using Identities 1.87 and 1.95 in [2], where n is replaced by 2n, we obtain
the following summation formulas

an =
2n−1
∑

r=0

(

2n

2r

)

kr, (29)

bn =
2n−1−1
∑

r=0

(

2n

2r + 1

)

kr, n > 0. (30)

From Equation 23 we see that

bn = 2n
n−1
∏

r=0

ar,

which implies that bn is divisible by 2n.
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7 Related Sequences

Let us consider the sequence cn, with c0 = 1, c1 = r, r > 1, such that for
n ≥ 2

cn = 2c2
n−1 − 1.

From [5] we get the closed form

cn+1 =
γ2n

+ δ2n

2
,

where γ = r +
√

r2 − 1, δ = r −
√

r2 − 1. Define the sequence dn by

dn+1 =
γ2n − δ2n

2
√

r2 − 1
.

We set d0 = 1 and we obtain d1 = 1. Note that d2 = 2r. Then, for n ≥ 1,

dn+1 = 2
γ2n−1

+ δ2n−1

2

γ2n−1 − δ2n−1

2
√

r2 − 1
= 2cndn.

Then

dn = 2n−1
n−1
∏

i=1

ci.

From this we can evaluate

lim
n−→∞

n
∏

i=1

(

1 +
1

ci

)

.

Indeed we have

n
∏

i=1

(

1 +
1

ci

)

=

(

1 +
1

c1

)(

1 +
1

c2

)

· · ·
(

1 +
1

cn

)

=
1 + c1

c1

1 + c2

c2
· · · 1 + cn

cn

=
1 + c1

c1

2c2
1

c2
· · · 2c2

n−1

cn

=
(1 + c1)2

n−1c1c2 · · · cn−1

cn

=
(r + 1)dn

cn

.

13



Using the closed forms of cn and dn it is easy to see that

lim
n−→∞

cn

dn
=
√

r2 − 1.

Hence

lim
n−→∞

n
∏

i=1

(

1 +
1

ci

)

=
r + 1√
r2 − 1

=

√

r + 1

r − 1
.

The case r = 3 is considered in [7].
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