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NOTES ON FIBONACCI PARTITIONS

F. V. WEINSTEIN

To my children, Sergej and Jelena with love

ABSTRACT. Let f1 = 1,fo = 2,f3 = 3,f4 = 5,... be the sequence of Fibonacci numbers. It is
well known that for any natural n there is a unique expression n = fi; + fi, + - + fi, such that
la+1 —ia = 2 for a = 1,2,...,q — 1 (Zeckendorf Theorem). By means of it we find an explicit

formula for the quantity Fj(n) of partitions of n with h summands, all parts of them are the distinct
Fibonacci numbers. This formula is used for an investigation of the functions F(n) = Y72 ; Fp(n) and
x(n) =392, (=1)" Fj,(n). They are interpreted by means of the representations of rational numbers
as some continues fractions. Using this approach we define a canonical action of monoid Z2 X Z2 x N
(see the text for the notations) on the set of natural numbers, the set orbits of that is also a monoid,
freely generated by the set Q/Z, and such that F'(n) is invariant under this action. A fundamental
domain of the action is found and the following results are established: the formula x(n) = 0,%+1, a
theorem on ”Fibonacci random distribution” of n with F(n) = k, the estimation F(n) < v/n + 1, and
it is shown that limy oo (x2(1) + - - - + x2(N))/N = 0. In addition, an algorithm to find a minimal n
with F'(n) = k is provided.

Let N be the set of non negative integers and let fo = f1 = 1, f; = fi—1 + fi—2,(i = 2) be the
Fibonacci sequence. The article concerns the representations of n € N as n = f;; +--- + f;,, where
1 <41 < --- <14 Such representations we call the Fibonacci partitions of n. Let Fj,(n) be the quantity
of all such partitions of n with A summands. It is obvious that

ﬁ(l +tali)y =1+ i i Ey(n)tha™
i=1 n=1h=1

In Section 1 we establish an explicit formula for the polynomial F(n;t) = 1+ > ;2 Fy(n)t". One
corollary of this result is that in the expansion

H(l —zl)y =1+ Zx(n)x"
i=1 n=1

all coeflicients x(n) are equal to 0, =1, that resembles Euler’s Pentagonal Theorem.

In the subsequent sections we study the functions F(n) = F(n;1) and x(n) = F(n; —1). The contents
of Section 2 points to a close relation between them and the representations of rational numbers as
especial continued fractions. This observation implies the following factorization of F.

Let T'(Q/Z) be a monoid (i.e. a semigroup with a two-sided unit), freely generated by the set of non-
zero elements of the group Q/Z, where Q and Z be the additive groups of rational and integer numbers
respectively. Any non unit element of I'(Q/Z) may uniquely be represented as a word gy - - - % g5, where
J1,---,9s are the non reducible rational fractions a/b € (0,1). Let N, be a multiplicative monoid of
natural numbers. Define a homomorphism of monoids § : T'(Q/Z) — N, by d(a1/by * -+ * as/bs) =
by ---bs. In Section 2 we define a surjective map of the sets 7 : N — I'(Q/Z), that makes the diagram

N —=T(Q/z)

\ lg
F
N,
commutative. It turns to be that on N may canonically be defined a free action of direct product of

monoids T = Zs X Zy x N such that I'(Q/Z) is naturally identified with the set of T-orbits (here N
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is treated as an additive monoid, and Zs is a group with two elements), and 7 is the corresponding
projection. Thus F(n) is invariant under the T-action.

For each v € T'(Q/Z) define 6(7) € N to be the minimal number in 7=1(y). Let £ be the set of all
such numbers. Then £ is a fundamental domain for T. The elements of £ we call the essential numbers.
We will be convinced that £ is exhausted by the set of integers |m7| + [m72], where 7 = (1 +/5)/2
is the Golden Ratio, m € N, and |p] denotes the integer part (floor) of real number p. (In this form
the sequence £ is included in [6].) The set of essential numbers inherits the multiplicative structure of
monoid I'(Q/Z). In Section 3 we give a formula for the corresponding multiplication.

In view of the T-action on N, to find all n € N with F(n) = k it is sufficient to find all essential
k-numbers, i.e. those n € &, for which F(n) = k. The quantity of essential k-numbers is obviously
finite. Using this, in Section 4 we obtain an additional information on F(n).

Namely, let (k) be the cardinality of the set 6~ 1(k). It is easy to verify (Lemma 3.2) that

(k)= Y Uk/r)e(r) (1)

1<r<k,r|k

where ¢ is the Euler’s totient function and ¥(1) = 1. Function ¥ naturally appears in Section 4 as a
quantitative expression for an interesting property of “stability” of F'(n): we prove that for r > 2k the
quantity of naturals n such that f, <n < f,.41 and F(n) =k, equals to 1 for k = 1, and to 2¥(k) for
k > 1. In particular, for r > 2k this quantity is independent from r. The sequence of numbers

(k) ={1,1,2,3,4,6,6,9,10,12, 10,22, 12, 18, 24,27, 16, 38, 18,44, ...}

was also observed by R. Munafo (see[6]) as the quantities of k-periodic hyperbolic components on the
continent of Mandelbrot set ([4]). Another result of Section 4 is the estimation F(n) < v/n + 1.

In Section 5 we study the function x(n). Since |x(n)| < 1, the quantity of naturals n < N with
x(n) = £1 equals to X(N) = x2(1) + x3(2) + - -+ + x3(IV). The main result of Section 5 implies that
limpy_ 0o X(N)/N = 0 although n € N with x(n) # 0 appear often enough. For instance, X (fos) =
X (196418) = 46299.

A minimal essential k-number is a minimal n € N with F'(n) = k. Finding such n poses an interesting
question, but seems to be difficult. In sections 3 and 6 we outline an algorithm to find the minimal
essential k-number for any k.

The included figure is a graphical presentation of F(n), where n belongs to the interval [0, fog — 1].
This plot hopefully helps to clarify the situation. Few comments on it are included in Section 7. The
graphic of F(n) reminds some ”fractal” pictures. Probably a ”fractal” behavior of the quantity of
partitions with the distinct parts, taken from the linear recurrent sequences, is typical. In Section 7 we
propose a related conjecture.

Two of our results were independently obtained by other people. Namely, the inequality |x(n)| <1
was established by G. Payne (unpublished) and by N. Robbins (cf.[5]). Theorem 5.3 in a slightly different
form was proved by F. Ardila (cf.[1]).

We use the following notations: Z and Q mean the additive groups of the integer and rational numbers
respectively; N and N, are the additive and multiplicative monoids of non negative and positive integers
respectively; Zs is a group with two elements. The word ”iff” is a synonym for ”if and only if”; the
abbreviation ”F.p.” is a synonym for ”Fibonacci partition”. The notation #S is used for the cardinality
of the set S. For integer m we define A(m) = 0,1 according to m = 0,1 mod 2; ¢ is the Euler totient
function. All claims on Fibonacci numbers and on the Golden Ratio 7 = (1 4 v/5)/2 we mention as
”well known” one may find in book [2].

1. THE QUANTITY OF FIBONACCI PARTITIONS

In this section we introduce the main definitions and notations we use during the article, and establish
an explicit formula for the quantity Fj,(n) of Fibonacci partitions of n with A summands.
Definition 1.1.

(1) A partition is a set of integers I = {i1,...,i,} such that 0 < 43 < ... < 44. The numbers
i1,...,1q are called the parts of I. The partition I is strict if i, < --- <4q4.
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(2) The number n =iy + --- + iy is a content of I = {i1,...,1q}, and q is a dimension of I.
(3) A Fibonacci partition is a strict partition, all parts of it are Fibonacci numbers.
(4) A partition I = {i1,...,i4} is a 2-partition if iq41 —iq =2 fora=1,...,¢— 1.

(5) A Fibonacci partition {fi,, ..., fi,} is minimal if {i1,...,i,} is a 2-partition.

The following notations and conventions will be used:

F(n) is the set of Fibonacci partitions of content n and F'(n) = #F(n).
Frn(n) ={{fi,- s fi,} € F(n)} for h > 0 and Fp(n) = #Fn(n).

By definition F(0) = Fy(0) =1 and F;,(0) =0 for h > 0.

For I = {iy,...,iq} weset fr = fi, +---+ fi,.

Often we shall write a F.p. {fi,,..., fi,} of content n asn = f;, +---+ fi,.

For any n € N there exists a unique minimal F.p. n = f, (n) + -+ + fu,(n)- This simple observation
is a content of Zeckendorf’s Theorem. It implies that the correspondence

n— Z(n) = {a(0), ., 1g(n))
defines a canonical bijection Z : N — P,. Sometimes we use the notations peo(n) = pq(n) and
Hoo—a(N) = pig—q(n). By definition pe(0) = 0.
The main aim of this section is an explicit expression for F(n;t) = 1+ > 32, Fu(n)t" by means of
the 2-partition Z(n) (Theorem 1.4). To formulate the result we need few more definitions.

Definition 1.2. Let I = {i1,...,i,4} be a 2-partition.

(1) Iis simple if A(i1) = -+ = A(iq).

(2) A canonical form of I is a (unique) representation I = (Iy;...;1;), where Iy,..., I are the
simple 2-partitions such that I = I {J---|JIs and min(l,11) — max(l,) is an odd positive
number for eacha=1,...,s — 1.

(3) 2-partitions Iy, ..., I are the simple components of I.

Definition 1.3. Let I = {i1,...,i,4} be a 2-partition.
(1) Define a(I) = (a1, ...,04) € N7 by
o — B+ i =1
L—“_;PIJ +1 if r>1

Vector a(I) is the associated vector of 1.
(2) Let I = (I1;...;15) be a canonical form of I, and a(I) = (ai1,...,aq). Set dy = 0,d,, =
dim(ly) + - - -+ dim(I,) and A, (1) = (@dy,_1+1, Qdyy 1425 - - - s O, )- Define

oo
A = U{(al,ag,...,aq) EN? a1 =m0 22,...,0 =2}
q=1

An associated multivector of I is V(I) = A1(I) x A2(I) x -+ x As(I) € Ay X A;(Sil). We set
A=UZ A x A7) Thus V: Py — A is a surjective map.

Define Ag(0;0) =1, Ay(x1;0) = z1 and

T Y1 0 0 0
1 T2 Y2 0 0
Ag(z1,22, . T Y1, Y2, -y Ygo1) = _ . :
O O 1 .qul yqfl
0 0 0 1

for ¢ > 2. Now for A = (a1, a9, ...,0q) € N7 let
D(A4;t) = Ag(fay (), Gy (), - .., Ba, (1); 122, ¢
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where ¢, (t) =t + 1% + -+ +t* for a € N. Thus polynomial D(A;t) may be defined by the recurrence
D(ay,...,ap;t) = do, ()D(ar,...,cp_1;t) =t T D(ay, ..., apr_2;t) (2)
starting with D(0;t) = 1, D(a1;t) = ¢a, ().
Theorem 1.4. Let n € N and let V(Z(n)) = Ay x --- x As. Then F(n;t) = D(Ay;t)--- D(Ag;t).
Our proof is divided into several lemmas.

Lemma 1.5. Letn = f, (n) + -+ fu,(n)- Then

(a) The greatest part of each F.p. of content n equals to either Jug(n) 07 80 [ (n)—1-
(b) Each F.p. of content f. is of a form fr—ok + fr_(ok—1) + fr—(2k—3) + -+ + fr—3 + fr_1, where
k=0,1,..., LTEIJ. In particular F(f.,t) = (bL%lJ_i_l(t).
¢) (Rigidity of F.p’s.) Letn = fo, + -+ + fa, be a F.p. Then for each m,1 < m < q there exists
graity 1 h

5,1 < s < hsuch that fo, + -+ fa, = fuim) + - + funm)- If m <q, then fo, . > fu,.n)-

Proof. To prove (a) let us assume that n = fo, +-- -+ fo, and fo, < fu, my—1- Thenn = fo, +- -+ fa, <
Jit+fat o+ fu,my—2 = fu,(n) —2 < n what is not possible. Heading (b) follows from (a) by induction
on r.

The proof of (c) is by induction on n. It is sufficient to find s such that fo,,, + -+ fa, = fu,(n)-
Indeed, then the first claim of (c) is implied by the same one for the F.p. ny = fo, + -+ fo. < n
and with minimal F.p. ny = fy,,(n) + - + fu,_1(n)- Since either a; = py—1(n) or a5 = pg—1(n) — 1, we
obtain that fa.,, > fu,_,(n).- That proves the second claim of (c).

Again, by (a) either aj = pq(n) or ajp, = pg(n) — 1. For ap = pq(n)k, there is nothing to prove. Let
an = pg(n) —land ny =n— fo, = fuim) + -+ fugr(n) T Fugm)—2- I (pg(n) —2) = pg—1(n) > 2, then
the last expression is a minimal F.p. for n;. Since ny < n, by the inductive assumption there is s such
that fas+1 + fas+2 +eee fah,—l = fuq(n)—Q- But then f¢15+1 + fas+2 +eee fah—l + fah, = fuq(n)v and (C)
follows.

For (j14(n) —2) — pg—1(n) < 2 it is sufficient to verify that fa, , = fy, (n)—2, since then fo, | + fa, =
Jugm)—2 + fugn)y—1 = fu,(n)- Contrary, assume that fo, , < fu,m)—3- Then n = fo, + fo, +--- +
Jany  fugmy—1 < i+ fot+ -+ fu,)—3 + fu,(n)—1 = 2fu,(n)—1 — 2. Since in the considered case
tg—1(n) = pg(n) — 3, from the minimal F.p. for n we obtain n > f, m)—s + fu,(n) = 2fu,(n)—1, that is
a contradiction. g

Let Fin(n) = {{far,---» fan} € Fn(n): a1 >k}, and let Fy p(n) = #Fpn(n).
Lemma 1.6. Assume that p1(n) > k. Then Fyp(n) = Fn(fu -k + -+ fug(n)—k)-
Proof. For {fay,---s fan} € Frn(n) define \({fars---s fan}) = {far—ks---s fan—k }. We claim that
Me{fars -5 fan}) € Fulfuym)—k + -+ fu,(n)—k)- The proof is by induction on ¢. For ¢ = 1 it follows
from Lemma 1.5(b). Let ¢ > 1. We can find s > 1 such that fo, + -+ fo, = fuyn) + -+ fu,_i(n)
(Lemma 1.5(c)). By the inductive assumption fo, k4 -+ fa.—k = fuy(m)—k++ fug_1(n)—k> fawrr—k+

“ 4+ fap—k = fuy(n)—k> and our claim follows. Thus the map A\ : Fr.n (1) = Fn(fuy )=k + -+ Frgm)—k)
is well defined. Then it is obviously bijective. O

Lemma 1.7. Let {i1,...,05, 1,57y} € P2, (z,y > 0) and o = L%J + 1. Then

F(fll++flm+fjl++f]y7t):
F(fi, +-+ fi, , ) (fjy—ip + -+ fiy—inst) if A(j1) # A(iz)
F(fiy + -+ fie, OF (fji—ipt1 + -+ fiy—in41,0)—
U (fiy + A+ fi s OF (Fiy—joir + -+ fiy—gnrrt) i A1) = Aia)

Proof. Let fiy +---+ fi, = n1, fj, ++ -+ fj, = n2 and F,Em)(n) =H#{{fars-- > fa,} € Frn(n) : ap =m}.
Thanks to Lemma 1.5(c,a) each F.p. from Fj,(ny + ng) is of a form {fa,, ..., fa.s fassrs-- - fan }, Where
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far + -+ fa. = n1 and either ag =i, — 1 or as = iy. Therefore

h
n(n1 +na) Z Fl== Y (ny)Fy, _1 pes(n2) + FS) (n1) Fy, p—s(n2)) (3)

s=1

Again by Lemma 1.5(c) there is s1 > s + 1 such that fo,,, + -+ fa,, = fj;- Then Lemma 1.5(b)
implies that A(as+1) = A(j1). In addition we know that asi1 > i, (Lemma 1.5(c)). If A(j1) # A(ix)
then asy1 > iy. Thus Fi 1 p—s(n2) = Fi, h—s(n2). Since Fy(ny) = Fs(im_l)(nl) + Fg,(iw)(nl), we may
rewrite formula (3) as

h
Fp(ny +ng) = ZFS(nl)F"iz,hfs(’rLQ)
s=1
Applying Lemma 1.6 to F;_ ,_s(n2) completes the proof in case A(j1) # A(iz).
Now let A(j1) = A(iz). From Lemma 1.5(b,c) it follows that each F.p. from F; _; p_s(n2) with

the minimal part f;, is of a form {f;,, fi,+1, fio+3,--+» fjr—1s f1xs-- -+ fh—s—a}, Where a = L“ e | 4 1.
Therefore F; j—s(n2) = Fi,—1n—s(n2) — Fj,—1,h—s—a(ne — fj,). After substitution this expression in

formula (3) and recall that Fy(ny) = Fs(i’”il)(nl) + Fs(“)(nl) and Fs(“)(nl) = Fs_1(n1 — fi, ), we obtain

h h

Fu(m +n2) = Y Fo(m)Fy,—1h-s(n2) = Y Foor(ni = fi)Fjy—1h-s—a(n2 = f,)
s=1 s=1
Applying Lemma 1.6 to F;, 1 p—s(n2) and to Fj, —1 h—s—a(n2 — f;,) completes the proof. O

Proof of Theorem 1.4. Let Z(n) = {i1,...,iq} be a simple 2-partition and V(Z(n)) = (aa,...,qq).
From the second case of Lemma 1.7 formula, we obtain a recurrence

F(nvt) = F(TL - fiq7t)F(fiq7iq—l’t) - tanrlF(n - fiq—2 - fiqfut)

where F(fi,—i,,) = ¢a,(t) by Lemma 1.5(b). The induction on ¢ shows that F'(n;t) depends only on
vector V(Z(n)). Therefore, there exists a function D’ (aq, ag, ..., aq;t) = F(n;t) and for r > 2

D'(ay,...,ap;t) = ¢o, ()D (a1, ..., 0 1;t) =t 1D (a1, ..., ap_o;t)

In addition D'((;t) = 1, D'(a1;t) = ¢q,(t). Therefore recurrence (2) implies that D’(A;t) = D(A;¢).
Now Theorem 1.4 follows from the first case of Lemma 1.7 formula. O

Corollary 1.8. (a) Forn € N let x(n) = F(n;—1). Then x(n) =0, £1.
(b) Let (a1,...,0.) € A1. Then D(aa,...,ap;—1) =0 iff N(D(aq,...,a;1)) =0.

Proof. Thanks to Theorem 1.4 it is sufficient to verify that D(A; —1) = 0, £1 for arbitrary integer vector
A= (o,...,aq). This is obvious for ¢ = 0,1 and for ¢ = 2,3 can easily be verified. The recurrence (2)
implies that

D(oq,...,aq—3,0q4—2;—1) if Mag) =0
D(o,...,0q;—=1) = ¢ D(aq,...,0q-4,04-3;—1) if Aag) =1 and AMag—1) =1
D(aq,...,0q-2,04-1+1;—1) if M(ag) =1 and A ag—1) =0

The induction on ¢ completes the proof of (a).
Obviously A(F(n)) = A(x(n)). Since V : Ps — A is a surjective map, there exists n € N such that
D(ay,...,ar;1) = F(n) and D(ay,...,a,; —1) = x(n). Therefore (b) follows from (a).
O
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2. CONTINUED FRACTION INTERPRETATION OF x(n) AND F'(n)

Theorem 1.4, in particular, gives the explicit expressions for the functions F(n) = F(n;1) and
x(n) = F(n; —1). These expressions might quite naturally be interpreted by means of the presentations
of rational numbers as some continued fractions.

Namely, for A = (a1, ...,aq4) € Ay define a rational function (4;t) on ¢t by

1 o+l t2 Tl D(ag,...,aqt)

(Asty = (aq, ..., 04 t)

B Qbal(t)_ ¢a2(t)_ o Qbaq (t) B D(ozl, sy Qg t)

Lemma 2.1. For A = (a1,...,qa4) € Ay there exists a polynomial d(A;t) such that D(A;t) = t1d(A;t)
and d(A;0) # 0. A greatest common divisor of the polynomials D(aq,. .., aq;t) and D(ag, ..., aq;t) in
Z[t] equals to t971.

Proof. For ¢ =1 lemma is obvious. For ¢ > 1 it follows by induction on ¢. Really, using the inductive
assumption we obtain a recurrence

D(aq,...,aqt) = tq((l +t4 -+t Nd(ag, . a5 ) —to‘rld(ag,...,aq;t)) =tld(aq,...,aq4t)

where the polynomials d(ae,...,aq;t) and d(as,...,aq;t) are relatively prime. Now the first claim
follows because the inequality s — 1 > 1 implies that d(aq,...,aq;0) = d(ag,...,a4;0) # 0. The
second claim follows as well, since if we assume that there exists a common root for d(as, ..., aq;t) and
d(ag,...,aq;t), then it is also a root for d(as, ..., a4;t) as the above recurrence shows. But relatively
prime polynomials d(as, ..., aq;t) and d(as, ..., o4;t) can not have common roots. O

For A € A; set for brevity D(A) = D(A4;1) and (A) = (4;1).

Lemma 2.2. (a) Let (aq,...,a4) € A1. Then the rightmost side of expression
1 1 1 D(ag,...,aq)
(Q1,...,0q) = — — ... — = z (5)
01— og— ag  Dlog,ag,...,q04)

18 a non reducible positive rational fraction.

(b) For any rational g > 0 there exists a unique c(g) € Ay such that g = (c(g)). In other words if
(A) =g,(A € Ay), then A = c(g).

(¢c) In this correspondence c(g) € As iff g < 1.

Proof. For A € A; there exists n € N such that V(Z(n)) = A. Theorem 1.4 implies that D(A4) =
F(n) > 0. Therefore (a1, ..., a,) > 0. The non reducibility follows from Lemma 2.1 when ¢ = 1.
For a rational fraction g = a/b > 0 the coordinates of vector ¢(¢g) may be found by the recurrence

o = |—bZ/CLJ lf a; 75 0, Aj41 = ;00 — bi7 bi+1 = a;

starting with a1 = a,b; = b, where [p] denotes the ceiling of real number p. The recursion terminates
when a;11 = 0. The proof of uniqueness is omitted, because it repeats the standard arguments from [3]
(Ch.X) in a similar situation. O

For instance, for integer k > 0 we have c(k) = (1,2,...,2) and ¢((k — 1)/k) = (2,2, ...,2), where 2
repeats k — 1 times in each case.

Theorem 2.3. For relatively prime non zero integers a,b define X(a/b) = A(b)(1 — 2X\(a)). Let
V(Z(n)) = A1 x -+ x As. Then x(n) = X({41)) ... X((4s)).

Proof. In view of Theorem 1.4 it is sufficient to establish the claim only for s = 1. Let V(Z(n)) = A =
(a1,02,...,04). Then (A) = D(as,...,aq)/D(0o1,as,...,a4). The proof is by induction on g.

From Corollary 1.8(b), we know that if A(F(n)) = M(D(a1, ag, ..., q4)) = 0, then x(n) =0 = X((4)).
Thus we may assume that A(D(a1,as, ..., qq4)) = 1. It remains to show that then

1 if AD(ag,...,aq))
Qq

0
1 if AD(ag,...,ap) =1

D(0417O[27...,Oéq;—1)—{
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For ¢ = 1,2 this is clear. Let ¢ > 2. The following recurrences follow from the definition of D:

D(aq,...,0q) = a1D(aa,...,aq) — D(as, ..., aq) (6)
D(ag,...,aq) = asD(as,...,aq) — D(oy, ..., aq) (7)
D(aq,...,aq4—1) = =Aa1)D(ag, ..., aq —1) + (1 — 2X\(az2))D(as, . .., aq; —1) (8)

In (8) we used that ¢o(—1) = —A(a) and (—1)*T = 2\(a) — 1.

If A(D(ag,...,0q)) = 0 then D(ag,...,aq—1) = 0 by Corollary 1.8(b). Then (6) implies that
A D(as, . ..,aq)) = 1. But then from (7) it follows that A(D(au, . .., o)) = M(az). Therefore the induc-
tive assumption shows that D(as, . .., a4; —1) = 1—2A(az2). Now from (7) we obtain D(aq, ..., aq; —1) =
(1 —2X\(a2))? =1 as claimed.

Let now A(D(cwe, . .., aq)) = 1. By induction D(ag, ..., aq; —1) = £1, depending on A(D(as, ..., aq)) =
0,1. If A(D(as,...,aq)) =0, then D(as,...,aq; —1) = 0 by Corollary 1.8(b). In addition (6) shows
that A(a1) = 1. Now from (8) it follows that D(au,...,qq; —1) = —1 as claimed.

Finally, let A(D(as,...,aq)) = 1. Then (6) shows that A(ay) = 0. From (7) it follows that A(asg) +
AMD(ou,...,aq) = 1. If AMag) = 0, then A(D(au,...,aq)) = 1, and by the inductive assumption
D(as,...,aq;—1) = —1. Similarly for A(az) = 1 we obtain D(as,...,aq; —1) = 1. In both cases from
(8) it follows that D(cv,...,aq; —1) = —1. The proof is completed. O

Function F(n) may also be interpreted by means of continued fractions. Namely, consider a monoid
I'(Q/Z), freely generated by the set Q/Z. By definition 1 is a two sided unit of I'(Q/Z). The non unit
elements of T'(Q/Z) we identify with the words v = g1 %+ - - * g5, (s > 0), where each g; is a non reducible
fraction a/b € (0,1) of positive integers. For s = 0 by definition v = 1.

Let A = A; x A;(S_l), A =2, A® and let p : A — T(Q/Z) be a map, defined on A =
Ap x Ay x - x Ay € A®) by

P(A) = ((A1) — [(A1)]) * (A2) * - = (As)

Lemma 2.2 implies that p is surjective.

Define a homomorphism of monoids ¢ : I'(Q/Z) — N, by the formulas §(1) = 1,0(a1 /by *- - -*as/bs) =
by---bs. Theorem 1.4 says that F(n) = D(A41)...D(A;), where Ay X --- x A; = V(Z(n)). Therefore
(5) shows that the diagram

N2> Py 2> A —>T(Q/Z)
Nlé

N,

is commutative. Our next aim is to show that on the fibers of map p -V there exists a canonically
defined algebraic structure.

Consider the maps N — N?t1 (¢ > 0), defined by 0 — (1) for ¢ = 0 and by (a1, az,...,q,) —
(1,a1 + 1,a2,...,q,) for ¢ > 0. These maps induce a map S4 : A — A. Let SY =ida, and let S, be
the r-th iteration of S4. It is easy to check that for (as,...,a4) € Ay and r > 0

r—1
(t—1)

For t =1 and g € Q/Z this formula implies that (S7(c(g))) =r + (c(9)) =r +g.

Let A € A and let p(A) = g. Then either A = A; or A = A; X Ay. If A = Ay, then (A;) =
[(A1)] + ¢g. Lemma 2.2(b) implies that then A = 57 (c(g)), where r = [(A1)]|. If A = A; x Ay, then
(A1) = |(A1)] =r and Ay = ¢(g). Again, Lemma 2.2(b) shows that 4; = S7((1)).

These arguments imply that for v = g1 * -+ * gs € ['(Q/Z) the set p~1(y) is exhausted by the
multivectors S” (c(v)) and S ((1) x ¢(7)), where c(y) = ¢(g1) X - - X ¢(gs), and r runs over N. Moreover,
for each A € A there exist a uniquely defined v € I'(Q/Z) and r € N such that either A = S7 (c(7)), or

A= Sg((l) X c(w)).

<S;\(O‘17"'7aq);t>:t +ta1+r—1<a1,”"aq;t>
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Therefore the formulas 7.4(S7% (c(7))) = S7%((1) x ¢(v)) and 74(S73((1) x ¢(7))) = ST (c(y)) define
an involution 74 : A — A. Since 74 commutes with S4, monoid T 4, generated by the set of maps
{74,5%, 5%, 5%,...} : A— A, is isomorphic to a direct product of monoids Zs x N.

Each orbit of the action of T4 on A coincides with p~!(y) for a uniquely defined v € T'(Q/Z).
Therefore the set of orbits may canonically be identified with I'(Q/Z). In addition it follows that the
action of T4 on A is free (i.e. without fixed points).

The fibers of V obviously coincide with the orbits of involution w : Py — Pa, defined by

{in+1,...,ig+1} if AG)=1

{in—1,...,ig—1} if A1) =0 )

w{il,...,iq} :{

It is possible to raise up the maps S4,74 : A — A to the maps S, 7 : Po — Ps such that
V-S=84-V, Vir=714-V, m2=idp,, w-8=Sw, w-r=7-w, 7-S=8-7 (10)
First define S by
S{i1, .. yigt ={2—=A(i1),i1+ 2,...,ig + 2} (11)

To define 7, notice that the above description of p~!(y) implies that for any I € P, there exist a
uniquely defined I’ € Py and r € N such that I = S"(I’) and I’ is one of the following 2-partitions:
either {i1,...,9q} or {1,41,...,9¢} and A(i1) = 0, or {2,41,...,4,} and A(i1) = 1, where in all cases
11 > 3. For such 2-partitions I’ we set

) = {2=N(1), i 41, g+ 1} if T = {iy, ... 04}
{iv—1,... 04— 1} it I ={1,i1,... iq} or I' ={2,i1,...,i4}

Now for I = S"(I') set 7(I) = S™(v(I’)). This formula extends the action of 7 to the whole set P2. A
test shows that all formulas (10) are satisfied.

Thus on P is defined an action of monoid T ~ Zs X Zg x N, generated by the set {w, 7, S} of maps
Py — Ps. It is easy to check that this action is free.

For a € A the set V71(a) consists from two 2-partitions. Denote by §(a) € Py those of them, the
lowest coordinate of that is odd.

Lemma 2.4. (a) Let I = (i1,...,1q) € P2 and A(i1) = 1. Then I = 6(c(7y)) for v € T(Q/Z) iff i1 > 3.
(b) For v € T(Q/Z) let 0(c(v)) = t(I), where t € T, I € Py. Assume that fr < foe(v))- Then I = c(v)
and t = idp,.

Proof. Claim (a) directly follows from Lemma 2.2. Let us prove (b). Since i3 > 3, formula (11)
shows that if 8(c(y)) = S"(I), then r = 0. Therefore if §(c(y)) = (i1,...,14) = 7(I) then either
I'=(1,i14+1,...;ig+ 1) or I =(2,i1+1,...,i; + 1), according to A(i1) = 1,0. If, finally, 6(c(v)) =
w(iy, ..., ig), then i) =iy +1,... iy = ig + 1 as it follows from (9). Thus if ¢ # idp,, then fy(v)) < f1
that completes the proof. O

For v € T'(Q/Z) define 0(7y) = fg(c(+)) € N. From Lemma 2.4 it follows that 6(7) is the lowest number
in(p-V-Z)~!(y) C N. Since Z : N — P is a canonical bijection, the maps w, 7 and S are uniquely
defined on N. Collecting the whole above information, we conclude:

Theorem 2.5. On the set of natural numbers N is defined a free action of monoid T ~ Zo X Zg x N,
generated by the above defined set {w,T,S} of maps N — N. For each orbit x C N of T there exists a
unique y(z) € T(Q/Z) such that x = T(0(vy(x))). This correspondence is a bijection between the set of
orbits of T and the set T'(Q/Z). Let 7 : N — I'(Q/Z) be the natural projection. Then m =p-V-Z. In
particular, F(T(n)) = F(n).

Remark 2.6. It is obvious that x(w(n)) = x(n). Directly verifiable formula D(S”(A);t) = t"D(A;t)
implies that x(S"(n)) = (—=1)"x(n). Now from the definition of 7 we obtain x(7(n)) = —x(n).
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3. ESSENTIAL NUMBERS

In the previous section we have introduced an injective map 6 : I'(Q/Z) — N, the image of that is a
fundamental domain for the action of monoid T on N (Theorem 2.5). Here we give a simple description
of this set of integers. The next definition agrees (as Lemma 2.4(b) shows) with the notation we have
used in Theorem 2.5.

Definition 3.1. For v € T(Q/Z) let 8(v) be the lowest number in 7~ 1(). A number of the form ()
is called an essential number. If F(0(vy)) = k, then () is called an essential k-number. If v € Q/Z,
then () is called a F'(ibonacci)-prime number.

The set of essential k-numbers is denoted by £(k), and by £ = ;5 €(k) is denoted the set of all
essential numbers. Theorem 2.5 implies that any n € £ may uniquely be represented as a *-product of
the F-primes.

Lemma 3.2. Let (k) = #E(k). Then ¥(1) =1 and V(k) satisfies recurrence (1).

Proof. The set £(k) is finite, since it is in a bijective correspondence with 6=!(k). Let r > 1 be an
integer and let

T(k,r) = {a1/b1 % - *as/bs € 6 *(k),s € N: b, = 1}
Then I'(k,r) # 0 iff r|k. In this case obviously #I'(k,r) = ¥(k/r)p(r). Since I'(Q/Z) is a free monoid,
we have I'(k,r1) NT'(k,r2) = 0 for r1 # ro. Therefore
k)= > #T(kr)= D U(k/r)e(r)
1<r<k,r|k 1<r<k,r|k
The proof is completed. O

Remark 3.3. To get an idea on the behavior of ¥(k), let us notice that for a prime p and for the
distinct primes p1,...,p,n we have

") =@E-1)2p-1"",  ¥(p1...pm)=Bm) (pr—1)...(pm — 1)
where B(0) =1 and

r=0
These formulas may easily be established by induction.

The elements of sequence B(m) = {1,1,3,13,75,541,4683,47293, 545835, - - - } are known as the or-
dered Bell numbers (see [7]). The generating function for B(m) is 1/(2 — exp(z)). In general,

U(p{...p%") = Bay...an (P1- - Pm) (01 = 1) ... (pm — 1)
where By, ...am (t1, ..., tm) is a polynomial.
To explicitly describe the set of essential numbers, define a map € : A — Ps by
E(Ar X Ag X - x Ay) = {E(Al),UQd(Al)Jrl (E(AQ)), o ,O_Qd(Al)+2d(A2)+---+2d(AS,1)+sfl(E(AS))}
where

dlat,...,aq) =a1+ -+ oy —q, ofin, ..., i ={in+1,...,iq+ 1}
elar,ae,...,aq) ={2d(a1) + 1,2d(o, a0) + 1,...,2d(c1, 02, . . ., tg) + 1}
Theorem 3.4. (a) Let v = g1 *---*%gs € [(Q/Z) and s # 0. Then 0(7) = fo(c(+))-

(b) A number n € N is essential iff either n =0, or A(pu1(n)) =1 and p1(n) > 3.
(c) A number n € N is essential iff n = |m7| + |m7?], (m € N).
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Proof. Claim (a) follows from the definitions of maps Z,V and p and Lemma 2.4(b). Claim (b) is a
direct corollary of Lemma 2.4(a).

Let us prove (¢). Formula 72 = 7 + 1 implies that |m7] + |m72] = 2|m7] + m. Let m > 0. It
is well known (see [2]) that [m7] = fu (m)4+1 + + fuc(m)+1 — /\(ul( )) Therefore 2|m7| +m =
fu1(m)+3 e fuoo(m)-l-S - 2)\(#1(721)) Since fu1 (m)+3 — 2=fs+fs+-+ ful(m)+2a we obtain

omr| +m = Junmys + -+ fus(m)+3 ?f A(p1(m)) =0 (12)
fa+fs 4+ 4 furmy+2 + fusmy+s + -+ fuwmy4s i A(ui(m)) =1

Thus M(p1(2|m7| +m)) =1 and p1(2|m7| +m) > 3. Then 2|m7] + m € € by heading (b).

Contrary, let n € €. Then u1(n) > 3 and A(u1(n)) = 1 by heading (b). Let m = fi, +---+ fi
where a and [, are defined as follows.

If 411(n) = 3 then a be a maximal © € [1, oo (n)] such that p,(n) — pr—1(n) = 2 for all r < a and
I = Ma(n) - 27lr = Na-l—r—l(n) -3, (T‘ =23,.. wMoo(n) —a+ 1)

If py(n) >3, then a =0 and I, = pup(n) =3, (r=1,2,..., tec(n)).

Then formula (12) shows that 2|m7| + m = n. 0

poo(n)—a?

Remark 3.5. Formula (12) shows that |m7] + [m7?] is F-prime iff A(u2(m)) = -+ = At (m)) = 0.
In particular, [m7] + |[m72] is not F-prime if fo,_; < m < fa, and it is F-prime if m is a Fibonacci
number.

Since 6 : T'(Q/Z) — & is a bijective map, the set of essential numbers & inherits the monoid structure
of I'(Q/Z). Theorem 3.4(a) implies that for ni,ne € € the monoid multiplication on £ has a form

ny *ng =ny + O"uoo(nl)(TLQ)

where 0(0) = 0 and o(n) = fo(z(n)). For example, 11 € £(3) and 29 € £(5). Then 11 x 29 = 333 and
29 % 11 = 351. From our results it follows that F(ny *ny) = F(n1)F(na).
On the other hand, map 6 equips I'(Q/Z) with a structure of totally ordered set as follows:

Definition 3.6. Let v1,7v2 € I'(Q/Z). We say that v1 < 2 if 0(y1) < 0(72).

For instance, 3/5 < 2/5 < 1/5 < 4/5 according to the sequence of essential 5-numbers 24 < 29 <
55 < 87. Another example is 1/2%1/3 <1/3%1/2 <2/3%1/2 <1/2%2/3 <1/6 < 5/6 according to
the sequence of essential 6-numbers 37 < 42 < 45 < 50 < 144 < 231.

Theorem 3.4(a), in particular, provides an algorithm to find the minimal essential k-number. Namely,
it is sufficient to find the minimal word ~ of finite set p~1(k) € I'(Q/Z) with respect to the order <. Then
fe(e(y)) is the minimal essential k-number. The number of necessary calculation steps is proportlonal to
U(k). As Remark 3.3 shows, it grows very rapidly with the number of prime factors of k. In Section 6
we shall see, how this algorithm may be enhanced.

4. STABILITY AND UPPER ESTIMATION FOR F'(n)

In this section first we show that the maximal essential k-number equals to for — 2. Together with
Theorem 2.5 this leads to a ”Fibonacci stable random distribution” of n € N with F'(n) = k (Theorem
4.4). The second result of the section is the estimation F(n) < y/n+ 1 (Theorem 4.5). It shows, in
particular, that the minimal essential k-number > k? — 1. In what follows a key role plays

Lemma 4.1. Let A= (aq,...,a4) € Az and let d(A) =oq + -+ g — q. Then

d(A) + 1< D(A) < faaysn (13)
In these inequalities the identities hold iff either g =1 or A = (2,2,...,2) for the lefthanded inequality,
and iff o,y <3 and ay = -+ = ag_1 = 3 for the righthanded one.

Proof. Our proofs of the left- and righthanded inequalities (13) are separated although the arguments
in both cases are similar. We establish Lemma 4.1 by induction on ¢q. For ¢ = 1 all the claims are
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obvious. Let ¢ > 1. In the proof will be used two easily verifiable identities

D(ar,. . yam,2,...,2) =D(a1,...,am) +rD(a1,...,qm—1,m — 1) (14)
——
r times

D(an,...,aq) = D(ai,...,0q-1,2) + (ag — 2)D(a1, ..., 0q-1) (15)

We first prove the lefthanded inequality (13) for A = (a1, ..., Qm,2,...,2), where 2 is repeated r > 0
times and a,, > 2 if m # 0, (m +r = ¢q). For m = 0 formula (14) implies that D(A) = d(A) + 1. Let
m > 0. Since m < g and «,, — 1 > 2, we can apply the inductive assumption. Then the righthanded
side of (14) is greater than (r + 1)(aq + -+ am —m)+1>a1+ -+ apm+r—m+1=d(A) + 1.

Assume now that oy > 2. Then formula (15), inductive assumption and already established case
o, = 2 imply that the righthanded side of (15) is greater than (o —1)(a1 + -+ +ag—1 — g+ 1) +ay >
a1+ -+ ag—q+1=d(A) + 1. The proof of the lefthanded inequality (13) is completed.

To prove the righthanded one, first notice that for integers a,r > 0 we have

Jatr+1 2 far1+1fa (16)

where the identity holds iff » = 1. Really, fotr+1 = fa+1 + (fa + fat1 + -+ fatr—1) = far1 +7fa

Let now A = (a1,...,am,2,...,2), where 2 is repeated r > 0 times and ., > 2if m # 0, (m+r = q).
If m = 0, then D(A) = d(A) +1 < fga)4+1 and the identity holds iff d(A) = 2. In this case A = (2,2).
Let m > 0. Then formula (14) and inductive assumption imply that the righthanded inequality (13) is
a corollary of (16) when a = a1 + ag + - -+ + au, — m. The identity on it holds iff » = 1. In this case
ap <3, = - = g1 = 3,0y = 2.

Finally, let oy > 2. Then formula (15), inductive assumption and already established case oy = 2
imply that the righthanded inequality (13) is a corollary of (16) when a = a3 + -+ + ayg—1 — ¢+ 2 and
r = aq — 2. The identity on it holds iff &y < 3,00 =--- =04 = 3. O

Lemma 4.2. Let n be an essential number and let V(Z(n)) = Ay x -+ x As. Then

N < fad(A) - t2d(A)Fst1 — 2
where the identity holds iff s =1 and Ay = (2,...,2). In this case n = fyqim(a,)+2 — 2-

Proof. Since n is an essential number, we have n = f.(4,x...xa,) by Theorem 3.4. If (A; x --- x A,) =
{#1,...,1q}, then 41 is an odd number and i, = 2d(A41) + - - - + 2d(As) + s. But i1 > 3 because A; € A,
by Theorem 3.4. Therefore

2] 22 |

n < Z fiq—2i = fig+1 — 3+ Aiq)

i=0
In this inequality the identity holds iff i; = 3,4 and i, = i1 +2a, (a = 0,1,...,¢—1). Since a; is an odd
number, we have a1 = 3. In this case {i1,42,...,i4} = {3,5,...,2¢ + 1} is a simple 2-partition. Thus
s=1and 4 =(2,...,2). O

Corollary 4.3. The maximal essential k-number equals to far, — 2 =60((k — 1)/k).

Proof. Let n be the maximal essential k-number and let V(Z(n)) = A3 X -+ x As. Since 4; € Ag
(Theorem 3.4), we have d(A;) > 0. Therefore Lemma 4.1 shows that

k=D(A)-- D(A) > (d(A) + 1) (d(A) +1) > d(A) + -+ d(A,) + 5

Now from Lemma 4.2 we obtain that n < fgd(A1)+...+2d(AS)+s+1 —2 < fop—st1 — 2 < fop, — 2. Since n
is a maximal essential k-number and for, — 2 € £(k), we conclude that n = fo, — 2. O

Theorem 4.4. Let L,.(k) = #{n: fr <n < fr41,F(n) = k}. Then for r > 2k the number L,(k) does
not depends on r. Let L(k) = lim, o L.(k). Then L(1) =1 and L(k) = 2¥(k) for k > 1.

Proof. Let n € £(k). Since A(u1(n)) = 1 by Theorem 3.4(b), formulas (9) and (11) show that for m > 0
too(S™(n)) = piso(n) + 2m, Hoo(W(S™(n))) = poo(n) +2m +1
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Thus for any r > poo(n) the interval [f,, fr+1) contains one and only one number from the set N(n) =
{n,w(n),S(n),w(Sn)),...,S™(n),w(S™(n)),...}, since z € [fr, fr+1) N i poo(z) =1

Therefore, thanks to Lemma 3.2 and Corollary 4.3, we see that for r > 2k — 1 interval [f, fr4+1)
contains exactly W (k) numbers from the set Ni = U, ce 1) N(n).

Let N(k,r) = Ng([fr, fr+1). Since n € &, we obtain 7(N(k,r)) C N(k,r + 1). Thus for r > 2k
interval [f,, fr+1) contains exactly 2¥ (k) numbers with F(n) = k: N(k,r)J7(N(k,r —1)). O

Theorem 4.5. F(n) < v/n + 1. In this inequality the identity holds iff n = f?> — 1, (r € N).
Proof. Tt is sufficient to establish the inequality only for the essential numbers. Let V(Z(n)) = A4y x
- x As. We claim that F?(n) < n + 1, where the identity holds iff s = 1 and either A; = (2, ey 3)

or A1 = (3,3,...,3). In the last case we have respectively n = f3 + fr + - + fig-1 = f3 34 — 1, or
n=fs+ fo+--+ figr1 = f3;+1 — 1. Thus Theorem 4.5 follows from this claim.

Since n is essential, we have A; = A = (aq,...,aq) € Az (Theorem 3.4(a)). For s = 1 we shall prove
the claim by induction on ¢. For ¢ = 1 it is equivalent to inequality a?® < faa—1 + 1, where the identity
holds iff & = 2 or 3. This is easily verified by induction on a.

Let ¢ > 1. Since n = faq, (a)+1+ - + fad,(a)+1 (Theorem 3.4(a)), the inductive assumption implies
that it is sufficient to establish the inequality

D*(aq,...,aq) — D*(ay,...,0q-1) < Jad(ay+1 (17)
where d(A) = dy(A). In the proof we shall use two identities
fato = fafo + fa—1fo-1 (18)

D ) D(aq,...,0q-1,04 — 1)+ D(1,...,0q9-1) ifag >3
Qa1,Qo,...,0,) = i
b a D(oq,...,aq-1) + D(a,...,0q-1 — 1) if g =2

the first of which is well known and the second one is directly verified.
Let ay > 3. Then

(19)

by (19
D?*(aq,...,aq) — D*(aq,...,0q-1) v

by Lemma4.1
D(aq,...,0q-1,04 — 1)(D(a1, s 01,00 — 1) +2D(au, ... ,aq,l)) <

since ag >3 by (18)

facy(faay+2 faay—ag+2) < faay(faa)y+2 facay-1) = faca)(facay+1+faay—1) faaca
The identities here hold iff oy = 3 and D(ay,..., 41,04 — 1) = fg(a). Then Lemma 4.1 shows that
ap=2ora;=3and gy =az3 = =aq_1 =3.

For oy = 2 we have

by (19
D2(a1,...,aq)—Dz(al,--waq—l) v 09

by Lemma4.1
D(Ozl7 cee 01 — 1)(D(O[1, sy, Og1 — 1) + 2D(O[1, e ,Oéqfl)) §

by (18)
Facay—1(Facay—1 + 2 facay) = Facay—1(Ffaca) + faays1) < faay—1facay + facayfacayrr = fracayr

This completes the proof for s = 1.
Let s > 1. Using the inductive assumption, we obtain

D?*(Ay)...D*(A) < D*(A1)(N(e(Az x -+ x Ag)) +1) < D*(A;)N(e(Ag x --- x Ag)) + N(e(A1)) + 1
To complete the proof it is sufficient to show that the righthanded side of this expression is less than
N(e(Ay, Ay x -+~ X A)) +1=N(e(A))) + oAV (N(e(Ay x -+ x Ay))) + 1

Let N(e(A1)) = fi, + -+ fi, and N(e(Aax- - - x Ag)) = f]1+ —i—f]b Then iy > 3,d(A1)+1 = (ig+1)/2
and 2d(A;) + 1 = i,. From Lemma 4.1, we know that D?(4;) < f .+1)/2- Therefore the needed claim
follows from the inequality f2 w2t ) < fivia + —|—f3b+1a But f(QZJrl sofi < fiy; for odd
i =3 and any j, since fi+] fzfj+fz 1f] 1= (fz+1)/2+f(1 1)/2)f]+fz 1f] 1 by formula (18) U
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5. HOw OFTEN x(n) =0

This section concerns an investigation of function x(n). The main result here is that the natural
density of whose n € N, for which x(n) = 0, equals to 1.

Lemma 5.1. Let n,r,a € N and r > 1. Then

x(n)=(=1)"x(fr+2—2-n) if ne[fr -1 frg1-1] (20)
X(n) =0 if ne [2fr -1, frfl + fr+1 — 1] (21)
x(n) =x(n+ fo+ far2) if ne0,f,—1] and a>=r (22)

Proof. Proof of formula (20): Clear is that n € [f, — 1, fr41 — 1] iff froa—2—n € [fr — 1, fry1 — 1].
Since f1 + fo+---+ fr = fry2 — 2, to each F.p. with ¢ parts n = f;, +--- + fi, = fr corresponds the
F.p. of frio —2—n = f12,. 1 With (r — ¢) parts and vice versa. That, obviously, implies (20).

Proof of formula (21): Let Z(n) = {i1,42...,4q}. Then i; = r+1 by Lemma 1.5(a) since fr41 —1 <
n< freo—1. Ifig 1 <r—4,thenn=f;, +---+fi,_, + fi, < fr—3—1+ fr41 < 2f, —2 in contradiction
with our assumption n > 2f, — 2. Thus either iy =r —3 or iq—1 =7 —2. If 441 = r — 3, then
n< freo+ frz1 —1=2f.— 1. Hence n = 2f,. — 1. Applying Theorem 1.4, we conclude that

x(n) = DV(Z(2f, — 1));-1) = D(1,2,...,2,3;=1) =0

If ig_1 = r — 2, then i, is a simple component of Z(n), and oy = 2. Therefore x(n) = 0 by Theorem
14.

Proof of formula (22): poo(n) <7 —1 by Lemma 1.5(a). Let V(Z(n)) = (a1, @2, ..., a4). Obviously
s —1,00 +2) ifps(n)=r—landa=r
(a1,...,0q, Qg+1,2) otherwise.

V(Z(n+fa+fa+2)) - {(ah'

Since in the first case the coordinates of associated vectors of n and n + f, + fa42 have the same parity,
formula (22) follows from Theorem 1.4. In the second case (22) follows from the recursions (4). O

Corollary 5.2. (a) Let h(r) =#{n € Z:0<n< f, —1 and x(n) =0}. Then h(0) = h(1) = h(2) =
h(3) =0,h(4) =1 and for r = 5 we have

h(r)= fr—s + 14+ h(r—1) +2h(r —4) (23)
(b) Let n and k be the naturals such that x(n+1) = x(n+2) = --- = x(n+ k) = 0, and x(n) #
0,x(n+k+1) #0. Then k = fr(ny +1 for some r(n) = 0. Moreover, for any k = f, + 1 such n is

exists.

Proof. Proof of (a): For r < 5 the claim is obvious. Let r > 5. The number h(r) — h(r — 1) is
a quantity of n € [f,—1 — 1, fr — 1] with x(n) = 0. Identity (21) says that x(n) = 0 for all n €
2fr—2—1,fr—3+ fr—1 — 1] C [fr—1 — 1, fr — 1]. The quantity of these numbers equals to f,_5 + 1.
Formula (20) implies that the quantities of n with x(n) = 0 in intervals [f,—1 — 1,2f,—2 — 2] and
[fr—s + fr-1, fr — 2] are equal. Let n € [fr—s+ fr—1,fr —2]. Then n = ny + fr—3 + fr—1, where
ny € [0, fr—4 — 2]. Formula (22) shows that x(n) = x(n1). Since x(fr—4 — 1) # 0, we obtain

#nefror—1,2fr2=2lU[fiz+ fro1, fr — 2] 1 x(n) = 0} = 2h(r — 4)

Proof of (b): The claim holds for n < f5 — 1. Assume that it holds for n € [0, f, — 1), (r = 5). Let
nelfr—1,fr+1—1). If n=2f_1 —2 then x(n) =1, x(n+ 1) = 0. In this case we take r(n) =r — 4
as it follows from (21). Otherwise either n € [f, —1,2f,—1 —2) or n € [fr—2 + fr, fr41 — 1). In view of
(20) it is enough to consider only the second case. Then n = ny + fr.—2 + f., where nq € [0, fr—3 — 1).
Formula (22) shows that x(n) = x(n1). Since x(fr—3 — 1) # 0, the claim follows from the inductive
assumption. The existence follows from formula (21) O

Theorem 5.3. Let E(k) =#{ne€Z:0<n<k and x(n) =0}. Then limy_,o E(k)/k=1.
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Proof. The sequence {E(k)} is a non decreasing one and { E(f,—1)} = {h(r)} its increasing subsequence.
To prove the theorem it is sufficient to establish that lim, . h(r)/(fr — 1) = 1.
Let H(t) =Y o2, h(r)t". A routine calculation, based on recurrence (23), leads to expression

B t4(2t2 — 1) _
H(t) = -1 +t—1)2 —22+2t—1)

1 1 1 82 —2t+3

1—t—¢t2 +2(t—1) a 14(t+1)+7(2t3—2t2+2t—1)

It implies that
1
Br) = f; = 1+ = (34 M) + artf + asth + ast)

where t1, ta,t3 are the roots of equation ¢ — 2t2 + 2t — 2 = 0, and a1, as, az are some constants (see [2],
Sec.7.3). From Cardan’s formula, we obtain

B2 +26—2 244332 2432 3
= —7+— ta3 = + V=3 h =\/1743v33
1 34 ) 2,3 60 63 ; where [ +
It is easy to verify that |t1 23] < 7 ~ 1.61, (t1 = 1.54,|t2 3] = 1.13). Now Binet’s formula implies that
lim, 00 h(r)/(fr — 1) = 1. O

Remark 5.4. One can show that the quantity of sequential n with x(n) # 0 does not exceed 4.
Moreover, for such sequences of n only the following sequences of x(n) of maximal length appear:

{1}, {1}, {1, -1}, {-1,1},{1,1, -1}, {-1,—-1,1}, {1, —-1,—1},{-1,1,1},{1,-1,—-1,1},{-1,1,1, -1}

6. ON THE MINIMAL ESSENTIAL k-NUMBERS

Let M (k) be the minimal essential k-number. At the end of Section 3 we have described an algorithm
to find M (k). In the present section we discuss how one can enhance this algorithm by increasing the
monoid T to some bigger monoids, which are also act on N, continuing the action of T and such that
function F still be invariant with respect to the action of them.

Let 35 be the symmetric group of all permutations of {1,2,...,s}. (By definition, 3¢ = {1}). Let
I's C T'(Q/Z) be the set of all elements g1 *- - -xgs € T(Q/Z), (¢; € Q/Z, g; # 1). Group X5 acts on I's by
@(g1 %+ *Gs) = Gew(1) * '+ * Ju(s), (@ € Xs). This action induces an action of the group ¥ = [T, %s
on I'(Q/Z) =152 Ts: for w =1 _;wm € ¥ and vy € I', w(y) = ws (7).

On the other hand, let U(Z/bZ) be the group of units of the ring Z/bZ and let i : Q/Z —
112, U(Z/VZ) be a bijective map, defined by i(a/b) = a mod b € U(Z/bZ). (Keeping in mind this
identification, instead of i(a/b) we may write a/b € U(Z/bZ).) The group of automorphisms of the set
U(Z/VZ) is ¥,y Thus the group of all automorphisms of the set Q/Z C I'(Q/Z), commuting with 0,
is E* = Hl?il E@(b).

Let G = ¥ x H, where H C X, is asubgroup. The formula (@ xh)(g1%- - -*gs) = h(gm))* - -*h(gm(s))
defines an action of G on I'(Q/Z). Let I'¢(Q/Z) be the corresponding set of orbits of G, and let
pc : T'(Q/Z) — T'¢(Q/Z) be a natural projection. Then there is a unique map d¢ : I'¢(Q/Z) — N,
such that the diagram

N —">T1(Q/Z) —~T¢(Q/Z)

RN

N,
is commutative.

For v € T(Q/Z) let G() C T'(Q/Z) be the G-orbit of v. Obviously, the operation G(v1) * G(72) =
G(71 * 72) is well defined on T'¢(Q/Z). It supplies T'¢(Q/Z) with structure of a commutative monoid,
freely generated by the set of orbits of H on Q/Z. Then the map pg : T'(Q/Z) — T'c(Q/Z) is a
homomorphism of monoids. Let 7g = pg -7 : N — T'¢(Q/Z).



NOTES ON FIBONACCI PARTITIONS 15

Definition 6.1. For v € I'¢(Q/Z) let 6c(7) be the lowest number in 75" (). A number of the form
Oc(7) is called a G-essential number. If F(0a(vy)) = k, then 0g(7) is called a G-essential k-number. If
v € Q/Z, then 0(v) is called Fg-prime number.

The set of G-essential k-numbers is denoted by Eg(k), and by &g = U5, E(k) it is denoted the set
of all G-essential numbers. It inherits the multiplicative structure of I'¢(Q/Z).

Let w(y) be a minimal element of p;'(y) with respect to the order <. Then fc(v) = 6(w(v)), and
thus the multiplication in £z has a form

Oc(m) ¥ 0c(72) = 6(wp (wn) * wn))) (24)

Each natural b > 2 defines ¢y (b) Fxnx g-primes, where ¢g(b) be the number of orbits of restriction H
to U(Z/VZ).

The next statement, that is directly follows from Theorem 2.5, shows, how to raise up the action of
G on I'(Q/Z) to an action on N.

Proposition 6.2. Let G be a group of automorphisms of the set T'(Q/Z) such that 60G(y) = 0(y) for
all v € T(Q/Z). Then the formula £(T(0(v))) = T(0(4(7))), (€ € G) defines an action of group G on
N, that commutes with the action of T. Thus, in our assumptions, on N is uniquely defined an action
of monoid T = T x G. For each orbit x C N of this action there exists a unique y(z) € T'¢(Q/Z)
such that © = Tg(0c(y(x))). This correspondence is a bijection between the set of orbits of T and the
set To(Q/Z). The natural projection N — I'¢(Q/Z) coincides with map ng = pg - w. In particular,
F(Ta(n)) = F(n).

Let, for instance, H = {1}. It is natural to call the elements of s, the commutative essential numbers.
The sets of Fx-primes and F-primes are obviously the same. One can write the multiplication of £ in
a more visible form than in general case. To describe it, let us introduce some linear order in Q/Z.

Definition 6.3. Let z = (z1,...,2¢,),¥y = (Y1,---,Yq), & # Yy be the vectors with natural coordinates.
If g1 # g2, let us add to the left side of the shorter vector max(q1, ¢2) — min(q1, g2) coordinates, each of
them equals to the infinite big integer co. Then we may suppose that both vectors z,y have the same
dimension ¢ = max{q1,¢2}. Let r = min{m | xg—m # Yg—m . We say that z <y if z,—, < y4—r, and
x > y otherwise. Let g1,g2 € Q/Z. We say that g1 <0 g2 if ¢(g1) < ¢(g2), and for the F-prime essential
numbers ny = 0(g1),n2 = 0(g2), n1 <A n2 if g1 < go.

For instance, ¢(3/8) = (3,3) < ¢(1/3) = (3). Since 6(3/8) = 63 and 0(1/3) = 8, we obtain 63 < 8.

It is not difficult to prove the following claim.
Theorem 6.4 (”"Main theorem of arithmetic” for ). A number n is a commutative essential number
iff it has a form n=ni" x - xnim where nqy < -+ I ny, are F-primes.

Denote the product of numbers n1,n9 in monoid £x by nj o ne. Theorem 6.4 together with formula
(24) shows how to find this product. For example, for 37 € £x(6) and 92 € Ex(8), 37092 = 4341, whereas
37+92 = 4362 and 92%37 = 4650. Another example is 8 € £5(3),63 € £x(8). Then 8063 = 63+8 = 673,
whereas 8 * 63 = 707.

Theorem 6.4 implies that in algorithm for finding M (k) from Section 3 it is sufficient to test only
the commutative essential k-numbers. Then the number of calculation steps is proportional to Uy (k) =
#Ex (k). Tt is not difficult to show that for a prime p,

. ~ (") + ki — 1
Us(p") = Z H ( ki
k1+2ko+-Frko=r i=1 v

(ki > 0 are integers). For example,

() = Sp(p— 1), Us(®) = gplp— D(13p—5), Us(p)) = ol — (T3 — 45p+ 14)

By induction on m it is easy to show that for the distinct primes p, ..., p, we have

m—1
Us(p1...pm) =b(m) (p1 —1)...(pm — 1), where b(m)= Z (m R 1) b(r), (b(0)=1)

T
r=0
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The elements of sequence b(m) = {1,1,2,5,15,52,203,877,4140, - - -} are known as the Bell numbers
(see [7]). The generating function for b(m) is exp(exp(z) — 1). In general,

Us(p] ... p&") =bay,..am (P1s-- -y Pm) (p1 — 1) ... (P — 1)

where bq, ... a,. (t1,-..,tm) is a polynomial on ¢;’s. From these formulas one can see that the possibility
to use in our algorithm only the commutative essential numbers is considerably decreasing the number
of calculation steps.

The first twenty terms of Uy (k) are 1,1,2,3,4,4,6,7, 10,8, 10, 10,12,12,16, 18,16, 19, 18, 24.

Definition 6.5. We say that k is a primitive number if M (k) is F-prime. In this case we say that
M (k) is an F'-primitive number.

Any prime number is obviously primitive. But there are many non prime primitive numbers. For
instance, Theorem 4.5 implies that all Fibonacci numbers are primitive. One can show that the numbers

foq—1 + foqr1,  foq + foqr2,  foq—1 F foq3 + foqrss  foq + foqra + fogre, (g=1)

are also primitive (as well as many others).

The first twenty primitive numbers k, ordered by the values of M(k), are 1,2,3,5,7,8,11,13,18,
17,19,21,23,29,27,34, 31, 37,41,47. The corresponding sequence M (k) of F-primitive numbers is 0, 3, 8,
24,58,63,152,168, 401, 406, 435,440,1011, 1050, 1066, 1155, 1160, 2647, 2736, 2752.

If it is already known that k is primitive, then we can find M (k) in less than (k) steps, that is much
faster for the non primes k£ than by using the above algorithm.

One can show that for any k there is a unique representation

M(k)=M(m) oo M(my) (25)

where 71,...,m, are the primitive numbers. That reduces the calculation of M (k) to the following
questions. What is the set of primitive numbers? How to decompose an arbitrary minimal essential
number in o-product of F-primitives? Unfortunately, I have no conjectures concerning the possible
answers.

Let n > 0 be an F-primitive number. Then 7(n) € Q/Z\ {0} C (0,1). Since the Fibonacci numbers
are primitive and

q—1 q
m(f3,—1)=(23,...,3) = fjffl, m(f1—1)=(3,....3) = J2g-1
2q

the numbers 771 and 772 are the accumulation points for the set of fractions m(n) C (0,1). It would be
interesting to know if there exist other accumulation points for the set m(F — primitives)? An answer
to this question may clarify the nature of primitive numbers.

A computer experiment shows that for the F-primitive n, w(n) often (but not always) is the best
rational approximation either to 771 or to 772 with denominator F'(n). The calculations also show that
0.2 < 7(n) < 0.8 for any F-primitive number n < 10°.

B f2q+1

7. ON THE GRAPHIC OF F'(n)

The included plot is a graphical presentation of F(n) in interval [1, fo¢ — 1]. From Theorem 1.4 it
follows that
1 if n=f—1 and »r>0
F(n) = :
2 if n=2f,—1 or n=f_1+ fry1—1 and r>1

The numbers f. — 1,2f, — 1, fr—1 + fr+1 — 1 are the bearing points for numerous symmetries of the
functions F' and x. For instance, if f, — 1 < n < fr41 — 1, then F(n) = F(fr42 — 2 —n).

On the plot the thick points on the dashed vertical lines have coordinates (f.—1, 1); on the continuous
vertical lines they have coordinates (2f, — 1,2) and (fr—1 + fr+1 — 1,2). The upper curve is defined by
the equation F(n) = v/n + 1. The thick points on it have coordinates (f2 — 1, f,).
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Let C, be the set of vertices of the convex hull of points (n, F'(n)), where n € [f, — 1, fr4+1 — 1]. One
can show, that C, includes the points (¢, F'(c)), where ¢ is one of the numbers

fere 2o fa-1-g2 (<< |55

The set C,. coincides with this set of points if A(r) = 1. For A(r) = 0 the set C, in addition includes the
points (¢, F(c)), where ¢ is one of the numbers

fr=1=2-(=1)"+ fofgr1, or frox=142-(=1)" = fofora (3 SAS g B 2)

The graphic of F'(n) reminds some ”fractal” pictures. I would like to propose a conjecture, concerning
a "fractal” behavior of the quantity of partitions, all parts of which belong to a linear recurrent sequence.

Definition 7.1. Let ® : N — N be a function. For v € ®(N) let Ng(v) = #{n € N : &(n) = v}.
Assume that ®(N) = {vy,ve,...} is an infinite set of the distinct numbers. We say that ® is a fractal
function, if lim, .| Ng(v,)| = oo. If in addition Ng(v) < oo for all v € ®(N), then we say that ® is a
finite fractal function. Otherwise it is an infinite fractal function.

For instance, our results imply that F'(n) is an infinite fractal function.

Conjecture 7.2. Assume that the linear recurrence

Nitre1 = AMeNigr + Ar—1Nigr—1 4+ -4+ Aong, (0 20,X0,..., A €Z)

for some initial values ni,ns,...,n,. defines an infinite increasing sequence of the natural numbers
S ={ni,nz,...}. Let Pg(n) be a quantity of all partitions of n, the parts of which belong to S. Assume
that the polynomial fs(t) = L Nt — At — o — g s irreducible over Q, and that r > 1. Then

®gs(n) is a finite fractal function.
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