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ENUMERATION OF CONCAVE INTEGER PARTITIONS

JAN SNELLMAN AND MICHAEL PAULSEN

Abstract. An integer partition λ ⊢ n corresponds, via its Ferrers dia-
gram, to an artinian monomial ideal I ⊂ C[x, y] with dimC C[x, y]/I = n.
If λ corresponds to an integrally closed ideal we call it concave . We
study generating functions for the number of concave partitions, unre-
stricted or with at most r parts.

1. concave partitions

By an integer partition λ = (λ1, λ2, λ3, . . . ) we mean a weakly decreasing
sequence of non-negative integers, all but finitely many of which are zero.
The non-zero elements are called the parts of the partition. When writing
a partition, we often will only write the parts; thus (2, 1, 1, 0, 0, 0, . . . ) may
be written as (2, 1, 1).

We write r = 〈λ〉 for the number of parts of λ, and n = |λ| =
∑

i λi;
equivalently, we write λ ⊢ n if n = |λ|. The set of all partitions is denoted
by P, and the set of partitions of n by P(n). We put |P(n)| = p(n). By
subscripting any of the above with r we restrict to partitions with at most
r parts.

We will use the fact that P forms a monoid under component-wise addi-
tion.

For an integer partition λ ⊢ n we define its Ferrers diagram F (λ) =
{

(i, j) ∈ N2 i < λj+1

}

. In figure 1 the black dots comprise the Ferrers dia-
gram of the partition µ = (4, 4, 2, 2).

Then F (λ) is a finite order ideal in the partially ordered set (N2,≤), where
(a, b) ≤ (c, d) iff a ≤ c and b ≤ d. In fact, integer partitions correspond
precisely to finite order ideals in this poset.

The complement I(λ) = N2\F (λ) is a monoid ideal in the additive monoid
N2. Recall that for a monoid ideal I the integral closure Ī is

{ a ℓa ∈ I for some ℓ ∈ Z+ } (1)

and that I is integrally closed iff it is equal to its integral closure.

Definition 1. The integer partition λ is concave iff I(λ) is integrally closed.

We denote by λ̄ the unique partition such that I(λ̄) = I(λ).

Now let R be the complex monoid ring of N2. We identify N2 with the set
of commutative monomials in the variables x, y, so that R ≃ C[x, y]. Then
a monoid ideal I ⊂ N2 corresponds to the monomial ideal J in R generated
by the monomials

{

xiyj (i, j) ∈ I
}

. Furthermore, since the monoid ideals

of the form I(λ) are precisely those with finite complement to N2, those
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Figure 1. µ and µ̄

monoid ideals will correspond to monomial ideals J ⊂ R such that R/J has
a finite C-vector space basis (consisting of images of those monomials not
in J). By abuse of notation, such monomial ideals are called artinian, and
the C-vector space dimension of R/J is called the colength of J .

We get in this way a bijection between

(1) integer partitions of n,
(2) order ideals in (N2,≤) of cardinality n,
(3) monoid ideals in N2 whose complement has cardinality n, and
(4) monomial ideals in R of colength n.

Recall that if a is an ideal in the commutative unitary ring S, then the
integral closure ā consists of all u ∈ S that fulfill some equation of the form

sn + b1s
n−1 + · · · + b0, bi ∈ a

i (2)

Then a is always contained in its integral closure, which is an ideal. The
ideal a is said to be integrally closed if it coincides with its integral closure.

For the special case S = R, we have that the integral closure of a mono-
mial ideal is again a monomial ideal, and that the latter monomial ideal
corresponds to the integral closure of the monoid ideal corresponding to the
former monomial ideal. Hence, we have a bijection between

(1) concave integer partitions of n,
(2) integrally closed monoid ideals in N2 whose complements have car-

dinality n, and
(3) integrally closed monomial ideals in R of colength n.

Fröberg and Barucci [3] studied the growth of the number of ideals of
colength n in certain rings, among them local noetherian rings of dimension
1. Studying the growth of the number of monomial ideals of colength n in
R is, by the above, the same as studying the partition function p(n). In this
article, we will instead study the growth of the number of integrally closed
monomial ideals in R, that is, the number of concave partitions of n.

2. Inequalities defining concave partitions

It is in general a hard problem to compute the integral closure of an ideal
in a commutative ring. However, for monomial ideals in a polynomial ring,
the following theorem, which can be found in e.g. [6], makes the problem
feasible.
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Theorem 2. Let I ⊂ N2 be a monoid ideal, and regard N2 as a subset of
Q2 in the natural way. Let convQ(I) denote the convex hull of I inside Q2.
Then the integral closure of I is given by

convQ(I) ∩ N2 (3)

Example 3. The partition µ = (4, 4, 2, 2) corresponds to the monoid ideal
((0, 4), (2, 2), (4, 0)), which has integral closure ((0, 4), (1, 3), (2, 2), (3, 1), (4, 0)).
It follows that µ = (4, 3, 2, 1). In figure 1 we have drawn the lattice points
belonging to F (µ) as dots, and the lattice points belonging to I(λ) as crosses.

The above theorem gives the following characterization of concave parti-
tions:

Lemma 4. Let λ = (λ1, λ2, λ3, . . . ) be a partition. Then λ is concave iff for
all positive integers i < j < k,

λj < 1 + λi
k − j

k − i
+ λk

j − i

k − i
(4)

or, equivalently, if

λi(j − k) + λj(k − i) + λk(i − j) < k − i (5)

3. Generating functions for super-concave partitions

We will enumerate concave partitions by considering another class of par-
titions which is more amenable to enumeration, yet is close to that of concave
partitions.

Definition 5. Let λ = (λ1, λ2, λ3, . . . ) be a partition. Then λ is super-
concave iff for all positive integers i < j < k,

λi(j − k) + λj(k − i) + λk(j − i) ≤ 0 (6)

The reader should note that it is actually a stronger property to be super-
concave than to be concave. Unlike the latter property, it is not necessarily
preserved by conjugation: the partition (2) is super-concave, hence concave,
but its conjugate (1, 1) is concave but not super-concave.

Theorem 6. Let λ = (λ1, λ2, λ3, . . . ) be a partition, and let µ = (µ1, µ2, µ3, . . . )
be its conjugate, so that |{ j µj = i }| = λi−λi+1 for all i. Then the following
are equivalent:

(i) λ is super-concave,
(ii) for all positive ℓ,

−λℓ + 2λℓ+1 − λℓ+2 ≤ 0 (7)

(iii) for all positive ℓ,

λℓ+1 − λℓ ≥ λℓ+2 − λℓ+1 (8)

(iv) |{ k µk = i }| ≥ |{ k µk = j }| whenever i ≤ j.

Proof. (i) ⇐⇒ (ii): Let ei be the vector with 1 in the i’th coordinate and
zeros elsewhere, let fj = −ej + 2ej+1 − ej+2, and let ti,j,k = (j − k)ei +
(k − i)ej + (j − i)ek. Clearly, (6) is equivalent with ti,j,k · λ ≤ 0, and (7)
is equivalent with fj · λ ≤ 0. We have that fℓ = tℓ,ℓ+1,ℓ+2. Conversely, we
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claim that ti,j,k is a positive linear combination of different fℓ. From this
claim, it follows that if λ fulfills (7) for all ℓ then λ is super-concave.

We can without loss of generality assume that i = 1. Then it is easy to
verify that

t1,j,k =

j−2
∑

ℓ=1

ℓ(k − j)fℓ +
k−2
∑

ℓ=j−1

ℓ(j − 1)(k − ℓ − 1)fℓ (9)

(ii) ⇐⇒ (iii) ⇐⇒ (iv) : This is obvious. �

The difference operator ∆ is defined on partitions by

∆(λ1, λ2, λ3, . . . ) = (λ1 − λ2, λ2 − λ3, λ3 − λ4, . . . ) (10)

We get that the second order difference operator ∆2 is given by

∆2(λ1, λ2, λ3, . . . ) = ∆(∆(λ1, λ2, λ3, . . . )) =

= (λ1 − 2λ2 + λ3, λ2 − 2λ3 + λ4, λ3 − 2λ4 + λ5, . . . ) (11)

Corollary 7. The super-concave partitions are precisely those with non-
negative second differences.

Definition 8. Let psc(n) denote the number of super-concave partitions of
n, and psc(n, r) denote the number of super-concave partitions of n with
at most r parts. Let similarly pc(n) and pc(n, r) denote the number of
super-concave partitions of n, and the number of super-concave partitions
of n with at most r parts, respectively. For a partition λ = (λ1, λ2, . . . ) let

xλ = xλ1
1 xλ2

2 · · ·, and define

PS(x) =
∑

λ super-concave

xλ

PSr(x1, . . . , xr) = PS(x1, x2, . . . , xr, 0, 0, 0, . . . ) =
∑

λ super-concave
λr+1=0

xλ

PC(x) =
∑

λ concave

xλ

PCr(x1, . . . , xr) = PC(x1, x2, . . . , xr, 0, 0, 0, . . . ) =
∑

λ concave
λr+1=0

xλ

(12)

Partitions with non-negative second differences have been studied by An-
drews [2], who proved that there are as many such partitions of n as there
are partitions of n into triangular numbers.

Canfield et al [4] have studied partitions with non-negative m’th differ-
ences. Specialising their results to the case m = 2, we conclude:

Theorem 9. Let n, r be denote positive integers.

(i) There is a bijection between partitions of n into triangular numbers
and super-concave partitions.



ENUMERATION OF CONCAVE INTEGER PARTITIONS 5

(ii) The multi-generating function for super-concave partitions is given by

PS(x) =
1

∏

∞

i=1

(

1 − ∏i
j=1 x1+i−j

j

)

= 1 + x1 + x1
2 + x1

3 + x1
4 + x1

2x2 + x1
5 + x1

4x2 + x1
3x2 + . . .

(13)

(iii) The multi-generating function for super-concave partitions with at most
r parts is given by

PSr(x1, x2, . . . , xr) =
1

∏r
i=1

(

1 −
∏i

j=1 x1+i−j
j

) (14)

(iv) The generating function for super-concave partitions is

PS(t) =

∞
∑

n=0

psc(n)tn =

∞
∏

i=1

1

1 − t
i(i+1)

2

(15)

and the one for super-concave partitions with at most r parts is

PSr(t) =

∞
∑

n=0

psc(n, r)tn =

r
∏

i=1

1

1 − t
i(i+1)

2

(16)

(v) The proportion of super-concave partitions with at most r parts among
all partitions with at most r parts is

r!
∏r

i=1
i(i+1)

2

. (17)

(vi) As n → ∞,

psc(n) ∼ cn−3/2 exp(3Cn1/3)

C = 2−1/3 [ζ(3/2)Γ(3/2)]2/3 , c =

√
3

12

(

C

π

)3/2 (18)

The sequence
(

psc(n)
)

∞

n=0
is identical to sequence A007294 in OEIS [8].

We have submitted the sequences
(

psc(n, r)
)

∞

n=0
, for r = 3, 4, in OEIS [8], as

A086159 and A086160. The sequence for r = 2 was already in the database,
as A008620.

3.1. Other apperances of super-concave partitions in the literature.

The bijection between partitions into triangular numbers and partitions with
non-negative second difference is mentioned in A007294 in OEIS [8], together
with a reference to Andrews [2]. That sequence has been contributed by Mira
Bernstein and Roland Bacher; we thank Philippe Flajolet for drawing our
attention to it.

Gert Almkvist [1] gives an asymptotic analysis of psc(n) which is finer
than (18).

Another derivation of the generating functions above can found in a forth-
coming paper “Partition Bijections, a Survey” [7] by Igor Pak. He observes
that the set of super-concave partitions with at most r parts consists of the
lattice points of the unimodular cone spanned by the vectors v0 = (1, . . . , 1)
and vi = (i − 1, i − 2, . . . , 1, 0, 0, . . . ) for 1 ≤ i ≤ r.

http://www.research.att.com/projects/OEIS?Anum=007294
http://www.research.att.com/projects/OEIS?Anum=086159
http://www.research.att.com/projects/OEIS?Anum=086160
http://www.research.att.com/projects/OEIS?Anum=008620
http://www.research.att.com/projects/OEIS?Anum=007294
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Corteel and Savage [5] calculate rational generating functions for classes
of partitions defined by linear homogeneous inequalities. This applies to
super-concave partitions, but not directly to concave partitions, since the
inequalities (5) defining them are inhomogeneous.

4. Generating functions for concave partitions

Theorem 10. Let r be a positive integer. Then

PCr(x1, . . . , xr) =
Qr(x1, . . . , xr)

∏r
i=1

(

1 − ∏i
j=1 x1+i−j

j

) (19)

where Qr(x1, . . . , xr) is a polynomial satisfying

(i) Qr(x1, . . . , xr) has integer coefficients,
(ii) Qr(1, . . . , 1) = 1,
(iii) all exponent vectors of the monomials that occur in Qr are weakly de-

creasing, and
(iv) Qr(x1, . . . , xr) = Qr+1(x1, . . . , xr, 0).

Furthermore,

PC(x) =
Q(x)

∏

∞

i=1

(

1 − ∏i
j=1 x1+i−j

j

) (20)

where Q(x) is a formal power series with the property that for each ℓ,
Q(x1, . . . , xℓ, 0, 0, . . . ) = Qℓ(x1, . . . , xℓ); in other words,

Q = 1 +

∞
∑

i=1

(Qi − Qi−1)

Proof. Let A be the matrix with r columns whose rows consists of all trunca-
tions of the vectors ti,j,k introduced in the proof of Theorem 6, for i < j < k,
k < r +2 For example, if r = 3 and if we order the 3-subsets of {1, 2, 3, 4 <}
lexicographically we get that

A =









−1 2 −1
−2 3 0
−1 0 3
0 −1 2









Then a super-concave partition with at most r parts corresponds to a solu-
tion to

Az ≤ 0, z ≥ 0 (21)

whereas a concave partition with at most r parts corresponds to a solution
to

Az ≤ b, z ≥ 0 (22)

where the entry of b which corresponds to the row of A indexed by (i, j, k) is
i−k. It follows from a theorem in Stanley’s “green book” [9] that the multi-
generating functions of these two solution sets have the same denominator,
and that their numerator evaluates to the same value after substituting 1
for each formal variable.
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All monomials in
r

∏

i=1



1 −
i

∏

j=1

x1+i−j
j





have weakly decreasing exponent vectors, hence this is also true for PCr(x1, . . . , xr).
The assertion about PC(x) follows by passing to the limit. �

Our calculations indicate that

Q1(x) = 1

Q2(x) = 1 + x1x2 − x2
1x2

Q3(x) = Q2(x) + x3

(

x1
5x2

3 − x1
4x2

3 − 2x1
3x2

2 + x1
2x2

2 + x1x2

)

(23)

Corollary 11. (i) The generating function for concave partitions with at
most r parts is given by

PCr(t) =
∞
∑

n=0

pc(n, r)tn =
Qr(t)

∏r
i=1

(

1 − t
i(i+1)

2

) (24)

where Qr(1) = 1, and the numerator has degree strictly smaller than
r3/6 + r2/2 + r/3.

(ii) The proportion of concave partitions with at most r parts among all
partitions with at most r parts is

r!
∏r

i=1
i(i+1)

2

. (25)

Proof. The only thing which does not follow immediately from substituting
xi = t in the previous theorem is the assertion about the degree of the
numerator. From Stanley’s “grey book” [10, Theorem 4.6.25] we have that
the rational function PCr(t, . . . , t) is of degree < 0. The degree of the
denominator is

r
∑

i=1

i(i + 1)

2
=

r3

6
+

r2

2
+

r

3

so the result follows. �

We can therefore say with absolute certainty that the first Qr(t) are as
follows:

Q1(t) = 1

Q2(t) = 1 + t2 − t3

Q3(t) = 1 + t2 + t5 − 2t6 − t8 + t9

Q4(t) = 1 + t2 + t4 + t5 − t6 − t7 + 2t9 − 2t10 − t11 − 2t12+

+ 2t13 − t14 − t15 + t16 + t17 + t18 − t19

(26)

Hence, we belive that

PC(t) =
1 + t2 + O(t3)

∏

∞

i=1

(

1 − t
i(i+1)

2

) (27)
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We’ve calculated that

PC(t) =

∞
∑

n=0

pc(n)tn = 1 + t + 2t2 + 3t3 + 4t4 + 7t5 + 9t6 + 11t7+

+ 17t8 + 23t9 + 28t10 + 39t11 + 48t12 + 59t13 + 79t14+

+ 100t15 + 121t16 + 152t17 + 185t18 + 225t19 + 280t20 + O(t21) (28)

It seems likely that log pc(n) grows as n1/3 (i.e. approximately as fast as
pseudo-convex partitions), but we can not prove this, since we have no
estimates of the numerator in (27).

We have submitted
(

pc(n)
)

∞

n=0
to the OEIS [8]; it is A084913. The se-

quences
(

pc(n, r)
)

∞

n=0
are A086161, A086162, and A086163 for r = 2, 3, 4.
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